Platinum Or Palladium Patents (Class 502/262)
  • Publication number: 20110311422
    Abstract: The invention relates to a method for producing a catalyst, wherein the catalyst has a high activity and selectivity with regard to the oxidation of CO and NO. The invention also relates to the catalyst produced using the method according to the invention, the use of the catalyst as oxidation catalyst as well as a catalyst component which contains the catalyst according to the invention. Finally, the invention is directed towards an exhaust-gas cleaning system which comprises the catalyst component containing the catalyst according to the invention.
    Type: Application
    Filed: January 27, 2010
    Publication date: December 22, 2011
    Applicant: SUED-CHEMIE AG
    Inventors: Andreas Bentele, Klaus Wanninger, Gerd Maletz, Martin Schneider
  • Patent number: 8080494
    Abstract: A catalyst 1 has a heat-resistant support 2 selected from among Al2O3, SiO2, ZrO2, and TiO2, and a first metal 4 supported on an outer surface of the support 2, and included by an inclusion material 3 containing a component of the support 2.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: December 20, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hirofumi Yasuda, Katsuo Suga, Makoto Aoyama, Toshiharu Miyamura
  • Patent number: 8080347
    Abstract: There is provided a catalyst for a fuel cell, which simultaneously realizes excellent catalytic activity and catalytic stability. The catalyst for a fuel cell comprises a fine particle of a metal represented by formula: PtxRuySizT1u wherein T1 represents at least one element selected from the group consisting of nickel (Ni), tungsten (W), vanadium (V), and molybdenum (Mo); x=30 to 90 atomic %; y=0 to 50 atomic %; z=0.5 to 20 atomic %; and u=0.5 to 40 atomic %, or comprises a fine particle of a metal represented by formula: PtxRuySizT2u wherein T2 represents at least one element selected from the group consisting of hafnium (Hf), tin (Sn), zirconium (Zr), niobium (Nb), titanium (Ti), tantalum (Ta), chromium (Cr), and aluminum (Al); x=30 to 90 atomic %; y=0 to 50 atomic %; z=0.5 to 20 atomic %; and u=0.5 to 40 atomic %.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: December 20, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wu Mei, Taishi Fukazawa, Takahiro Sato, Itsuko Mizutani, Yoshihiko Nakano
  • Patent number: 8076263
    Abstract: The present invention is directed to an improved catalyst support and to the resultant catalyst suitable for treating exhaust products from internal combustion engines, especially diesel engines. The support of the present invention is a structure comprising alumina core particulate having high porosity and surface area, wherein the structure has from about 1 to about 40 weight percent silica in the form of cladding on the surface area of said alumina core. The resultant support has a normalized sulfur uptake (NSU) of up to 15 ?g/m2.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: December 13, 2011
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Manoj Mukund Koranne, James Neil Pryor, David Monroe Chapman, Rasto Brezny
  • Patent number: 8075859
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 13, 2011
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20110274602
    Abstract: Novel metal-containing silicates, in particular redox-active as well as crystalline silicates, a process for preparing metal-containing crystalline silicates, as well as use thereof as high-temperature oxidation catalyst or diesel oxidation catalyst. Further, a catalytic composition and a shaped catalyst body which contains the metal-containing crystalline silicates.
    Type: Application
    Filed: November 13, 2009
    Publication date: November 10, 2011
    Inventor: Klaus Wanninger
  • Publication number: 20110268242
    Abstract: A recombination apparatus is provided to an off-gas system of a boiling water nuclear plant. An off-gas system pipe connected to a condenser is connected to the recombination apparatus. A catalyst layer filled with a catalyst for recombining hydrogen and oxygen is disposed in the recombination apparatus. The recombination catalyst has a percentage of the number of Pt particles whose diameters are in a range from more than 1 nm to not more than 3 nm to the numbers of Pt particles whose diameters are in a range from more than 0 nm to not more than 20 nm, falling within a range from 20 to 100%. The condenser discharges gas containing an organosilicon compound (ex. D5), hydrogen, and oxygen, which is introduced to the recombination apparatus. Use of the above recombination catalyst can improve the performance of recombining hydrogen and oxygen more than conventional catalysts and the initial performance of the catalyst can be maintained for a longer period of time.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 3, 2011
    Applicants: Nikki-Universal Co., Ltd., Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Hidehiro IIZUKA, Motohiro AIZAWA, Toru KAWASAKI, Hirofumi MATSUBARA, Takashi NISHI, Shuichi KANNO, Yasuo YOSHII, Yoshinori EBINA, Takanobu SAKURAI, Tsukasa TAMAI, Michihito ARIOKA
  • Patent number: 8048548
    Abstract: In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO2 to oxidize an alcohol in a fuel cell is described.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: November 1, 2011
    Assignee: Brookhaven ScienceAssociates, LLC
    Inventors: Radoslav Adzic, Andrzej Kowal
  • Publication number: 20110257006
    Abstract: The present invention relates to a process for producing a structured porous material comprising a structured inorganic framework made up of metal-oxide based walls in which nanoparticles of metal 0 are incorporated, which comprises the following steps: a) formation of a suspension of hydrophilic nanoparticles of metal 0 stabilized by non-exchangeable ligands that give the nanoparticles their hydrophilic character; b) growth of the inorganic framework from an inorganic precursor around the nanoparticles of metal 0 stabilized by the non-exchangeable hydrophilic ligands, in the presence of a pore-forming agent; and c) elimination of the pore-forming agent and at least partially of the non-exchangeable ligands that give the nanoparticles their hydrophilic character.
    Type: Application
    Filed: September 24, 2009
    Publication date: October 20, 2011
    Applicant: UNIVERSITE CLAUDE BERNARD LYON I
    Inventors: Chloe Thieuleux, Malika Boualleg, Jean-Pierre Candy, Laurent Veyre, Jean-Marie Basset
  • Publication number: 20110257443
    Abstract: A catalyst comprising a first metal, a silicaceous support, and at least one metasilicate support modifier, wherein at least 1 wt. % of the at least one metasilicate support modifier is crystalline in phase, as determined by x-ray diffraction. The invention also relates to processes for forming such catalysts, to supports used therein, and to processes for hydrogenating acetic acid in the presence of such catalysts.
    Type: Application
    Filed: February 1, 2011
    Publication date: October 20, 2011
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Victor J. Johnston
  • Patent number: 8038956
    Abstract: Catalyzed soot filters comprising a wall flow monolith having microcracks and pores and a catalyst comprising support particles with particle sizes greater than about the size of the microcracks and less than about the size of the pores are disclosed. Methods of manufacturing catalyzed soot filters and diesel engine exhaust emission treatment systems are also disclosed.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: October 18, 2011
    Assignee: BASF CORPORATION
    Inventor: Yuejin Li
  • Patent number: 8038954
    Abstract: An emission treatment system including a catalyzed soot filter comprising a wall flow monolith and a catalyst comprising at least two types of support particles is described. The first support particle contains at least a platinum component, the second support particles contains at least a palladium component. The wall flow monolith may be washcoated with a slurry comprising at least two types of particles without applying a passivation layer to the wall flow monolith.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: October 18, 2011
    Assignee: BASF Corporation
    Inventor: Yuejin Li
  • Publication number: 20110251435
    Abstract: A process for the selective production of acetaldehyde by vapor phase reaction of acetic acid over a hydrogenating catalyst composition to form acetaldehyde is disclosed and claimed. In an embodiment of this invention reaction of acetic acid and hydrogen over platinum and iron supported on silica selectively produces acetaldehyde in a vapor phase at a temperature of about 300° C.
    Type: Application
    Filed: June 17, 2011
    Publication date: October 13, 2011
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Victor J. Johnston, James H. Zink, Laiyuan Chen, Barbara F. Kimmich, Josefina T. Chapman, Jan Cornelis van der Waal, Virginie Zuzaniuk
  • Patent number: 8034311
    Abstract: An oxidation catalyst that efficiently promotes oxidation of NO to NO2 even in a low temperature range, and an exhaust-gas purification system and method that efficiently removes exhaust-gas components even in a low temperature range are provided. This invention provides an oxidation catalyst comprising platinum and palladium as catalytically active components, which promotes oxidation of nitrogen monoxide to nitrogen dioxide, wherein the oxidation catalyst comprises 1 to 55 parts by weight of the palladium relative to 100 parts by weight of the platinum.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: October 11, 2011
    Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.
    Inventors: Masanori Ikeda, Naohiro Kato
  • Publication number: 20110237841
    Abstract: The present invention is directed to a catalyst comprising palladium on a porous Silica glass as carrier, as well as to the use of such catalyst for the selective hydrogenation of alkines to alkenes.
    Type: Application
    Filed: August 20, 2009
    Publication date: September 29, 2011
    Applicant: DSM IP ASSETS B.V.
    Inventors: Werner Bonrath, Bernd Ondruschka, Christine Schmoeger, Achim Stolle
  • Publication number: 20110229392
    Abstract: An oxidation catalyst is described for the exhaust gas purification of utility vehicles with diesel engines, which contains a substrate and a catalytically active coating of platinum, active aluminium oxide and aluminium-silicon mixed oxide. The two oxidic support materials, aluminium oxide and aluminium-silicon mixed oxide, are catalytically activated with platinum, the majority of platinum being present on the active aluminium oxide. The oxidation catalyst is distinguished by good NO oxidation rates together with a high poisoning resistance against sulfur compounds.
    Type: Application
    Filed: June 9, 2009
    Publication date: September 22, 2011
    Applicant: UMICORE AG & CO. KG
    Inventors: Stéphanie Frantz, Frank-Walter Schuetze, Anke Woerz, Gerald Jeske
  • Patent number: 8017548
    Abstract: The present invention provides a method for manufacture of supported noble metal based alloy catalysts with a high degree of alloying and a small crystallite size. The method is based on the use of polyol solvents as reaction medium and comprises of a two-step reduction process in the presence of a support material. In the first step, the first metal (M1=transition metal; e.g. Co, Cr, Ru) is activated by increasing the reaction temperature to 80 to 160° C. In the second step, the second metal (M2=noble metal; e.g. Pt, Pd, Au and mixtures thereof) is added and the slurry is heated to the boiling point of the polyol solvent in a range of 160 to 300° C. Due to this two-step method, an uniform reduction occurs, resulting in noble metal based catalysts with a high degree of alloying and a small crystallite size of less than 3 nm. Due to the high degree of alloying, the lattice constants are lowered.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: September 13, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Dan V. Goia, Marco Lopez, Tapan Kumar Sau, Mihaela-Ortansa Jitianu
  • Publication number: 20110212829
    Abstract: A process for making a ceramic catalyst material includes mixing a catalyst precursor material with a mineral particulate to form a mixture; adding a binder, silicon carbide, and a parting agent to the mixture to form unfired spheroids; and heating the unfired spheroids at a temperature effective to oxidize the silicon carbide and the catalyst precursor material to form the ceramic catalyst material. In another embodiment, the process includes the addition of a catalyst metal oxide salt to an aluminosilicate hydrogel aggregate mixture. Once the mixture sets, the set mixture is heated to a temperature to effective to produce a high surface area ceramic catalyst material.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 1, 2011
    Inventor: Felice DiMascio
  • Patent number: 8007735
    Abstract: A catalyst includes a platinum coating deposited on a silica support. The support has an average surface area between about 100 m2/g and about 120 m2/g. The platinum coating is between about 5 wt % and about 15 wt % of the catalyst. The combination of the selected surface area, silica support, and selected amount of platinum coating provides a catalytic activation temperature below 200° C. and avoids the formation of NOx.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: August 30, 2011
    Assignee: Hamilton Sundstrand Space Systems International, Inc.
    Inventors: Timothy A. Nalette, Catherine Thibaud-Erkey
  • Patent number: 8007750
    Abstract: A layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. Methods of making and using the same are also provided. In one or more embodiments, the catalyst comprises three layers of catalytic material in conjunction with a carrier. A first layer comprises a platinum component on a first support; a second layer comprises a rhodium component on a second support; and a third layer comprises a palladium component and a third support. The palladium, rhodium, and/or platinum can independently be deposited on a support of high surface area refractory metal oxide, or of an oxygen storage component, or both.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 30, 2011
    Assignee: BASF Corporation
    Inventors: Shau-Lin Franklin Chen, Jin Sakakibara, Tian Luo, Harold Rabinowitz
  • Patent number: 8003707
    Abstract: A modified sol-gel method to create metal-rich siliceous material, such as colloidal silica or aluminosilicate particles is disclosed. Initially, the metal salt of choice is added to a silicic acid solution or a silicic acid solution containing aluminum salt. The aluminum is added to vary the metal-support interaction as it forms Al—O—Si linkages within the silica matrix. Besides aluminum, other metals can be added that form M—O—Si (M=Ti, B, etc.) linkages, which do not become reduced when treated with a reducing agent. Once the metal, silicic acid and/or aluminum salt is generated, it is subjected to colloidal growth by addition to a basic heel. Upon colloidal synthesis, the metal salt containing colloidal particle is left as is to maximize colloidal stability or is reduced with hydrazine to produce the zero valence metal-containing colloidal particle.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: August 23, 2011
    Assignee: Nalco Company
    Inventor: Brian T. Holland
  • Patent number: 8003565
    Abstract: A method and catalysts for producing a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas contacts a water gas shift (WGS) catalyst, optionally in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) Pt, its oxides or mixtures thereof; b) Ru, its oxides or mixtures thereof; and c) at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Co, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu. Another disclosed catalyst formulation comprises Pt, its oxides or mixtures thereof; Ru, its oxides or mixtures thereof; Co, its oxides or mixtures thereof; and at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu, their oxides and mixtures thereof.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 23, 2011
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Freeslate, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Peter Strasser, Robert K. Grasselli, Christopher James Brooks, Cory Bernard Phillips
  • Patent number: 7985395
    Abstract: Catalyst for oxidation reactions which comprises at least one constituent active in the catalysis of hydrogen chloride oxidation and support therefor, which support is based on uranium oxide. The catalyst is notable for a high stability and activity.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: July 26, 2011
    Assignee: Bayer Technology Services GmbH
    Inventors: Aurel Wolf, Leslaw Mleczko, Oliver Felix-Karl Schlüter, Stephan Schubert
  • Patent number: 7985709
    Abstract: The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: July 26, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jeffrey D. Jordan, David R. Schryer, Patricia P. Davis, Bradley D. Leighty, Anthony N. Watkins, Jacqueline L. Schryer, Donald M. Oglesby, Suresh T. Gulati, Jerry C. Summers
  • Patent number: 7981834
    Abstract: An object of the present invention is to improve hydrocarbon adsorbing property when zeolite is used as an adsorbent for hydrocarbons. The present invention provides an adsorbent for hydrocarbons characterized by comprising A Type of ?-zeolite having a SiO2/Al2O3 ratio (molar ratio) in a range of 10 or more and less than 200 and B Type of ?-zeolite having a SiO2/Al2O3 ratio (molar ratio) in a range from 200 to 1,000, and a catalyst for exhaust gas purification containing said adsorbent for hydrocarbons.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: July 19, 2011
    Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.
    Inventors: Hideki Goto, Akihisa Okumura
  • Patent number: 7981274
    Abstract: A catalytic element useful for promoting catalytic gas phase reactions is provided, comprising a porous ceramic body comprising a multiplicity of open pores having a coating comprising a basic oxide material and a catalyst material selected from transition metal and noble metal compounds.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: July 19, 2011
    Assignee: Pall Corporation
    Inventors: Manfred Nacken, Steffen Heidenreich
  • Publication number: 20110155641
    Abstract: The present invention concerns a catalyst comprising at least one crystalline material comprising silicon with a hierarchical and organized porosity and at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and/or group VIII of the periodic table of the elements. Said crystalline material comprising silicon with a hierarchical and organized porosity is constituted by at least two spherical elementary particles, each of said particles comprising a matrix based on oxide of silicon, which is mesostructured, with a mesopore diameter in the range 1.5 to 30 nm and having microporous and crystalline walls with a thickness in the range 1.5 to 60 nm, said elementary spherical particles having a maximum diameter of 200 microns. The invention also concerns hydrocracking/hydroconversion and hydrotreatment processes employing said catalyst.
    Type: Application
    Filed: May 13, 2009
    Publication date: June 30, 2011
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Audrey Bonduelle, Alexandra Chaumonnot
  • Publication number: 20110136658
    Abstract: A catalyst used in the reaction of oxidative bromination of methane is provided. The catalyst is prepared by the following procedures: mixing at least one of the precursors selected from the compounds of Rh, Ru, Cu, Zn, Ag, Ce, V, W, Cd, Mo, Mn, Cr and La which can dissolve in water with the Si precursor, hydrolyzing, drying and sintering. In the catalysis system, methane reacts with HBr, H2O and oxygen source (O2, air or oxygen-rich air), finally CH3Br and CH2Br2 are produced. Another catalyst used in the reaction of condensation of methane bromide to C3-C13 hydrocarbons is also provided. This catalyst is prepared by supporting compounds of Zn or Mg on molecular sieves such as HZSM-5, HY, Hb, 3A, 4A, 5A or 13X et al. With this catalyst, CH3Br and CH2Br2 produced in the former process can react further to give C3 to C13 hydrocarbons and HBr, and HBr can be recycled as a medium.
    Type: Application
    Filed: April 14, 2008
    Publication date: June 9, 2011
    Inventors: Zhen Liu, Hongmin Zhang, Wensheng Li, Yanqun Ren, Xiaoping Zhou
  • Patent number: 7943547
    Abstract: A catalyst includes a platinum coating deposited on a silica support. The support has an average surface area between about 100 m2/g and about 120 m2/g. The platinum coating is between about 5 wt % and about l5 wt % of the catalyst. The combination of the selected surface area, silica support, and selected amount of platinum coating provides a catalytic activation temperature below 200° C. and avoids the formation of NOx.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: May 17, 2011
    Assignee: Hamilton Sundstrand Space Systems International, Inc.
    Inventors: Timothy A. Nalette, Catherine Thibaud-Erkey
  • Publication number: 20110073522
    Abstract: The present invention concerns a catalyst comprising at least one amorphous material comprising silicon with a hierarchical and organized porosity and at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and/or group VIII of the periodic table of the elements. Said amorphous material comprising silicon with a hierarchical and organized porosity is constituted by at least two spherical elementary particles, each of said spherical particles comprising a matrix based on oxide of silicon, which is mesostructured, with a mesopore diameter in the range 1.5 to 30 nm and having amorphous and microporous walls with a thickness in the range 1.5 to 50 nm, said elementary spherical particles having a maximum diameter of 200 microns. The invention also concerns hydrocracking/hydroconversion and hydrotreatment processes employing said catalyst.
    Type: Application
    Filed: May 13, 2009
    Publication date: March 31, 2011
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Audrey Bonduelle, Alexandra Chaumonnot
  • Patent number: 7909986
    Abstract: Reduced emissions of gas phase reduced nitrogen species in the off gas of an FCC regenerator operated in a partial or incomplete mode of combustion is achieved by contacting the off gas with an oxidative catalyst/additive composition having the ability to reduce gas phase nitrogen species to molecular nitrogen and to oxidize CO under catalytic cracking conditions. The oxidative catalyst/additive composition is used in an amount less than the amount necessary to prevent afterburn. Fluidizable particles of the oxidative catalyst/additives are circulated throughout the partial or incomplete burn FCC unit along with the FCC catalyst inventory. The flue gas having a reduced content of gas phase reduced nitrogen species and NOx is passed to a downstream CO boiler, preferably a low NOx CO boiler. In the CO boiler, as CO is oxidized to CO2, a reduced amount of gas phase reduced nitrogen species is oxidized to NOx, thereby providing an increase in the overall reduction of NOx emitted into the environment.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: March 22, 2011
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 7910518
    Abstract: A geometrically shaped solid carrier is provided that improves the performance and effectiveness of an olefin epoxidation catalyst for epoxidizing an olefin to an olefin oxide. In particular, improved performance and effectiveness of an olefin epoxidation catalyst is achieved by utilizing a geometrically shaped refractory solid carrier in which at least one wall thickness of said carrier is less than 2.5 mm.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: March 22, 2011
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventors: Serguei Pak, Andrzej Rokicki, Howard Sachs
  • Publication number: 20110065572
    Abstract: The present invention is an improved method for preparing a heterogeneous, supported hydrogenation catalyst that comprises a Group VIII A metal and a catalyst support (for example, SiO2, with either a hydrophilic or a hydrophobic surface) via aqueous deposition precipitation as well as the catalyst prepared by said method.
    Type: Application
    Filed: May 8, 2009
    Publication date: March 17, 2011
    Applicant: DOW GLOBAL TECHNOLOGIES INC.
    Inventors: Michael M. Olken, Edward M. Calverley
  • Patent number: 7906015
    Abstract: Reduced emissions of gas phase reduced nitrogen species in the off gas of an FCC regenerator operated in a partial or incomplete mode of combustion is achieved by contacting the off gas with an oxidative catalyst/additive composition having the ability to reduce gas phase nitrogen species to molecular nitrogen and to oxidize CO under catalytic cracking conditions. The oxidative catalyst/additive composition is used in an amount less than the amount necessary to prevent afterburn. Fluidizable particles of the oxidative catalyst/additives are circulated throughout the partial or incomplete burn FCC unit along with the FCC catalyst inventory. The flue gas having a reduced content of gas phase reduced nitrogen species and NOx is passed to a downstream CO boiler, preferably a low NOx CO boiler. In the CO boiler, as CO is oxidized to CO2, a reduced amount of gas phase reduced nitrogen species is oxidized to NOx, thereby providing an increase in the overall reduction of NOx emitted into the environment.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: March 15, 2011
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 7902104
    Abstract: This invention relates to a solid divided composition comprising grains whose mean size is greater than 25 ?m and less than 2.5 mm, wherein each grain is provided with a solid porous core and a homogeneous continuous metal layer consisting of at least one type of transition non-oxidised metal and extending along a gangue coating the core in such a way that pores are inaccessible. A method for the production of said composition and for the use thereof in the form of a solid catalyst is also disclosed.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: March 8, 2011
    Assignees: Arkema France, Institut National Polytechnique de Toulouse
    Inventors: Philippe Kalck, Philippe Serp, Massimiliano Corrias
  • Publication number: 20110053020
    Abstract: Nanostructured catalysts and related methods are described. The nanostructured catalysts have a hierarchical structure that facilitates modification of the catalysts for use in particular reactions. Methods for generating hydrogen from a hydrogen-containing molecular species using a nanostructured catalyst are described. The hydrogen gas may be collected and stored, or the hydrogen gas may be collected and consumed for the generation of energy. Thus, the methods may be used as part of the operation of an energy-consuming device or system, e.g., an engine or a fuel cell. Methods for storing hydrogen by using a nanostructured catalyst to react a dehydrogenated molecular species with hydrogen gas to form a hydrogen-containing molecular species are also described.
    Type: Application
    Filed: November 7, 2008
    Publication date: March 3, 2011
    Applicants: WASHINGTON STATE UNIVERSITY RESEARCH FOUNDATION, IDAHO RESEARCH FOUNDATION, INC.
    Inventors: M. Grant Norton, David N. McIlroy
  • Publication number: 20100331171
    Abstract: A process and catalyst for use in the selective hydrogenation of acetylene to ethylene is presented. The catalyst comprises a layered structure, wherein the catalyst has an inner core and an outer layer of active material. The catalyst further includes a metal deposited on the outer layer, and the catalyst is formed such that the catalyst has an accessibility index between 3 and 500.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 30, 2010
    Inventors: Gregory J. Gajda, Bryan K. Glover, Antoine Negiz, Mark G. Riley, John J. Senetar, Erik M. Holmgreen
  • Patent number: 7846865
    Abstract: In the present invention, it is an assignment to optimize a loading density of noble metal on catalyst. Pt is loaded in such an amount that a loading amount per 1 liter of a support substrate exceeds 0.75 g on an exhaust-gas upstream side of a coating layer, and a loading density of Rh in the coating layer is made so that it becomes higher on an exhaust-gas downstream side than on the exhaust-gas upstream side. The purifying performance after warming up improves by loading Rh with high density on the exhaust-gas downstream side that is likely to become rich atmosphere.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: December 7, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masanori Yamato, Oji Kuno
  • Patent number: 7846867
    Abstract: A method for the production of a composition comprising a metal containing compound, a silica containing material, a promoter, and alumina is disclosed. The composition can then be utilized in a process for the removal of sulfur from a hydrocarbon stream.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: December 7, 2010
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Uday T. Turaga, Tushar V. Choudhary, Glenn W. Dodwell, Marvin M. Johnson, Deborah K. Just
  • Publication number: 20100280296
    Abstract: A process is described for preparing cubic metallic nanoparticles, comprising: preparing an aqueous solution containing a source of a metal from group VIII, a reducing agent R1 and a stabilizer; preparing an aqueous solution containing a source of a group VIII metal and a stabilizer at a temperature strictly higher than 70° C. and less than or equal to 80° C.; mixing at least a portion of the aqueous solution obtained in step a) with the aqueous solution obtained in step b) to obtain, in the presence of a reducing agent R2, metallic nanoparticles in the cubic form representing at least 70% by number of the entire quantity of metallic nanoparticles which are formed; depositing said metallic nanoparticles derived from step c) on a support.
    Type: Application
    Filed: March 5, 2008
    Publication date: November 4, 2010
    Applicant: IFB
    Inventors: Laure Bisson, Cecile Thomazeau, Clement Sanchez, Cedric Boissiere
  • Publication number: 20100273645
    Abstract: A catalyst composition, useful for a diversity of chemical production processes, preferably comprises a glass substrate, with one or more functional surface active constituents integrated on and/or in the substrate surface. A substantially nonporous substrate has (i) a total surface area between about 0.01 m2/g and 10 m2/g; and (ii) a predetermined isoelectric point (IEP) obtained in a pH range greater than 0, preferably greater than or equal to 4.5, or more preferably greater than or equal to 6.0, but less than or equal to 14. At least one catalytically-active region may be contiguous or discontiguous and has a mean thickness less than or equal to about 30 nm, preferably less than or equal to 20 nm and more preferably less than or equal to 10 nm. Preferably, the substrate is a glass composition having a SARCNa less than or equal to about 0.5.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 28, 2010
    Inventors: Robert L. Bedard, Dean E. Rende, Ally S. Chan
  • Publication number: 20100267552
    Abstract: The present invention is directed to an improved catalyst support and to the resultant catalyst suitable for treating exhaust products from internal combustion engines, especially diesel engines. The support of the present invention is a structure comprising alumina core particulate having high porosity and surface area, wherein the structure has from about 1 to about 40 weight percent silica in the form of cladding on the surface area of said alumina core. The resultant support has a normalized sulfur uptake (NSU) of up to 15 ?g/m2.
    Type: Application
    Filed: September 12, 2007
    Publication date: October 21, 2010
    Inventors: Mukund Manoj Koranne, James Neil Pryor, David Monroe Chapman, Rasto Brezny
  • Publication number: 20100257843
    Abstract: An oxidation catalyst composite, methods and systems for the treatment of exhaust gas emissions from an advanced combustion engine, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO) and the reduction of nitrogen oxides (NOx) from a diesel engine and an advanced combustion diesel engine are disclosed. More particularly, washcoat compositions are disclosed comprising at least two washcoat layers, a first washcoat comprising a palladium component and a second washcoat containing platinum and at least about 50% of the total platinum is located in the rear of the catalyst.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 14, 2010
    Applicant: BASF Catalysts LLC
    Inventors: Jeffrey B. Hoke, Joseph C. Dettling
  • Patent number: 7811963
    Abstract: An elongated-shaped particle having two protrusions; each extending from and attached to a central position, wherein the central position is aligned along the longitudinal axis of the particle, the cross-section of the particle occupying the space encompassed by the outer edges of six circles around a central circle, in which each of the six circles touches two neighboring circles and two alternating circles are equidistant to the central circle and may be attached to the central circle, and the two circles adjacent to the two alternating circles (but not the common circle) touching the central circle, minus the space occupied by the four remaining outer circles and including four remaining interstitial regions.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: October 12, 2010
    Assignee: Shell Oil Company
    Inventors: Hilbrand Klaver, Carolus Matthias Anna Maria Mesters, Gerardus Petrus Lambertus Niesen, Guy Lode Magda Maria Verbist
  • Patent number: 7811964
    Abstract: A process for preparing a naphtha reforming catalyst has been developed. The process involves the use of a chelating ligand such as ethylenediaminetetraacetic acid (EDTA). The aqueous solution of the chelating ligand and a tin compound is used to impregnate a support, e.g., alumina extrudates. A platinum-group metal is also an essential component of the catalyst. Rhenium may also be a component. A reforming process using the catalyst has enhanced yield, activity, and stability for conversion of naphtha into valuable gasoline and aromatic products.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: October 12, 2010
    Assignee: UOP LLC
    Inventors: Leonid B. Galperin, Frank S. Modica, Thomas K. McBride, Jr.
  • Patent number: 7811966
    Abstract: A catalyst, catalyst precursor, or catalyst carrier formed as an elongated shaped particle having a cross section comprising three protrusions each extending from and attached to a central position. The central position is aligned along the longitudinal axis of the particle. The cross-section of the particle occupies the space encompassed by the outer edges of six outer circles around a central circle, each of the six outer circles contacting two neighbouring outer circles, the particle occupying three alternating outer circles equidistant to the central circle and the six interstitial regions, the particle not occupying the three remaining outer circles which are between the alternating occupied outer circles. The ratio of the diameter of the central circle to the diameter of the outer occupied circle is more than 1, and the ratio of the diameter of the outer unoccupied circle to the diameter of the outer occupied circle is more than 1.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: October 12, 2010
    Assignee: Shell Oil Company
    Inventors: Hans Peter Alexander Calis, Guy Lode Magda Maria Verbist
  • Publication number: 20100240936
    Abstract: A catalyst and a method for selective hydrogenation of acetylene and dienes in light olefin feedstreams are provided. The catalyst retains higher activity and selectivity after regeneration than conventional selective hydrogenation catalysts. The catalyst contains a first component and a second component supported on an inorganic support. The inorganic support contains at least one salt or oxide of zirconium, a lanthanide, or an alkaline earth.
    Type: Application
    Filed: June 1, 2010
    Publication date: September 23, 2010
    Inventors: Yongqing Zhang, Stephen J. Golden
  • Patent number: 7799729
    Abstract: In one embodiment, a reforming catalyst can include indium, tin, and a catalytically effective amount of a group VIII element for one or more reforming reactions. Typically, at least about 25%, by mole, of the indium is an In(3+) species based on the total moles of indium after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C. Usually, no more than about 25%, by mole, of the tin is a Sn(4+) species based on the total moles of tin after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Gregory J. Gajda, Mark Paul Lapinski, Jeffry Thurston Donner, Simon Russell Bare
  • Publication number: 20100234639
    Abstract: Disclosed is a palladium-containing catalyst for producing an ?,?-unsaturated carboxylic acid from an olefin or an ?,?-unsaturated aldehyde in high productivity. Also disclosed are a method for producing such a catalyst, and a method for producing an ?,?-unsaturated carboxylic acid in high productivity. Specifically, a palladium-containing catalyst is produced by a method containing a step in which palladium in an oxidation state is reduced by a compound (A) which is represented by the following formula (1).
    Type: Application
    Filed: December 26, 2006
    Publication date: September 16, 2010
    Applicant: Mitsubishi Rayon Co., Ltd.
    Inventors: Yoshiyuki Himeno, Ken Ooyachi, Toshiya Yasukawa
  • Patent number: 7790648
    Abstract: The invention relates to a process for preparing a catalyst. The process allows the delamination of layered crystals which are used as a starting material for a catalyst. The starting material is subsequently converted into an active portion of a catalyst with an increased dispersion resulting in a higher activity. Preferred delaminating agents are di-carboxylic acids and one particular example is citric acid. Preferably at least 0.75 wt %, more preferably at least 1.5 wt % of a delaminating agent is added to the catalyst starting material.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: September 7, 2010
    Assignee: Shell Oil Company
    Inventors: Ronald Jan Dogterom, Robert Martijn Van Hardeveld, Marinus Johannes Reynhout, Bastiaan Anton Van De Werff