Platinum Or Palladium Patents (Class 502/262)
  • Patent number: 10308562
    Abstract: A long life catalyst is provided that is conveniently and inexpensively capable of being produced and that is highly active and has inhibited metal leakage. According to aspects of the present invention, a catalyst is provided that includes: a polymer including a plurality of first structural units and a plurality of second structural units; and metal acting as a catalytic center, wherein at least part of the metal is covered with the polymer, each of the plurality of first structural units has a first atom constituting a main chain of the polymer and a first substituent group bonded to the first atom, a second atom included in each of the plurality of second structural units is bonded to the first atom, and the second atom is different from the first atom, or at least one of all substituent groups on the second atom is different from the first substituent group.
    Type: Grant
    Filed: September 12, 2015
    Date of Patent: June 4, 2019
    Assignee: TOYO GOSEI CO., LTD.
    Inventors: Takashi Miyazawa, Shin-ya Tashita
  • Patent number: 9789469
    Abstract: An exhaust gas-purifying catalyst material includes first oxide particles having an average particle diameter Dav of 1 ?m to 95 ?m and having an oxygen storage capacity, second oxide particles having an average particle diameter Dav of 0.05 ?m to 0.5 ?m, containing a metal element, and having no oxygen storage capacity, precious metal particles, and acidic oxide particles. The material has a correlation coefficient ? of 0.45 or more obtained using first characteristic X-ray intensity for the metal element contained in the second oxide particle, second characteristic X-ray intensity for an element other than oxygen contained in the acidic oxide particle, and third characteristic X-ray intensity for a precious metal element contained in the precious metal particle.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: October 17, 2017
    Assignee: CATALER CORPORATION
    Inventors: Satoshi Matsueda, Akimasa Hirai, Kenichi Taki, Yuji Yabuzaki, Sho Hoshino
  • Patent number: 9358487
    Abstract: A sealed honeycomb structure which can suppress increase of pressure loss and improve durability favorably is disclosed. A sealed honeycomb structure 100 including includes a honeycomb structure having porous walls dividedly forming inlet cells and outlet cells, an outlet side sealing portion, and an inlet side sealing portion, wherein an opening area of the inlet cell is larger than an opening area of an outlet cell on a cross-section of the honeycomb structure, wherein at least one outlet cell is a reinforced cell where a reinforcing part for reinforcing the outlet cell is formed at at least one corner portion at which the walls on a cross-section vertical to an extending direction of the cell cross each other, and wherein the inlet cell is a non-reinforced cell where the reinforcing part is not formed at all the corner portions at which the walls on the cross-section vertical to the extending direction of the cell cross each other.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: June 7, 2016
    Assignees: HYUNDAI Motor Company, KIA Motors Corporation, NGK Insulators, LTD.
    Inventors: Tetsuo Toyoshima, Akira Takahashi, Yuichi Hamazaki, Jung Min Seo, Won Soon Park
  • Patent number: 9333462
    Abstract: An exhaust gas aftertreatment system and a method of use reduces the amount of N2O produced in at least one of: (1) a selective catalytic reduction (SCR) catalytic converter and (2) an ammonia slip catalyst (ASC) in the exhaust gases from a combustion engine. The system includes an SCR catalytic converter arranged in an exhaust gas line upstream of an optional ASC. The exhaust gases pass through the SCR catalytic converter and any ASC before they are released by the exhaust gas outlet. An injector injects a reducing agent into the exhaust gases in the exhaust gas line upstream of the SCR catalytic converter at a dosing frequency F. A control unit generates a control signal to adjust the dosing frequency F so that the amount of N2O produced in at least one of: (1) the SCR catalytic converter and (2) the ASC is minimized while maintaining the amount of reducing agent added.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: May 10, 2016
    Assignee: SCANIA CV AB
    Inventor: Ola Stenlåås
  • Patent number: 9327222
    Abstract: A sealed honeycomb structure which can suppress increase of pressure loss and improve durability favorably is disclosed. A sealed honeycomb structure 100 including includes a honeycomb structure having porous walls dividedly forming inlet cells and outlet cells, an outlet side sealing portion, and an inlet side sealing portion, wherein an opening area of the inlet cell is larger than an opening area of an outlet cell on a cross-section of the honeycomb structure, wherein at least one outlet cell is a reinforced cell where a reinforcing part for reinforcing the outlet cell is formed at at least one corner portion at which the walls on a cross-section vertical to an extending direction of the cell cross each other, and wherein the inlet cell is a non-reinforced cell where the reinforcing part is not formed at all the corner portions at which the walls on the cross-section vertical to the extending direction of the cell cross each other.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: May 3, 2016
    Assignees: HYUNDAI Motor Company, KIA Motors Corporation, NGK Insulators, LTD.
    Inventors: Tetsuo Toyoshima, Akira Takahashi, Yuichi Hamazaki, Jung Min Seo, Won Soon Park
  • Patent number: 9242242
    Abstract: Described is a catalyst comprising a substrate and a catalyst coating of two or more layers: (a) a first layer comprising Pt and/or Pd on the substrate; and (b) a second layer comprising Pt on the first layer; these layers each further comprising: one or more particulate support materials; one or more oxygen storage component (OSC) materials; and one or more nitrogen oxide storage materials comprising one or more elements selected from the group of alkali and/or alkaline earth metals, wherein the total amount of alkali and alkaline earth metals ranges from 0.18 to 2.5 g/in3 calculated as the respective alkali metal oxides M2O and alkaline earth metal oxides MO. Also described is a method for the production of a catalyst, as well as a process for the treatment of a gas stream comprising nitrogen oxide, in particular of an exhaust gas stream resulting from an internal combustion engine.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: January 26, 2016
    Assignee: BASF SE
    Inventor: Marcus Hilgendorff
  • Patent number: 9034269
    Abstract: The present invention relates to a diesel oxidation catalyst comprising a carrier substrate, and a first washcoat layer disposed on the substrate, the first washcoat layer comprising palladium supported on a support material comprising a metal oxide, gold supported on a support material comprising a metal oxide, and a ceria comprising compound, as well as a process for the preparation of such catalyst.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: May 19, 2015
    Assignee: BASF SE
    Inventors: Marcus Hilgendorff, Alfred H. Punke, Torsten W. Müller-Stach, Gerd Grubert, Torsten Neubauer, Jeffrey B. Hoke
  • Patent number: 9034286
    Abstract: An exhaust system for a compression ignition engine comprising an oxidation catalyst for treating carbon monoxide (CO) and hydrocarbons (HCs) in exhaust gas from the compression ignition engine, wherein the oxidation catalyst comprises: a platinum group metal (PGM) component selected from the group consisting of a platinum (Pt) component, a palladium (Pd) component and a combination thereof; an alkaline earth metal component; a support material comprising a modified alumina incorporating a heteroatom component; and a substrate, wherein the platinum group metal (PGM) component, the alkaline earth metal component and the support material are disposed on the substrate.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: May 19, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: David Bergeal, Andrew Francis Chiffey, John Benjamin Goodwin, Daniel Hatcher, Francois Moreau, Agnes Raj, Raj Rao Rajaram, Paul Richard Phillips, Cathal Prendergast
  • Patent number: 9017576
    Abstract: Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: April 28, 2015
    Assignee: King Abdullah University of Science and Technology
    Inventors: Gregory Biausque, Paco Laveille, Dalaver H. Anjum, Valerie Caps, Jean-Marie Basset
  • Patent number: 9018129
    Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also disclosed is a production process for producing an exhaust gas purifying catalyst. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
  • Patent number: 9012352
    Abstract: The present invention relates to a catalyst for Fischer-Tropsch synthesis which has excellent heat transfer capability. This catalyst contains (1) central core particle or particles made of a heat transfer material (HTM) selected from the group consisting of a metal, a metal oxide, a ceramic, and a mixture thereof; and (2) outer particle layer which surrounds the central core particles and is attached to the surfaces of the central core particles by a binder material layer. The outer particle layer has a support and catalyst particles in a powder form containing metal particles disposed on the support. The catalyst having such a dual particle structure shows excellent heat transfer capability and, thus, exhibits high selectivity to a target hydrocarbon. Therefore, the catalyst of the present invention is useful in a fixed-bed reactor for Fischer-Tropsch synthesis for producing hydrocarbons from synthetic gas.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: April 21, 2015
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kyoung Su Ha, Joo Young Cheon, Yun Jo Lee, Seung-Chan Baek, Geun Jae Kwak, Seon Ju Park, Ki Won Jun
  • Patent number: 9012348
    Abstract: A composition comprising a supported hydrogenation catalyst comprising palladium and an organophosphorous compound, the supported hydrogenation catalyst being capable of selectively hydrogenating highly unsaturated hydrocarbons to unsaturated hydrocarbons. A method of making a selective hydrogenation catalyst comprising contacting a support with a palladium-containing compound to form a palladium supported composition, contacting the palladium supported composition with an organophosphorus compound to form a catalyst precursor, and reducing the catalyst precursor to form the catalyst.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 21, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Zongxuan Hong
  • Patent number: 9012353
    Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 21, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Patent number: 9011809
    Abstract: An ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O or NOx. The ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal on an inorganic base material including any of a composite oxide (A) having at least titania and silica as main components, alumina, and a composite oxide (B) consisting of alumina and silica; and a catalyst layer (upper layer) including a composite oxide (C) consisting of at least silica, tungsten oxide, ceria and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is silica: 20% by weight or less, tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: April 21, 2015
    Assignee: N.E. Chemcat Corporation
    Inventors: Tomoaki Ito, Toshinori Okajima, Takashi Hihara, Makoto Nagata
  • Patent number: 8986637
    Abstract: An emission control catalyst composition comprising a supported bimetallic catalyst consisting of gold and a metal selected from the group consisting of platinum, rhodium, ruthenium, copper and nickel is disclosed. Also disclosed is a catalytic convertor comprising a substrate monolith coated with the emission control catalyst composition and a lean burn internal combustion engine exhaust gas emission treatment system comprising the catalytic convertor. A variety of processes for preparing the catalyst composition are claimed.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: March 24, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Janet Mary Fisher, David Thompsett
  • Patent number: 8980786
    Abstract: The present invention relates to a metal oxide-platinum compound catalyst comprising 5 to 95 parts by weight of a metal oxide and 95 to 5 parts by weight of platinum as the balance. The platinum has a form to reticulately cover at least a part of a particle of the metal oxide. The wires constituting the platinum mesh have an average wire diameter of 5 nm or smaller.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: March 17, 2015
    Assignee: Shinshu University
    Inventors: Yasushi Murakami, Wataru Shimizu, Kazuyoshi Okada
  • Publication number: 20150033715
    Abstract: An oxidation catalyst is described for treating an exhaust gas from a diesel engine, which oxidation catalyst comprises: a substrate; a first washcoat region disposed on the substrate, wherein the first washcoat region comprises a first platinum group metal (PGM) and a first support material; a second washcoat region adjacent to the first washcoat region, wherein the second washcoat region comprises a second platinum group metal (PGM) and a second support material; a third washcoat region disposed on the substrate, wherein the third washcoat region comprises a third platinum group metal (PGM) and a third support material; and wherein either: (i) the third washcoat region is adjacent to the second washcoat region; or (ii) the second washcoat region is disposed or supported on the third washcoat region. Also described are uses and methods involving the oxidation catalyst.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 5, 2015
    Inventors: PENELOPE MARKATOU, YARITZA M. LOPEZ-DE JESUS, WASSIM KLINK, KIERAN JOHN COLE, COLIN RUSSELL NEWMAN, ROBERT HANLEY, YOSHIHITO HASHIMOTO, MASAHITO SHIBATA
  • Patent number: 8945309
    Abstract: A catalyst for cellulose hydrolysis and/or the reduction of hydrolysis products, in which a transition metal of group 8 to 11 is supported on a solid support. A method of producing sugar alcohols comprising: hydrolyzing cellulose in the presence of the catalyst in a hydrogen-containing atmosphere with pressurization; and reducing the hydrolysis product of cellulose. Provided are a catalyst for use in the production of sugar alcohols by the hydrolysis and hydrogenation of cellulose that affords easy separation of catalyst and product, and that does not require pH adjustment, acid or alkali neutralization, or activation of the catalyst during reuse, and a method of producing sugar alcohols from cellulose employing this catalyst.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: February 3, 2015
    Assignee: National University Corporation Hokkaido University
    Inventors: Atsushi Fukuoka, Paresh Laxmikant Dhepe
  • Patent number: 8946115
    Abstract: Subject of the invention is a dehydrogenation catalyst for dehydrogenating methylpiperidine to methylpyridine. Subject of the invention are also methods for preparing the catalysts obtained thereby and methods, in which the catalysts are used.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: February 3, 2015
    Assignee: Lonza Ltd
    Inventors: Daniel Pianzola, Walter Siegrist
  • Publication number: 20150031835
    Abstract: Disclosed is a method for selectively hydrogenating a copolymer, including contacting a heterogeneous catalyst with a copolymer to process hydrogenation The copolymer includes aromatic rings and double bonds, and the double bonds are hydrogenated, and the aromatic rings are substantially not hydrogenated. The heterogeneous catalyst includes a metal catalyst such as platinum, palladium, platinum -iridium alloy, or platinum-rhenium alloy formed on a porous support. The hydrogenation is processed at a temperature of 40° C. to 150° C. under a hydrogen pressure of 10 kg/cm2 to 50 kg/cm2.
    Type: Application
    Filed: April 29, 2014
    Publication date: January 29, 2015
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Man-Yin LO, Ying-Chieh CHEN
  • Patent number: 8940657
    Abstract: An exhaust emission control catalyst disclosed herein is equipped with a rhodium catalytic layer and a platinum catalytic layer, and is characterized in that a relationship between a mole average (X) of a Pauling's electronegativity that is calculated as to elements included in the rhodium catalytic layer except platinum group elements and oxygen and a mole average (Y) of a Pauling's electronegativity that is calculated as to elements included in the platinum catalytic layer except platinum group elements and oxygen is 1.30?X?1.45 and 1.47?Y?2.0. According to this exhaust emission control catalyst, an interlayer transfer of platinum and/or rhodium and the alloying of platinum and/or rhodium are suppressed during use of the catalyst, and high exhaust gas purification performance can be exerted.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: January 27, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshihide Segawa
  • Patent number: 8937203
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Patent number: 8932546
    Abstract: A catalytically active particulate filter is proposed which is suitable for use in an exhaust gas cleaning system for diesel engines. The particulate filter removes diesel soot particles from the exhaust gas and is also effective to oxidize carbon monoxide and hydrocarbons and to convert nitrogen monoxide at least proportionally into nitrogen dioxide. The particulate filter comprises a filter body (3) and two catalytically active coatings (1) and (2) which contain platinum and palladium, or platinum or palladium respectively, wherein the platinum content of the second catalytically active coating (2) is higher than the platinum content of the first catalytically active coating (1).
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: January 13, 2015
    Assignee: Umicore AG & Co. KG
    Inventors: Stephanie Frantz, Ulrich Goebel, Franz Dornhaus, Michael Schiffer
  • Patent number: 8927454
    Abstract: An exhaust gas-purifying catalyst includes a support provided with one or more through-holes through which exhaust gas flows, and a catalytic layer supported by the support and containing an oxygen storage material. The exhaust gas-purifying catalyst includes a first section to which the exhaust gas is supplied, and a second section to which the exhaust gas having passed through the first section is supplied. The catalytic layer includes a layered structure of a first catalytic layer containing platinum and/or palladium and a second catalytic layer containing rhodium in the first catalytic section and further includes a third layer containing rhodium in the second section. The second section is smaller in oxygen storage material content per unit volumetric capacity than the first section.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: January 6, 2015
    Assignee: Cataler Corporation
    Inventors: Minoru Itou, Michihiko Takeuchi, Tetsuya Shinozaki, Takaaki Kanazawa, Masaya Kamada, Tadashi Suzuki, Satoru Katoh, Naoki Takahashi
  • Publication number: 20150004529
    Abstract: The present invention relates to the use, as a precursor for the chemical vapour deposition of PtSi at the surface of a support, of at least one organometallic complex of Pt comprising at least:—a ligand having a cyclic structure that comprises at least two non-adjacent C?C double bonds, or two ligands having a cyclic structure that each comprise a C?C double bond; and—a ligand chosen from *O—Si(R)3 and *N—(Si(R)3)2, with: the R units being chosen, independently of one another, from (C1-C4)alkoxy groups; the R? units being chosen, independently of one another, from (C1-C4)alkyl and (C3-C4)cycloalkyl groups; and * representing the coordination of the ligand to the platinum.
    Type: Application
    Filed: January 16, 2013
    Publication date: January 1, 2015
    Inventors: Sebastien Donet, Christophe Coperet, Nicolas Guillet, Pierre Laurent, Chloe Thieuleux
  • Patent number: 8920759
    Abstract: One embodiment includes an oxidation catalyst assembly formed by applying a washcoat of platinum and a NOx storage material to a portion of a substrate material.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jong H. Lee, David B. Brown, Michael J. Paratore, Jr., Yongsheng He
  • Patent number: 8912115
    Abstract: The present invention is an improved method for preparing a heterogeneous, supported hydrogenation catalyst that comprises a Group VIII A metal and a catalyst support (for example, SiO2, with either a hydrophilic or a hydrophobic surface) via aqueous deposition precipitation as well as the catalyst prepared by said method.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: December 16, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Michael M. Olken, Edward M. Calverley
  • Patent number: 8906330
    Abstract: The present invention relates to a catalyst composition comprising a carrier substrate, a layer (i) coated on said carrier substrate comprising at least one precious group metal, a layer (ii) comprising Rh, and a layer (iii) comprising Pd and/or Pt and being substantially free of Ce, Ba and Rh, wherein the layer (iii) has a lower weight than the layer (i) or the layer (ii). Furthermore, the present invention relates to a method for treating an exhaust gas stream using said catalyst composition.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: December 9, 2014
    Assignee: BASF Corporation
    Inventors: Marcus Hilgendorff, Wen Mei Xue, Cesar Tolentino
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Patent number: 8883100
    Abstract: The present invention relates to a particle filter comprising a porous carrier body, an SCR active component and an oxidation catalyst, wherein the SCR active component is present as coating on the exhaust-gas entry surface and the inner surface of the porous carrier body and the oxidation catalyst as coating on the exhaust-gas exit surface of the porous carrier body. According to the invention the oxidation catalyst changes its function depending on operating conditions. In normal operation it serves as NH3 slip catalyst for oxidizing excess NH3 and during filter regeneration it operates according to the 3-way principle for converting NOx and CO. The invention also relates to a method for producing the particle filter, the use of the particle filter for treating exhaust gases from the combustion of fossil, synthetic or biofuels as well as an exhaust-gas cleaning system which contains the particle filter according to the invention.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 11, 2014
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Martin Paulus, Klaus Wanninger
  • Patent number: 8871171
    Abstract: Microwave irradiation is used to synthesize graphene and metallic nanocatalysts supported on graphene either by solid or solution phase. In solid phase methods, no solvents or additional reducing agents are required so the methods are “environmentally friendly” and economical, and the graphene and nanocatalysts are substantially free of residual contaminants. Recyclable, high efficiency Pd nanocatylysts are prepared by these methods.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: October 28, 2014
    Assignee: Virginia Commonwealth University
    Inventors: M. Samy El-Shall, Victor Abdelsayed, Hassan M. A. Hassan, Abd El Rahman S. Khder, Khaled M. Abouzeid, Qilin Dai, Parichehr Afshani, Frank Gupton, Ali R. Siamaki, Zeid Abdullah M. Alothman, Hamad Zaid Alkhathlan
  • Patent number: 8871669
    Abstract: A catalyst composition is provided comprising a homogeneous solid mixture having ordered directionally aligned tubular meso-channel pores having an average diameter in a range of about 1 nanometer to about 15 nanometers, wherein the homogeneous solid mixture is prepared from a gel formed in the presence of a solvent, modifier, an inorganic salt precursor of a catalytic metal, an inorganic precursor of a metal inorganic network, and a templating agent. The templating agent comprises an octylphenol ethoxylate having a structure [I]: wherein “n” is an integer having a value of about 8 to 20.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 28, 2014
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Ashish Balkrishna Mhadeshwar, Ming Yin
  • Patent number: 8865615
    Abstract: Ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O and leakage of ammonia. The ammonia oxidation catalyst (AMOX) removes surplus ammonia, in selectively reducing nitrogen oxides by adding urea or ammonia and using a selective catalytic reduction (SCR) catalyst, into exhaust gas, wherein the ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal element on a composite oxide (A) having titania and silica as main components, and a catalyst layer (upper layer) including a composite oxide (C) consisting of tungsten oxide, ceria, and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: October 21, 2014
    Assignee: N.E. Chemcat Corporation
    Inventors: Tomoaki Ito, Toshinori Okajima, Makoto Nagata
  • Patent number: 8859454
    Abstract: The invention relates to a method for producing a catalyst, wherein the catalyst has a high activity and selectivity with regard to the oxidation of CO and NO. The invention also relates to the catalyst produced using the method according to the invention, the use of the catalyst as oxidation catalyst as well as a catalyst component which contains the catalyst according to the invention. Finally, the invention is directed towards an exhaust-gas cleaning system which comprises the catalyst component containing the catalyst according to the invention.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: October 14, 2014
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Andreas Bentele, Klaus Wanninger, Gerd Maletz, Martin Schneider
  • Patent number: 8859455
    Abstract: The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2—Pt and Pt—SiO2, can be used to catalyze two distinct sequential reactions. The CeO2—Pt interface catalyzed methanol decomposition to produce CO and H2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt—SiO2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: October 14, 2014
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Gabor Somorjai, Yusuke Yamada, Chia-Kuang Tsung, Wenyu Huang
  • Patent number: 8859458
    Abstract: Provided are a method of preparing an electrocatalyst for fuel cells in a core-shell structure, an electrocatalyst for fuel cells having a core-shell structure, and a fuel cell including the electrocatalyst for fuel cells. The method may be useful in forming a core and a shell layer without performing a subsequent process such as chemical treatment or heat treatment and forming a core support in which core particles having a nanosize diameter are homogeneously supported, followed by selectively forming shell layers on surfaces of the core particles in the support. Also, the electrocatalyst for fuel cells has a high catalyst-supporting amount and excellent catalyst activity and electrochemical property.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: October 14, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Seung Jun Hwang, Sung Jong Yoo, Soo Kil Kim, Eun Ae Cho, Jong Hyun Jang, Hyoung Juhn Kim, Suk Woo Nam, Tae Hoon Lim
  • Patent number: 8858904
    Abstract: Described is a catalyzed soot filter wherein the inlet coating of the filter comprises an oxidation catalyst comprising platinum (Pt) and optionally palladium (Pd), wherein the outlet coating of the filter comprises an oxidation catalyst comprising Pd and optionally Pt, wherein the Pt concentration in the outlet coating is lower than the Pt concentration in the inlet coating and wherein the weight ratio of Pt:Pd in the outlet coating is in the range of from 0:1 to 2:1; and wherein the inlet coating and the outlet coating are present on the wall flow substrate at a coating loading ratio in the range of from 0.5 to 1.5, calculated as ratio of the loading of the inlet coating (in g/inch3 (g/(2.54 cm)3)):loading of the outlet coating (in g/inch3 (g/(2.54 cm)3)). Systems include such catalyzed soot filters, methods of diesel engine exhaust gas treatment and methods of manufacturing catalyzed soot filters are also described.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: October 14, 2014
    Assignee: BASF Corporation
    Inventors: Alfred Helmut Punke, Gerd Grubert, Yuejin Li, Ruediger Wolff, Stanley Roth, Torsten Müller-Stach, Attilio Siani, Kenneth Voss, Torsten Neubauer
  • Patent number: 8852519
    Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also, disclosed is a production process of an exhaust gas purifying catalyst, by which the above exhaust gas purifying catalyst can be produced. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: October 7, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
  • Publication number: 20140271427
    Abstract: A catalyst material for the oxidation of NO comprising a catalyst carrier including a ceria-alumina support having platinum and optionally palladium dispersed on the support is described. When palladium is present, the ratio of platinum to palladium by weight is at least 1:1. The amount of ceria in the support is in the range of 1% to 12% by weight. The catalyst material is useful for methods and systems of abating pollutants from automotive exhaust gas from lean burn engines.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: BASF Corporation
    Inventors: Jeffrey B. Hoke, Olga Gerlach, Andreas Sundermann
  • Publication number: 20140274666
    Abstract: A structurally promoted, precipitated, Fischer-Tropsch catalyst that exhibits an RCAI-10 of 0-2.8 and/or produces less than 6 wt % fines after 5 hours ASTM Air Jet Attrition testing, due to formation via: preparing a nitrate solution by forming at least one metal slurry and combining the at least one metal slurry with a nitric acid solution; combining the nitrate solution with a basic solution to form a precipitate; structurally promoting the precipitate with at least one source of silicon to form a promoted mixture, wherein promoting comprises combining the precipitate with (a) silicic acid and one or more component selected from the group consisting of non-crystalline silicas, crystalline silicas, and sources of kaolin or (b) a component selected from the group consisting of non-crystalline silicas and sources of kaolin, in the absence of silicic acid; and spray drying the promoted mixture to produce catalyst having a desired particle size.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: RENTECH, INC.
    Inventors: Dawid J. DUVENHAGE, Belma DEMIREL
  • Patent number: 8833064
    Abstract: Catalyst articles comprising substantially only a palladium precious metal component in a first catalytic layer and a rhodium component in a second catalytic layer and related methods of preparation and use are disclosed. Also disclosed is a catalyst article comprising a first layer formed on a carrier substrate, wherein the first layer comprises a refractory metal oxide and has a surface that is substantially uniform; a second layer formed on the first layer, wherein the second layer comprises i) an oxygen storage component that is about 50-90% by weight of the second layer and ii) a palladium component in an amount of about 2-5% by weight of the second layer, wherein the palladium component is substantially the only platinum group metal component, and a palladium-free third layer comprising a rhodium component supported on a thermostable oxygen storage component which is about 80-99% by weight of the second layer. One or more improved properties are exhibited by the catalyst article.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: September 16, 2014
    Assignee: BASF Corporation
    Inventors: Michael P. Galligan, Pascaline H. Tran, Keshavaraja Alive, Ye Liu
  • Patent number: 8828343
    Abstract: Catalyst articles comprising palladium and related methods of preparation and use are disclosed. Disclosed is a catalyst article comprising a first catalytic layer formed on a substrate, wherein the first catalytic layer comprises palladium impregnated on a ceria-free oxygen storage component and platinum impregnated on a refractory metal oxide, and a second catalytic layer formed on the first catalytic layer comprising platinum and rhodium impregnated on a ceria-containing oxygen storage component. The palladium component of the catalyst article is present in a higher proportion relative to the other platinum group metal components. The catalyst articles provide improved conversion of carbon monoxide in exhaust gases, particularly under rich engine operating conditions.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: September 9, 2014
    Assignee: BASF Corporation
    Inventors: Xinsheng Liu, Ye Liu, Pascaline Harrison Tran, Keshavaraja Alive, Michael P. Galligan
  • Publication number: 20140249021
    Abstract: A nano-particle comprising: an interior region comprising a mixed-metal oxide; and an exterior surface comprising a pure metal. In some embodiments, the mixed-metal oxide comprises aluminum oxide and a metallic pinning agent, such as palladium, copper, molybdenum, or cobalt. In some embodiments, the pure metal at the exterior surface is the same as the metallic pinning agent in the mixed-metal oxide in the interior region. In some embodiments, a catalytic nano-particle is bonded to the pure metal at the exterior surface. In some embodiments, the interior region and the exterior surface are formed using a plasma gun. In some embodiments, the interior region and the exterior surface are formed using a wet chemistry process. In some embodiments, the catalytic nano-particle is bonded to the pure metal using a plasma gun. In some embodiments, the catalytic nano-particle is bonded to the pure metal using a wet chemistry process.
    Type: Application
    Filed: February 7, 2014
    Publication date: September 4, 2014
    Inventors: Wilbert VAN DEN HOEK, Maximilian A. BIBERGER
  • Patent number: 8815768
    Abstract: The present invention relates to catalysts, to processes for making catalysts with acidic precursors and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a support, optionally a modified support.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: August 26, 2014
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner
  • Publication number: 20140221199
    Abstract: The present invention discloses stable, non-agglomerated, ultra-small metal/alloy clusters encapsulated in silica with the metal/alloy cluster size of less than 5 nm. The invention further discloses a simple, cost effective process for the preparation of metal/alloy clusters encapsulated in silica which is thermally stable and without agglomeration.
    Type: Application
    Filed: April 11, 2012
    Publication date: August 7, 2014
    Applicant: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Nandini R. Devi, Anupam Samanta
  • Patent number: 8796172
    Abstract: An exhaust gas purification catalyst is provided with a catalyst coating layer (40) formed on the surface of a substrate (32). This catalyst coating layer (40) is formed of an upper catalyst coating layer (36) in which Rh particles are supported on a porous support, and a lower catalyst coating layer (34) in which Pd particles are supported on a support that contains an ACZ composite oxide made of alumina (Al2O3), ceria (CeO2), and zirconia (ZrO2).
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: August 5, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Isao Chinzei
  • Patent number: 8795619
    Abstract: A catalyst for purification of exhaust gas, in which a noble metal is supported on a metal oxide support, has a basic site content of 1 mmol/L-cat or less, as determined on the basis of an amount of CO2 desorbed per liter of the catalyst as measured by a CO2 temperature-programmed desorption method.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: August 5, 2014
    Assignees: Toyota Jidosha Kabushiki Kaisha, Cataler Corporation
    Inventors: Tadashi Suzuki, Satoru Kato, Naoki Takahashi, Takaaki Kanazawa, Masanori Yamato, Kazuhiro Yoshimoto, Michihiko Takeuchi, Yuuji Matsuhisa
  • Patent number: 8771624
    Abstract: An Object of the patent is to remove highly reducing hydrocarbon exhausted during acceleration period, and to remove efficiently hydrocarbon even after contacting with highly reducing hydrocarbon. By using a catalyst having a higher proportion of palladium having surface charge of 2-valence or 4-valence supported than that of 0-valence by supporting palladium together with magnesium oxide, hydrocarbon exhausted from an internal combustion engine especially during acceleration period can be efficiently removed.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: July 8, 2014
    Assignees: Umicore Shokubai Japan Co., Ltd, Umicore Shokubai USA Inc.
    Inventors: Masanori Ikeda, Hideki Goto, Kosuke Mikita
  • Patent number: 8765625
    Abstract: An emission control catalyst includes copper-ceria to boost low temperature CO oxidation performance, generate exothermic heat during the process, and reduce HC and NOx emissions. As a result, system performance is boosted at equal catalyst cost or maintained at a reduced catalyst cost. In one embodiment, an engine exhaust catalyst includes a first washcoat layer having at least one of a platinum-based catalyst, a palladium-based catalyst, and combinations thereof; and a second washcoat layer having copper-ceria.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: July 1, 2014
    Assignee: Shubin, Inc.
    Inventors: Xianghong Hao, Juan Cai
  • Publication number: 20140170045
    Abstract: Provided are catalysts comprising a small pore molecular sieve embedded with platinum group metal (PGM) and methods for treating lean burn exhaust gas using the same.
    Type: Application
    Filed: June 5, 2012
    Publication date: June 19, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Joseph Michael Fedeyko, Hai-Ying Chen, Paul Joseph Andersen