Cobalt Patents (Class 502/260)
  • Patent number: 4581343
    Abstract: A pollution control catalyst for a catalytic converter in the exhaust system of an internal combustion engine, which catalyst comprises a support impregnated with (i) at least one platinum group precious metal, and with (ii) cerium base metal, or a combination of cerium and at least one other base metal, is facilely prepared by (1) impregnating a catalyst support with precursor compounds of said cerium base metal, or of said cerium base metal and of at least one other base metal, (2) activating said impregnated support, under a neutral or oxidizing atmosphere, at a temperature ranging from 120.degree. to 800.degree. C.
    Type: Grant
    Filed: May 15, 1984
    Date of Patent: April 8, 1986
    Assignee: Pro-Catalyse
    Inventors: Gilbert Blanchard, Jean-Pierre Brunelle, Richard Doziere, Emmanuel Goldenberg, Michel Prigent
  • Patent number: 4563371
    Abstract: The metallization of porous solid bodies, such as, for example, ion exchange materials, by loading the surfaces of the metal-free substrates with transition metal ions and subsequently treating them with reducing agents can be improved by activating the substrates, before or after the loading with metal ions, with elements of group 1 or 8 of the periodic table or compounds thereof and sensitizing any activating ions still present. The metallization products are useful hydrogenation catalysts.
    Type: Grant
    Filed: December 23, 1983
    Date of Patent: January 7, 1986
    Assignee: Bayer Aktiengesellschaft
    Inventors: Kirkor Sirinyan, Peter M. Lange, Rudolf Merten, Alfred Mitschker
  • Patent number: 4545883
    Abstract: A material for acting as a catalyst for hydrogen evolution in an electrolytic cell is formed from a host matrix including at least one transition element which is structurally modified by incorporating one or more modifier elements at least one of which is a transition element to improve its catalytic properties. The utilization of a disordered material, which can be any of a number of different disordered structures, makes possible the modification of local order chemical environments of the material to create catalytical active sites for the hydrogen evolution reaction. Modifier elements, including for example Ti, Mo, Sr, Si, La, Ce, O and Co, structurally modify the local chemical environments of the host matrix formed of a transition element such as Ni, Mo, or Co to provide a material having an increased density of catalytically active sites which exhibits low overvoltages when utilized as a catalytic material for a electrolyte cell cathode.
    Type: Grant
    Filed: July 19, 1982
    Date of Patent: October 8, 1985
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Krishna Sapru, Edmund L. Yee
  • Patent number: 4537875
    Abstract: Alumina, silica or silica-alumina containing catalysts are manufactured by incorporating at least one active element selected from the metals of the groups V, VI and VIII or their compounds to a carrier, and then drying and activating. The carrier or the catalyst is shaped into extrudates and the latter are crushed to coarse particles.
    Type: Grant
    Filed: December 27, 1983
    Date of Patent: August 27, 1985
    Assignee: Societe Francaise des Produits pour Catalyse Pro-Catalyse
    Inventors: Herve Toulhoat, Jean-Claude Plumail, Marc Mercier, Yves Jacquin
  • Patent number: 4537873
    Abstract: A catalyst comprising precious metal particles supported on a carrier obtained from (a) titania as a first component and (b) as a second component at least one metal oxide selected from oxides of magnesium, strontium, lanthanum, yttrium, cerium, zirconium, silicon and tin, is effective for catalytic combustion of a fuel at a temperature of 400.degree. to 1500.degree. C. with excellent durability.
    Type: Grant
    Filed: November 29, 1983
    Date of Patent: August 27, 1985
    Assignee: Hitachi, Ltd.
    Inventors: Akira Kato, Tomoichi Kamo, Shigeo Uno, Hiroshi Kawagoshi, Hisao Yamashita, Shinpei Matsuda
  • Patent number: 4532229
    Abstract: The use of relatively stable iron carbonyl complexes e.g. Bis(dicarbonylcyclopentadienyliron), and lower melting cobalt carbonyl complexes, facilitates production of mixed metal catalysts for conversion of CO/H.sub.2 to alpha-olefins. The decomposition of these materials can be achieved in a controlled manner resulting in an excellent alpha-olefins synthesis catalyst in Fischer-Tropsch processes.
    Type: Grant
    Filed: December 14, 1983
    Date of Patent: July 30, 1985
    Assignee: Exxon Research and Engineering Co.
    Inventors: Rocco A. Fiato, Gary B. McVicker, Angelo A. Montagna
  • Patent number: 4518709
    Abstract: A coal liquefaction hydrotreating catalyst composition comprising particles of Component A consisting essentially of at least one Group VIB metal component supported on refractory inorganic oxide and particles of Component B consisting essentially of either cobalt and/or nickel component supported on a refractory inorganic oxide.
    Type: Grant
    Filed: April 5, 1982
    Date of Patent: May 21, 1985
    Assignee: Standard Oil Company (Indiana)
    Inventor: Regis J. Pellet
  • Patent number: 4499203
    Abstract: A catalyst for use in the hydrotreatment of hydrocarbons comprises a carrier and at least one catalytic metal selected from vanadium, molybdenum, tungsten, nickel, cobalt and/or iron; this catalyst is in the form of a plurality of juxtaposed agglomerates of acicular platelets, oriented radially to each other. It is prepared from agglomerates of activated alumina subjected to reaction with an acid and a compound providing an anion able to combine with aluminum ions in solution.
    Type: Grant
    Filed: June 17, 1983
    Date of Patent: February 12, 1985
    Assignee: Societe Francaise des Produits pour Catalyse Pro-Catalyse
    Inventors: Herve Toulhoat, Yves Jacquin, Thierry Dupin
  • Patent number: 4497903
    Abstract: Synthesis gas conversion catalyst prepared from synthetic layered aluminosilicate having a montmorillonite-type structure and containing cobalt substituted in the crystal lattice are activated for the conversion of synthesis gas by a sequential reduction, oxidation and reduction treatment. A Group VIII noble metal such as ruthenium can be impregnated on the catalyst prior to the final reduction stage. The catalyst is used in the production of liquid hydrocarbons from synthesis gas.
    Type: Grant
    Filed: December 17, 1982
    Date of Patent: February 5, 1985
    Assignee: Gulf Research & Development Company
    Inventors: Charles L. Kibby, Thaddeus P. Kobylinski
  • Patent number: 4473705
    Abstract: A process for producing an oxalate diester is provided. The oxalate diester is produced by reacting an aliphatic alcohol, carbon monoxide and molecular oxygen at an elevated temperature and under pressure in the presence of a catalyst comprising (1) metallic palladium or a palladium compound, (2) a heteropoly-acid and (3) at least one nitrogen compound selected from the group consisting of nitric acid, nitrogen oxides and esters of nitrous acid.
    Type: Grant
    Filed: December 21, 1982
    Date of Patent: September 25, 1984
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hiroshi Miyamori, Tadashi Simomura, Mituo Miura, Katsushige Hayashi
  • Patent number: 4469813
    Abstract: Highly active and selective hydroisomerization catalysts are prepared by heating to 300.degree.-450.degree. C. at subatmospheric pressure, a mixture of nickel synthetic mica montmorillonite (Ni-SMM) with a hydroxy aluminum polymeric solution. The resulting pillared Ni-SMM catalyst, preferably Pd-loaded, is especially useful in hydroisomerizing C.sub.4 -C.sub.7 paraffins.
    Type: Grant
    Filed: March 18, 1983
    Date of Patent: September 4, 1984
    Assignee: Shell Oil Company
    Inventors: Jan Gaaf, Rutger A. van Santen
  • Patent number: 4459372
    Abstract: Surface-metallated aluminas and silicas are species many of whose physical properties, such as surface and pore volume, are unchanged but which exhibit superior hydrothermal stability. Suitable for use as catalytic supports, these materials can be simply prepared by treating the alumina or silica with a tetrahalide of a metal, such as titanium or zirconium, removing the unreacted tetrahalide, and calcining the resulting material in a moist atmosphere.
    Type: Grant
    Filed: August 25, 1982
    Date of Patent: July 10, 1984
    Assignee: UOP Inc.
    Inventor: Blaise J. Arena
  • Patent number: 4439544
    Abstract: Supported coprecipitated cobalt-silica hydrogenation catalysts are disclosed. The catalysts are prepared by: preparing an aqueous reaction mixture containing cobalt cations, silicate anions and solid porous carrier particles under agitation to form a coprecipitate of the cobalt and silicate ions onto said solid porous support particles; heating the aqueous reaction mixture; and adding an alkaline precipitating agent to further precipitate the cobalt and silicate ions onto said solid porous carrier particles. The aqueous reaction mixture may additionally include copper cations.
    Type: Grant
    Filed: June 24, 1980
    Date of Patent: March 27, 1984
    Assignee: Exxon Research and Engineering Co.
    Inventors: James L. Carter, Allan E. Barnett
  • Patent number: 4427578
    Abstract: This invention relates to a catalyst for use in the direct conversion of synthesis gas to olefinic hydrocarbons in good yield. It also relates to a process for producing the catalyst.The catalyst comprises a highly porous amorphous silica support on which is deposited one or more monolayers of silica. The catalyst is then impregnated with a transition metal. The monolayer of silica is formed by the hydrolysis of a compound such as ethyl orthosilicate while it is adsorbed onto the support.
    Type: Grant
    Filed: July 7, 1982
    Date of Patent: January 24, 1984
    Assignee: Coal Industry (Patents) Limited
    Inventors: Joseph G. Robinson, David I. Barnes, Angela M. Carswell
  • Patent number: 4415744
    Abstract: Aromatic compounds are nitrated in the vapor phase via a process comprising contacting the aromatic compound with a nitrating agent in the presence of a nitration promotion catalyst which comprises the adduct of:(a) an alumina-silica-metal oxide combination represented by the formula:(Al.sub.2 O.sub.3).sub.a (SiO.sub.2).sub.b (M.sub.2/n O).sub.cwherein M is a metal cation selected from the group consisting of the lanthanides or rare earths, Groups 1b, 2b, 5b, 6b, 7b, and 8 of the Periodic Table of the Elements, and mixtures thereof, and a, b, and c represent weight percent of the Al.sub.2 O.sub.3, SiO.sub.2, and M.sub.2/n O components, respectively, in the alumina-silica-metal oxide combination, with a being 0 to 100, b being 0 to 100, and c being 0 to 50, and n represents an integer from 1 to 7 of the valence of the metal cation, with the proviso that the sum of (a+b) must be greater than 0, and(b) a catalytically effective amount of sulfur trioxide.
    Type: Grant
    Filed: October 21, 1981
    Date of Patent: November 15, 1983
    Assignee: Monsanto Company
    Inventors: Ignatius Schumacher, Kang-Bo Wang