Iron Group Metal And Group Iii Metal Containing (i.e., Fe, Co Or Ni And Sc, Y, Al, Ga, In Or Tl) Patents (Class 502/314)
  • Patent number: 7888281
    Abstract: A catalyst, its method of preparation and its use for producing at least one of methacrolein and methacrylic acid, for example, by subjecting isobutane or isobutylene or a mixture thereof to a vapor phase catalytic oxidation in the presence of air or oxygen. In the case where isobutane alone is subjected to a vapor phase catalytic oxidation in the presence of air or oxygen, the product is at least one of isobutylene, methacrolein and methacrylic acid.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: February 15, 2011
    Assignee: Evernu Technology, LLC
    Inventors: Manhua Lin, Krishnan S. Pillai
  • Patent number: 7875571
    Abstract: A method for producing a catalyst by contacting a mixed metal oxide catalyst with water, and optionally, an aqueous metal oxide precursor to produce a modified mixed metal oxide, and calcining the modified mixed metal oxide.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: January 25, 2011
    Assignee: Rohm and Haas Company
    Inventors: Leonard Edward Bogan, Jr., Ruozhi Song
  • Publication number: 20100326890
    Abstract: Described is a catalyst useful in the hydroprocessing of a heavy hydrocarbon feedstock wherein the catalyst comprises a calcined mixture made by calcining a formed particle of a mixture comprising molybdenum trioxide, a nickel compound, and an inorganic oxide material. The catalyst may be made by mixing an inorganic oxide material, molybdenum trioxide, and a nickel compound to form a mixture that is formed into a particle and calcined to provide a calcined mixture. The process involves the hydrodesulfurization and hydroconversion of a heavy hydrocarbon feedstock which process may include the conversion of a portion of the pitch content of the heavy hydrocarbon feedstock and the yielding of a treated product having an enhanced stability as reflected by its P-value.
    Type: Application
    Filed: September 9, 2010
    Publication date: December 30, 2010
    Inventor: Opinder Kishan BHAN
  • Patent number: 7846864
    Abstract: New types of photocatalyst materials are disclosed together with methods for preparing and using these materials, as well as air treatment systems incorporating such materials. The photocatalyst materials of this invention consist essentially of very small particles of a first-metal oxide, the first-metal being a metal that exhibits photo-induced semiconductor properties, having ions of a second-metal dispersed throughout its lattice structure, the second-metal being selected from the group of dopant metals. Such photocatalyst materials are prepared by the steps of mixing first-metal and second-metal precursors, removing nonessential ions from the mixture, drying the resulting product, and calcinating the dried product to produce the completed photocatalyst material.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: December 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong Seok Ham, Son Ki Ihm, Joo Il Park, Kwang Min Choi, Kwang Eun Jeong
  • Publication number: 20100304963
    Abstract: An improved catalyst for hydrodemetallization of heavy crude oils and residua is disclosed. The catalyst is adopted for fixed bed hydroprocessing units. The invention is characterized for having a large pore diameter catalyst principally for hydrodemetallization of heavy oil and residue in a first reactor of a multi-reactor process. The catalyst has high demetallizing activity and high metal deposition capacity which results in good stability with time on stream (TOS). The hydrorefining catalyst is obtained by kneading a porous starting powder principally composed of gamma-alumina and having a pore capacity of 0.3-0.6 ml/g or larger and a mean pore diameter of 10 to 26 nm, extrudating and calcining, and after that supported with active metals component of elements belonging to groups VIIIB and VIB of the periodic table.
    Type: Application
    Filed: May 26, 2008
    Publication date: December 2, 2010
    Inventors: Mohan Singh, Jorge Ancheyta Juarez, Patricia Rayo Mayoral, Samir Kumar Maity
  • Patent number: 7833933
    Abstract: A process for preparation of a paraffin isomerization catalyst comprising a mixture of a Group IVB metal oxide, a Group VIB metal oxide, a Group IIIA metal oxide and a Group VIII metal. The process includes the steps of: a) contacting a hydroxide of the Group IVB metal with an aqueous solution of an oxyanion of the Group VIB metal to provide a mixture, (b) drying the mixture to provide a dry powder, (c) kneading the powder with a Group IIIA hydroxide gel and a polymeric cellulose ether compound to form a paste, (d) shaping the paste to form a shaped material, (e) calcining the shaped material to form a calcined material, (f) impregnating the calcined material with an aqueous solution of a Group VIII metal salt to provide the catalyst, and (g) calcining the catalyst.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: November 16, 2010
    Assignee: Haldor Topsøe A/S
    Inventors: Konrad Herbst, Peter Stern, Niels Jørgen Blom, Glen Starch-Hytoft, Kim Grøn Knudsen
  • Patent number: 7815792
    Abstract: A process and catalyst for the selective hydrodesulfurization of a naphtha containing olefins. The process produces a naphtha stream having a reduced concentration of sulfur while maintaining the maximum concentration of olefins.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: October 19, 2010
    Assignee: UOP LLC
    Inventors: Lorenz J. Bauer, Suheil F. Abdo, Laura E. Leonard, Peter Kokayeff
  • Patent number: 7816299
    Abstract: A stacked bed catalyst system comprising at least one first catalyst selected from conventional hydrotreating catalyst having an average pore diameter of greater than about 10 nm and at least one second catalyst comprising a bulk metal hydrotreating catalyst comprised of at least one Group VIII non-noble metal and at least one Group VIB metal and optionally a binder material.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gary P. Schleicher, Kenneth L. Riley
  • Patent number: 7807600
    Abstract: A catalyst for acrylonitrile synthesis is disclosed which is composed of particles containing silica and a composite oxide including at least molybdenum. When the Mo/Si atomic ratio in bulk composition of the catalyst is represented by A and the Mo/Si atomic ratio in surface composition of the particles is represented by B, B/A is not more than 0.6.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: October 5, 2010
    Assignee: Dia-Nitrix Co., Ltd.
    Inventors: Seigo Watanabe, Koichi Mizutani, Motoo Yanagita, Jinko Izumi
  • Patent number: 7807046
    Abstract: Contact of a crude feed with one or more catalysts produces a total product that includes a crude product. The crude feed has a total content of alkali metal, and alkaline-earth metal in metal salts of organic acids of at least 0.00001 grams per gram of crude feed. At least one of the catalysts has a pore size distribution of at least 230 ?. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The crude product has a total content of alkali metal, and alkaline-earth metal in metal salts of organic acids of at most 90% of the total content of alkali metal, and alkaline-earth metal in metal salts of organic acids of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: October 5, 2010
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 7807044
    Abstract: The invention concerns a process for converting heavy feeds carried out in a slurry reactor in the presence of hydrogen and in the presence of a catalyst comprising at least one catalytic metal or a compound of a catalytic metal from group VIB and/or VIII supported on alumina, the pore structure of which is composed of a plurality of juxtaposed agglomerates each formed by a plurality of acicular platelets, the platelets of each agglomerate being generally radially oriented with respect to the others and with respect to the center of the agglomerate, the catalyst having an irregular and nonspherical shape and being mainly in the form of fragments. The process of the invention employs a catalyst with a specific pore texture, shape and granulometry, resulting in improved performances.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: October 5, 2010
    Assignee: IFP Energies Nouvelles
    Inventors: Magalie Roy-Auberger, Denis Guillaume
  • Publication number: 20100243526
    Abstract: A catalyst composition that is especially useful in the hydroconversion of pitch, micro carbon residue and sulfur contents of a heavy hydrocarbon feedstock without the excessive formation of sediment. The catalyst composition is a reasonably high surface area composition containing alumina and a low molybdenum content with a high ratio of nickel-to-molybdenum. The catalyst composition further has a unique pore distribution that in combination with the special metals loading provide for good conversion of pitch and micro carbon residue without an excessive yield of sediment.
    Type: Application
    Filed: October 1, 2009
    Publication date: September 30, 2010
    Inventors: Josiane Marie-Rose GINESTRA, John G. Kester, David Andrew Komar, David Edward Sherwood, JR.
  • Patent number: 7803734
    Abstract: The present invention relates to a metal catalyst containing fine metal particles, characterized in that the fine metal particles have a particle diameter of 3 nm or less and also have a proportion of metallic bond state of 40% or more, which is ascribed by subjecting to waveform separation of a binding energy peak peculiar to the metal as measured by using an X-ray photoelectron spectrometer. The fine metal particles are preferably fine platinum particles. The fine metal particles are preferably supported on the surface of carrier particles by reducing ions of metal to be deposited through the action of a reducing agent in a reaction system of a liquid phase containing the carrier particles dispersed therein, thereby to deposit the metal on the surface of carrier particles in the form of fine particles. The proportion of metallic bond state of the fine metal particles is adjusted within the above range by reducing after deposition thereby to decrease the oxidation state.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: September 28, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masatoshi Majima, Kohei Shimoda, Kouji Yamaguchi
  • Patent number: 7799727
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Patent number: 7776784
    Abstract: A hydrodesulfurization catalyst used for hydrodesulfurization of catalytically cracked gasoline comprises a support composed mainly of alumina modified with an oxide of at least one metal selected from the group consisting of iron, chromium, cobalt, nickel, copper, zinc, yttrium, scandium and lanthanoid-based metals, with at least one metal selected from the group consisting of Group 6A and Group 8 metals loaded as an active metal on the support. Hydrogenation of olefins generated as by-products during hydrodesulfurization of the catalytically cracked gasoline fraction, as an important constituent base of gasoline, can be adequately inhibited to maintain the octane number, while sufficiently reducing the sulfur content of the hydrodesulfurized catalytically cracked gasoline fraction.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: August 17, 2010
    Assignees: Nippon Oil Corporation, Petroleum Energy Center
    Inventors: Hideshi Iki, Shigeto Hatanaka, Eitaro Morita, Shinya Takahashi
  • Patent number: 7777082
    Abstract: A process for preparing annular unsupported catalysts by thermally treating annular shaped unsupported catalyst precursor bodies, wherein the side crushing strength of the annular shaped unsupported catalyst precursor bodies is ?12 N and ?23 N; such precursor bodies per se; annular unsupported catalysts having a specific pore structure; and a method of using such annular unsupported catalysts for the catalytic partial oxidative preparation in the gas phase of (meth)acrolein.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: August 17, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Jochen Petzoldt, Klaus Joachim Mueller-Engel, Signe Unverricht
  • Patent number: 7776782
    Abstract: A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: August 17, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Todd Werpy, John G. Frye, Jr., Yong Wang, Alan H. Zacher
  • Publication number: 20100204517
    Abstract: Nitro-compounds are hydrogenated with an activated Ni catalyst that has an average particle size (APS) less than 25 ?m and is doped with one or more elements from the list of Mg, Ce, Ti, V, Nb, Cr, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Pt, Cu, Ag, Au and Bi via its/their addition to the alloy before activation and/or doped with one or more elements from the list of Mg, Ce, Ti, V, Nb, Cr, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Cu, Ag, Au and Bi by their adsorption onto the surface of the activated catalyst.
    Type: Application
    Filed: May 29, 2007
    Publication date: August 12, 2010
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Daniel Ostgard, Monika Berweiler, Markus Gottlinger, Steffen Laporte, Matthias Schwarz
  • Patent number: 7772147
    Abstract: A solid catalyst carrier substrate coated with a surface area-enhancing washcoat composition including a catalytic component, a metal oxide and a refractory fibrous or whisker-like material having an aspect ratio of length to thickness in excess of 5:1.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: August 10, 2010
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul John Collier, Alison Mary Wagland
  • Publication number: 20100196226
    Abstract: The present invention provides catalysts, reactors, and methods of steam reforming over a catalyst. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described. For example, a coated catalyst was demonstrated to be highly stable under steam reforming conditions (high temperature and high pressure of steam). Methods of making steam reforming catalysts are also described.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 5, 2010
    Applicant: VELOCYS INC.
    Inventors: Junko M. Watson, Francis P. Daly, Yong Wang, Anna Lee Tonkovich, Sean P. Fitzgerald, Steven T. Perry, Laura J. Silva, Rachid Taha, Enrique Aceves de Alba, Ya-Huei Chin, Robert Rozmiarek, XiaoHong Li
  • Publication number: 20100185026
    Abstract: Nitro-compounds are hydrogenated with an activated Ni catalyst whose Ni/Al alloy also contained one or more elements from the list of Cu, Ag and Au prior to activation. In combination with the Group IB elements mentioned above, this catalyst can also be doped with other elements via their addition to the Ni/Al alloy prior to activation and/or they can be adsorbed onto the surface of the catalyst either during or after the activation of the alloy. The suitable doping elements for the alloy prior to activation in combination with the group IB elements mentioned above are one or more of the elements from the list of Mg, Ti, Ce, Cr, V, Mo, W, Mn, Re, Fe, Co, Tr, Ru, Rh, Pd, Pt and Bi. The suitable doping elements that may be adsorbed onto the surface of the catalyst that was previously doped in the alloy prior to activation with the group IB elements mentioned above are one or more elements from the list Mg, Ca, Ba, Ti, Ce, V, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Pd, Pt, Ni, Cu, Ag, Au and Bi.
    Type: Application
    Filed: May 29, 2007
    Publication date: July 22, 2010
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Daniel Ostgard, Monika Berweiler, Markus Gottlinger, Steffen Laporte, Matthias Schwarz
  • Patent number: 7759277
    Abstract: The present invention provides a catalyst having high activity and excellent stability, a process for preparation of the catalyst, a membrane electrode assembly, and a fuel cell. The catalyst of the present invention comprises an electronically conductive support and catalyst fine particles. The catalyst fine particles are supported on the support and are represented by the formula (1): PtuRuxGeyTz (1). In the formula, u, x, y and z mean 30 to 60 atm %, 20 to 50 atm %, 0.5 to 20 atm % and 0.5 to 40 atm %, respectively. When the element represented by T is Al, Si, Ni, W, Mo, V or C, the content of the T-element's atoms connected with oxygen bonds is not more than four times as large as that of the T-element's atoms connected with metal bonds on the basis of X-ray photoelectron spectrum (XPS) analysis.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: July 20, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taishi Fukazawa, Wu Mei, Yoshihiko Nakano, Tsuyoshi Kobayashi, Itsuko Mizutani, Hiroyasu Sumino
  • Publication number: 20100174116
    Abstract: Nitro-compounds are hydrogenated with an activated Ni catalyst that is doped during and/or after activation with one or more elements from the list of Mg, Ca, Ba, Ti, Zr, Ce, Nb, Cr, Mo, W, Mn, Re, Fe, Co, Ir, Ni, Cu, Ag, Au, Rh, Ru and Bi whereas the Ni/Al alloy may not, but preferentially can contain prior to activation one or more doping elements from the list of Ti, Ce, V, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Pd, Pt and Bi. If the Ni/Al alloy contained one or more of the above mentioned suitable alloy doping elements prior to activation, the resulting catalyst can then be doped with one or more of the elements from the list of Mg, Ca, Ba, Ti, Zr, Ce, V, Nb, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au and Bi by their adsorption onto the surface of the catalyst.
    Type: Application
    Filed: May 29, 2007
    Publication date: July 8, 2010
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Daniel Ostgard, Monika Berweiler, Markus Gottlinger, Steffen Laporte, Matthias Schwarz
  • Patent number: 7749937
    Abstract: An unsupported catalyst composition which comprises one or more Group VIb metals, one or more Group VIII metals, and a refractory oxide material which comprises 50 wt % or more titania, on oxide basis, which is prepared by precipitation techniques, finds use in the hydroprocessing of hydrocarbonaceous feedstocks.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: July 6, 2010
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Willem Hartman Jurriaan Stork, Johanna Maria Helena Van Den Tol-Kershof
  • Patent number: 7745372
    Abstract: A catalyst for the selective hydrogenation of olefins especially dienes, its preparation and use, said catalyst comprising an alumina support and cobalt and/or nickel selected from Group VIII, molybdenum and/or tungsten from Group VIB and alkali metal components supported on said support, characterized in that the catalyst contains 0.5-8% by weight of cobalt and/or nickel selected from Group VIII, 2-15% by weight of molybdenum and/or tungsten from Group VIB, over 2-8% by weight of alkali metals, and a balanced amount of alumina support calculated for oxides and based on the catalyst. Compared to the prior catalysts, the activity and selectivity for olefins especially dienes of the catalyst are higher when used in the hydrogenation of a gasoline distillate.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: June 29, 2010
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Mingfeng Li, Yang Chu, Yunjian Hu, Guofu Xia, Hong Nie, Yahua Shi, Dadong Li
  • Publication number: 20100158775
    Abstract: Air treatment catalyst systems and methods for treating the air in the aircraft cabin environment are provided. The catalyst system and method remove ozone, volatile organic compounds, NOx and other pollutants. The catalyst system used to treat the cabin air comprises a plurality of discrete substrates having an ozone abatement catalyst loaded thereon and arranged in a stacked configuration between a source of the air stream and the passenger cabin, the at least the first two substrates adjacent the source of the air stream comprise an iron-based alloy.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 24, 2010
    Applicant: BASF Catalysts LLC
    Inventors: Michael P. Galligan, Mark Buelow, Martin Volland, Pascaline Harrison Tran, Bruce J. Frishberg
  • Patent number: 7737075
    Abstract: More selective and efficient Ni hydrotreating catalysts are those which contain more than about 60% of the Ni content on the peripheral surface of porous supports, such as extruded alumina, which may be obtained by spraying an atomized solution of a Ni compound onto the support and drying it at a temperature in the range of from 200 to 600° C. When used, for example, to remove acetylenic compounds from butadiene streams, higher recovery of the desired butadiene with lower acetylenic content and low heavy polymer deposition is obtained than was possible with prior catalysts.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: June 15, 2010
    Assignee: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Patent number: 7736790
    Abstract: The present teachings are directed toward electrocatalyst compositions of platinum, tungsten and at least a third metal for use in fuel cells. The electrocatalyst composition is composed essentially of platinum present in an atomic percentage ranging between about 20 percent and about 55 percent, tungsten present in an atomic percentage ranging between about 30 percent and about 75 percent, and at least a third metal present in an atomic percentage ranging between about 1 percent and about 40 percent. The third metal can be at least one member selected from the group consisting of scandium, vanadium, chromium, manganese, iron, cobalt, copper, zinc, yttrium, niobium, molybdenum, cadmium, tin, hafnium, tantalum and rhenium; additional fourth and fifth metals can also be present.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: June 15, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Ting He, Eric Rolland Kreidler
  • Patent number: 7727929
    Abstract: A catalyst having dual functionality for the removal of arsenic and the selective hydrogenation of diolefins from monoolefin-containing hydrocarbon streams that have an arsenic concentration and a diolefin concentration, and processes for making and using such catalyst. The catalyst is a heat treated shaped mixture of a refractory oxide and a Group VIII metal that is overlaid with additional Group VIII metal.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: June 1, 2010
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Paul Benjerman Himelfarb
  • Patent number: 7713908
    Abstract: A method of producing a porous composite metal oxide comprising the steps of: dispersing first metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, in a dispersion medium by use of microbeads each with a diameter of not larger than 150 ?m, thus obtaining first metal oxide particles, which are 1 nm to 50 nm in average particle diameter, and not less than 80% by mass of which are not larger than 75 nm in diameter; dispersing and mixing up, in a dispersion medium, the first metal oxide particles and second metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, and which is not larger than 200 nm in average particle diameter, thus obtaining a homogeneously-dispersed solution in which the first metal oxide particles and second metal oxide particles are homogeneously dispersed; and drying the homogeneously-dispersed solution, thus obtaining a porous composite metal oxide.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: May 11, 2010
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Toshio Yamamoto, Akihiko Suda, Akira Morikawa, Kae Yamamura, Hirotaka Yonekura
  • Patent number: 7709412
    Abstract: The invention relates to a bulk metal hydrotreating catalyst, suitable for the production of low sulfur diesel fuels, said bulk metal hydrotreating catalyst being in the oxide state and having a composition of MoxCoyNbz, excluding the oxygen, wherein x, y, and z represent about 0.1 to about 2 moles of Mo, about 0.5 to about 2 moles of Co, and about 0.1 to about 2 moles Nb and wherein Nb is present in amounts from about 2 to about 45 wt. %, Mo is present in amounts from about 1 to about 50 wt. %, and Co is present in amounts from about 10 to about 45 wt. %.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: May 4, 2010
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Stuart S. Shih, Stuart L. Soled, Sabato Miseo
  • Publication number: 20100101979
    Abstract: A process for the preparation of a catalyst, which process comprises the steps of: i) mixing an alumina precursor with combustible carbon-containing fibers with a diameter in the range of from 0.5 to 5 ?m and a length of no greater than 100 ?m in an amount in the range of from 20 to 40 wt % based on the total dry mixture; ii) adding nitric acid and water to form an extrudable mass; iii) extruding the mixture to form shaped particles; iv) drying the shaped particles; v) heating the particles in an atmosphere comprising no more than 5 vol % oxygen at a temperature in the range of from 350 to 600° C.; and vi) then heating the particles in a gas mixture comprising at least 12 vol % oxygen at a temperature in the range of from 450 to 600° C.
    Type: Application
    Filed: November 12, 2009
    Publication date: April 29, 2010
    Inventors: Peter BIRKE, Frankk Heinz Goerlitz, Wigbert Gerhard Himmel, Jürgen Hunold, Hans-Heino John
  • Patent number: 7695611
    Abstract: Compositions for reduction of NOx emissions generated during catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, (iv) palladium and (v) a noble metal component, preferably platinum, rhodium or iridium, and mixtures thereof. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced content of NOx in an effluent off gas of a full or complete combustion FCC regenerator are accomplished while simultaneously promoting the combustion of CO.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: April 13, 2010
    Assignee: W. R. Grace & Co.—Conn.
    Inventors: George Yaluris, John Rudesill
  • Publication number: 20100087682
    Abstract: The invention provides a catalyst composition composed of a support portion and a catalyst portion. The support portion includes an acidic mixed metal oxide including a transitional alumina and a second metal oxide. The transitional alumina can comprise delta or theta alumina, in combination with other transitional phases, or an alpha or gamma alumina. The second metal oxide has a weight percentage that is less than the weight percentage of alumina. The catalyst portion is 25 weight percent or less of the catalyst composition and is composed of nickel and rhenium. The catalyst portion includes nickel in an amount in the range of 2 to 20 weight percent, based upon total catalyst composition weight, and there is no boron in the catalyst portion.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 8, 2010
    Inventors: Stephen W. King, Stefan K. Mierau
  • Patent number: 7687430
    Abstract: A process is described for preparing a solution formed by at least one cobalt and/or nickel salt of at least one heteropolyanion combining molybdenum and cobalt or molybdenum and nickel in its structure, said process comprising: a) mixing at least one source of molybdenum and at least one oxidizing compound in aqueous solution to synthesize peroxomolybdate ions at an acidic pH, the (oxidizing compound/molybdenum source) mole ratio being in the range 0.1 to 20; b) introducing at least one cobalt precursor and/or at least one nickel precursor into the solution from step a) to form a solution comprising at least said salt in which the (Co+Ni)/Mo mole ratio is in the range 0.25 to 0.85.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: March 30, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Denis Guillaume, Edmond Payen, Carole Lamonier, Karin Marchand
  • Patent number: 7641875
    Abstract: A multi-phase catalyst for the simultaneous conversion of oxides of nitrogen, carbon monoxide, and hydrocarbons is provided. A catalyst composition comprising the multi-phase catalyst and methods of making the catalyst composition are also provided. The multi-phase catalyst may be represented by the general formula of CeyLn1-xAx+sMOZ, wherein Ln is a mixture of elements originally in the form of single-phase mixed lanthanides collected from natural ores, a single lanthanide, or a mixture of lanthanides; A is an element selected from a group consisting of Mg, Ca, Sr, Ba, Li, Na, K, Cs, Rb, or any combination thereof; and M is an element selected from the group consisting of Fe, Mn, Cr, Ni, Co, Cu, V, Zr, Pt, Pd, Rh, Ru, Ag, Au, Al, Ga, Mo, W, Ti, or any combination thereof; x is a number defined by 0?x<1.0; y is a number defined by 0?y<10; s is a number defined by 0?s<10; where s=0 only when y>0 and y=0 only when s>0.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: January 5, 2010
    Assignee: Catalytic Solutions, Inc.
    Inventor: Stephen J. Golden
  • Patent number: 7638459
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Patent number: 7632777
    Abstract: A composite oxide catalyst for the oxidation of an olefin containing Mo and Bi as essential components, characterized in that it has a specific surface area of 5 to 25 m2/g and a pore volume of 0.2 to 0.7 cc/g, and has a pore diameter distribution wherein the volume of the pores having a pore diameter of 0.03 to 0.1 ?m accounts for 30% or more of the total pore volume, the volume of the pores having a pore diameter of 0.1 to 1 ?m accounts for 20% or more of the total pore volume, and the volume of the pores having a pore diameter of less than 0.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: December 15, 2009
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Isao Teshigahara, Nariyasu Kanuka, Tomoatsu Iwakura
  • Patent number: 7629289
    Abstract: A process and catalyst for the selective hydrodesulfurization of a naphtha containing olefins. The process produces a naphtha stream having a reduced concentration of sulfur while maintaining the maximum concentration of olefins.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: December 8, 2009
    Assignee: UOP LLC
    Inventors: Lorenz J. Bauer, Suheil F. Abdo, Laura E. Jones, Peter Kokayeff
  • Patent number: 7628968
    Abstract: The present invention is directed to high activity titanium oxide DeNOx catalysts. In preferred embodinents, by depositing vanadium oxide on a titania supported metal oxide such as tungsten oxide, an improved catalyst may be generated. This catalyst may be used in the treatment of exhaust from sources such as automobiles and industrial plants.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: December 8, 2009
    Assignee: Millenium Inorganic Chemicals, Inc.
    Inventors: Steven M Augustine, Guoyi Fu
  • Patent number: 7618916
    Abstract: An object of the present invention is to provide a hydrotreating catalyst capable of being produced by a simple method and capable of realizing ultra-deep desulfurization of sulfur components in gas oil without requiring severer operating conditions as well as capable of reducing nitrogen components simultaneously, to provide a process for producing the catalyst, and to provide a process for desulfurizing gas oil using the catalyst. The invention relates to a catalyst containing on an inorganic oxide support 10 to 40% by weight of a metal in the Group 6 of the periodic table, 1 to 15% by weight of a metal in the Group 8 of the periodic table, 1.5 to 8% by weight of phosphorus, each in terms of an oxide amount based on the catalyst, and 2 to 14% by weight of carbon in terms of an element amount based on the catalyst, wherein the catalyst has a specific surface area of 150 to 300 m2/g, a pore volume of 0.3 to 0.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: November 17, 2009
    Assignee: Cosmo Oil Co., Ltd.
    Inventors: Takashi Fujikawa, Masahiro Kato, Nobumasa Nakajima, Minoru Hashimoto
  • Patent number: 7612012
    Abstract: The hydrogenation activity of a heteroatom removal catalyst, having activity for both heteroatom removal and hydrogenation, is selectively suppressed by a treatment which comprises contacting the catalyst with (i) hydrogen, (ii) a selectively deactivating agent that suppresses the catalyst's hydrogenation activity, and (iii) a protective agent, such as CO, that preserves and protects the heteroatom removal activity during the treatment. This may be achieved in a reactor while it is on-line and removing heteroatoms from a hydrocarbon feed.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: November 3, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Garland B. Brignac, Michele S. Touvelle, William C. Baird, Jr.
  • Patent number: 7598203
    Abstract: Provided are a hydrogenation catalyst for hydrocarbon oil, having markedly improved desulfurization activity, denitrogenation activity, and dearomatization activity; a carrier for the catalyst and its production; and a method of hydrogenation of hydrocarbon oil with the catalyst.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: October 6, 2009
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Narinobu Kagami, Ryuichiro Iwamoto
  • Patent number: 7592290
    Abstract: The invention relates to supported catalysts and a process for the production of these catalysts. These supported catalysts may be used in various reactions such as reforming reactions (e.g. steam methane reforming (SMR) reactions and autothermal reforming (ATR) reactions). In one aspect of the invention, the supported catalyst comprises a transition metal oxide; optionally a rare-earth metal oxide; and a transition metal aluminate.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: September 22, 2009
    Assignee: Sulzer Metco(Canada) Inc.
    Inventors: Syed Tajammul Hussain, Eugene Stelmack
  • Publication number: 20090232728
    Abstract: A water gas shift catalyst for use at temperatures above about 450° C. up to about 900° C. or so comprising rhenium deposited on a support, preferably without a precious metal, wherein the support is prepared from a high surface area material, such as a mixed metal oxide, particularly a mixture of zirconia and ceria, to which may be added one or more of a high surface area transitional alumina, an alkali or alkaline earth metal dopant and/or an additional dopant selected from Ga, Nd, Pr, W, Ge, Fe, oxides thereof and mixtures thereof.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 17, 2009
    Applicant: Sud-Chemie Inc.
    Inventors: Jon P. Wagner, Michael W. Balakos, Chandra Ratnasamy
  • Patent number: 7585812
    Abstract: A catalyst for use in the Fischer-Tropsch process, and a method to prepare the catalyst is disclosed. The catalyst of the present invention has a higher surface area, more uniform metal distribution, and smaller metal crystallite size than Fischer-Tropsch catalysts of the prior art.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: September 8, 2009
    Assignee: Sud-Chemie Inc.
    Inventors: X. D. Hu, Patrick J. Loi, Robert J. O'Brien
  • Publication number: 20090209414
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminium, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurisation and hydrodenitrification.
    Type: Application
    Filed: April 29, 2009
    Publication date: August 20, 2009
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Rober Van Veen
  • Patent number: 7569513
    Abstract: Novel nickel and/or cobalt plated sponge based catalysts are disclosed. The catalyst have an activity and/or selectivity comparable to conventional nickel and/or cobalt sponge catalysts, e.g., Raney® nickel or Raney® cobalt catalysts, but require a reduced content of nickel and/or cobalt. Catalysts in accordance with the invention comprise nickel and/or cobalt coated on at least a portion of the surface of a sponge support. Preferably, the sponge support comprises at least one metal other than or different from the metal(s) contained in the coating. The method of preparing the plated catalysts, and the method of using the catalysts in the preparation of organic compounds are also disclosed.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: August 4, 2009
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Stephen Raymond Schmidt
  • Patent number: 7563743
    Abstract: This invention relates to doped catalysts on an aluminosilicate substrate with a low content of macropores and the hydrocracking/hydroconversion and hydrotreatment processes that use them. The catalyst comprises at least one hydro-dehydrogenating element that is selected from the group that is formed by the elements of group VIB and group VIII of the periodic table and a dopant in a controlled quantity that is selected from among phosphorus, boron, and silicon and a non-zeolitic substrate with a silica-alumina base that contains a quantity of more than 15% by weight and of less than or equal to 95% by weight of silica (SiO2).
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: July 21, 2009
    Assignee: Institute Francais du Petrole
    Inventors: Patrick Euzen, Alexandra Chaumonnot, Carole Bobin, Patrick Bourges, Christophe Gueret, Hugues Dulot
  • Patent number: 7560047
    Abstract: The present invention relates to a structured catalyst for reforming of gasoline and a method of preparing the same, more particularly to a structured catalyst for reforming of gasoline for fuel-cell powered vehicles prepared by wash-coating the transition metal based reforming catalyst on the surface of the ceramic honeycomb support wash-coated with sub-micron sized alumina or its precursor to sufficiently increase the effective surface area and the performance of the catalyst and a method of preparing the same.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: July 14, 2009
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Jong Woo Ryu, Dong Min Kang, Byung Gwon Lee, Byoung Sung Ahn, Sang Deuk Lee