Iron Containing Patents (Class 502/316)
-
Publication number: 20130006019Abstract: The present invention refers to a catalyst for aldehyde production, in particular formaldehyde or acetaldehyde production, through selective oxidation of alkanol, especially methanol or ethanol, with oxygen, said catalyst having a spinel structure. The catalyst typically comprises a Feaq+Vb+Moc+y+?zO4 spinel structure wherein ? is an optional cation vacancy and wherein wherein z=3?q?x?y and q×a+x×b+y×c=8 in concentrations corresponding to 0.6<q<3, 0<x<1.5, 0<y<1 and 0<z<1.3 and 2<a<3, 3<b<5 and 3<c<6. The present invention further refers to a process for producing said catalyst and to the use of said catalyst for selective oxidation of alkanol, preferably methanol or ethanol, with oxygen to aldehyde, preferably formaldehyde or acetaldehyde.Type: ApplicationFiled: January 19, 2011Publication date: January 3, 2013Inventors: Arne Andersson, Robert Haggblad
-
Patent number: 8343888Abstract: Precursor cations of A and B elements of an ABO3 perovskite in aqueous solution are formed as an ionic complex gel with citric acid or other suitable polybasic carboxylic acid. The aqueous gel is coated onto a desired catalyst substrate and calcined to form, in-situ, particles of the crystalline perovskite as, for example, an oxidation catalyst on the substrate. In one embodiment, a perovskite catalyst such as LaCoO3 is formed on catalyst supporting cell walls of an extruded ceramic monolith for oxidation of NO in the exhaust gas of a lean burn vehicle engine.Type: GrantFiled: October 1, 2009Date of Patent: January 1, 2013Assignee: GM Global Technology Operations LLCInventors: Chang H Kim, Wei Li, Kevin A Dahlberg
-
Publication number: 20120316056Abstract: In one embodiment, an aqueous dispersion liquid contains at least one particles selected from tungsten oxide particles and tungsten oxide composite particles. A mean primary particle diameter (D50) of the particles is in the range of 1 nm to 400 nm. In the aqueous dispersion liquid, concentration of the particles is in the range of 0.1 mass % to 40 mass %, and pH is in the range of 1.5 to 6.5. The aqueous dispersion liquid excels in dispersibility of particles and capable of maintaining good liquidity for a long period.Type: ApplicationFiled: August 23, 2012Publication date: December 13, 2012Inventors: Kayo NAKANO, Akira SATO, Yasuhiro SHIRAKAWA, Keiichi FUSE, Shinya KASAMATSU, Akito SASAKI
-
Publication number: 20120301363Abstract: A mix-type catalyst filter which has a variety of pore sizes and thus improves efficiency of catalysts and a method for manufacturing the same. The method includes spinning nanofibers, heating the nanofibers, crushing the nanofibers to form chip-type nanofibers, mixing the chip-type nanofibers with particulate catalysts to obtain a mix-type catalyst and heating the mix-type catalyst.Type: ApplicationFiled: May 22, 2012Publication date: November 29, 2012Applicant: SAMSUNG ELECTRONICS CO., LTD.Inventors: Jee Yong KIM, Rae Eun PARK, Jeong Myeong KIM
-
Patent number: 8288309Abstract: A highly durable mercury oxidation catalyst contains V2O5 and MoO3 as active components, and is capable of preventing volatilization of MoO3 in the mercury oxidation catalyst. A method of producing the mercury oxidation catalyst is provided. A mercury oxidation catalyst oxidizing mercury in an exhaust gas into mercury oxide includes: TiO2 as a carrier, V2O5 and MoO3 supported on the carrier as active components, and at least one kind of element or compound selected from the group consisting of W, Cu, Co, Ni, and Zn or the compounds thereof supported on the carrier as a MoO3 volatilization preventing component.Type: GrantFiled: September 30, 2010Date of Patent: October 16, 2012Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Katsumi Nochi, Masanao Yonemura, Masashi Kiyosawa
-
Patent number: 8252714Abstract: A catalyst for use in the production of an unsaturated aldehyde and/or an unsaturated carboxylic acid, the catalyst comparing (or, preferably, being composed of) a mixed oxide containing molybdenum, bismuth and iron, which has improved mechanical strength, is produced by a method including the steps of (1) drying an aqueous solution or an aqueous slurry containing raw materials of the catalyst and then firstly calcining a dried product in a molecular oxygen-containing gas atmosphere to obtain a calcined product; (2) heating the calcined product obtained in Step (1) in the presence of a reducing material to obtain a reduced product having a mass loss of 0.05 to 6%; and (3) secondly calcining the reduced product obtained in Step (2) in a molecular oxygen-containing gas atmosphere.Type: GrantFiled: May 15, 2009Date of Patent: August 28, 2012Assignee: Sumitomo Chemical Company, LimitedInventors: Naoki Miura, Eiichi Shiraishi, Koichi Nagai
-
Publication number: 20120149551Abstract: A catalyst material for preparing nanotubes, especially carbon nanotubes, said material being in the form of solid particles, said particles including a porous substrate supporting two superposed catalytic layers, a first layer, directly positioned on the substrate, including at least one transition metal from column VIB of the Periodic Table, preferably molybdenum, and a second catalytic layer, positioned on the first layer, comprising iron. Also, a process for preparing same and to a process for the synthesis of nanotubes using this catalyst material.Type: ApplicationFiled: August 16, 2010Publication date: June 14, 2012Applicants: INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE (INPT), ARKEMA FRANCEInventors: Patrice Gaillard, Serge Bordere, Philippe Serp, Brigitte Caussat, Julien Beausoleil
-
Patent number: 8178003Abstract: A hydrocarbon-reforming catalyst comprising a composite oxide having a composition represented by the following formula (I) in which Co, Ni and M are dispersed in the composite oxide and a process for producing a synthesis gas by using the catalyst are provided. aM.bCo.cNi.dMg.eCa.fO??(I) wherein a, b, c, d, e, and f are molar fractions, a+b+c+d+e=1, 0.0001<a?0.20, 0<b?0.20, 0?c?0.20, 0.001<(b+c)?0.20, 0.60?(d+e)?0.9989, 0<d<0.9989, 0<e<0.9989, f=the number necessary for element to keep charge equilibrium with oxygen. And M is at least one element among Group 3B elements and Group 6A elements in the Periodic Table. The reforming catalyst is able to maintain a high catalytic activity over a long period in reforming hydrocarbons.Type: GrantFiled: October 8, 2008Date of Patent: May 15, 2012Assignee: Japan Petroleum Exploration Co., Ltd.Inventors: Katutoshi Nagaoka, Yuusaku Takita, Toshiya Wakatsuki
-
Publication number: 20120115713Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an active catalyst component comprising a surface, and a metal oxide film coated on the surface of the active catalyst component. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as improved resistance to catalytic deactivation due to sulfur and nitrogen compounds present in the hydrocarbon feedstreams.Type: ApplicationFiled: November 9, 2010Publication date: May 10, 2012Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, William G. Borghard, Cody R. Cole
-
Patent number: 8158550Abstract: The invention relates to a multilayer catalyst for the partial oxidation of hydrocarbons in gaseous phase, comprising a monolithic ceramic or metallic substrate having a solid macroporous structure consisting of one or more structures, on which a first active layer with a crystal-line perovskitic structure is deposited, having general formula AxA? 1-xByB? 1-YO3±? wherein: A is a cation of at least one of the rare earth elements, A? is a cation of at least one element selected from groups Ia, IIa and VIa of the periodic table of elements, B is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb, or VIII of the periodic table of elements, B? is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb or VIII of the periodic table of elements Mg2+ or Al3+, x is a number which is such that 0?x?1, y is a number which is such that 0?y?1, and ? is a number which is such that 0???0, 5, a second more external active layer consisting of a dispersion of a noble metal and a possible sType: GrantFiled: May 26, 2004Date of Patent: April 17, 2012Assignee: Consiglio Nazionale Delle RicercheInventors: Stefano Cimino, Francesco Donsi, Raffaele Pirone, Gennaro Russo
-
Patent number: 8143188Abstract: A dehydrogenation catalyst is described that comprises an iron oxide, an alkali metal or compound thereof, and rhenium or a compound thereof. A process for preparing a dehydrogenation catalyst comprising preparing a mixture of iron oxide, an alkali metal or compound thereof, and rhenium or a compound thereof is also described. Additionally, a dehydrogenation process using the catalyst and a process for preparing polymers are described.Type: GrantFiled: May 1, 2008Date of Patent: March 27, 2012Assignee: BASF CorporationInventor: Ruth Mary Kowaleski
-
Patent number: 8124698Abstract: Process for producing homopolymers or copolymers of conjugated dienes by contacting monomeric material having at least one conjugated diene with a catalyst system including two or more different transition metal compounds and optionally one or more activators. Preferred transition metal compounds are based on cobalt and chromium, especially complexes thereof having benzimidazole ligands.Type: GrantFiled: July 27, 2006Date of Patent: February 28, 2012Assignee: Ineos Europe LimitedInventors: Grant Berent Jacobsen, Juan Jose Chirinos-Colina, Vernon Charles Gibson
-
Patent number: 8119559Abstract: A dehydrogenation catalyst is described comprising an iron oxide, an alkali metal or compound thereof, and silver or a compound thereof. Further a process is described for preparing a dehydrogenation catalyst that comprises preparing a mixture of iron oxide, an alkali metal or compound thereof, and silver or a compound thereof and calcining the mixture. A process for dehydrogenating a dehydrogenatable hydrocarbon and a process for polymerizing the dehydrogenated hydrocarbon are also described.Type: GrantFiled: May 1, 2008Date of Patent: February 21, 2012Assignee: BASF CorporationInventor: Ruth Mary Kowaleski
-
Patent number: 8101539Abstract: A purifying catalyst includes catalyst powder composed of a transition metal oxide of which an average particle diameter is within 1 nm to 2 ?m and in which an electron binding energy of oxygen is shifted to an energy side lower than 531.3 eV. The purifying catalyst shows good purification performance even when noble metal is not contained as an essential component.Type: GrantFiled: November 20, 2008Date of Patent: January 24, 2012Assignee: Nissan Motor Co., Ltd.Inventors: Hirofumi Yasuda, Yasunari Hanaki, Toru Sekiba, Shigeru Chida, Junji Ito
-
Publication number: 20120016042Abstract: The present invention concerns a catalyst for carrying out hydrocarbon synthesis starting from a mixture comprising carbon monoxide and hydrogen, the active phase of which comprises at least one metal from group VIII deposited on a support formed by at least one oxide, in which said metal from group VIII is selected from the group constituted by cobalt, nickel, ruthenium or iron, and in which said catalyst has an atomic ratio (Co/Al)not ground/(CO/Al)ground, measured by X-ray photo-emission spectroscopy, in the range 1 to 12. The invention also concerns the catalyst preparation process and its use.Type: ApplicationFiled: July 12, 2011Publication date: January 19, 2012Applicants: IFP Energies nouvelles, ENI S.p.A.Inventors: Sylvie Maury, Christele Legens, Loic Sorbier, Fabrice Diehl, Joseph Lopez, Lars Fischer
-
Patent number: 8092716Abstract: Process for the preparation of a catalytic specie consisting essentially of a metallic support, which is coated with a ceramic active phase layer, mainly compound of the general formula (I): [RhxNiyMglAlm(OH)2]z+(An?z/n)kH2O,??(I) wherein An? is mainly a silicate or a polysilicate anion; 0?x?0.3; 0?y?0.9; 0?l?0.9; 0?m?0.5; 0?k?10; x+y>0; 0.5?y+l?0.9; x+y+l+m=1; and z is the total electrical charge of the cationic element or a compound of the general formula (II): [AzA?1-z][B1-x-yNixRhy]O3-???(II) wherein A and A? are different and are selected from the Lanthanide or the Actinide families or from the group IIa of the Mendeleev's periodical table of elements; B is selected from the transition metal groups of columns IIIb, IVb, Vb, VIb, VIIb, Ib and IIb and group VIIIb of the Mendeleev's periodical table of elements; 0?x?0.7, 0?y?0.5, 0?x+y?0.Type: GrantFiled: January 10, 2007Date of Patent: January 10, 2012Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges ClaudeInventors: Daniel Gary, Pascal Del-Gallo, Francesco Basile, Angelo Vaccari, Giuseppe Fornasari, Valentina Rosetti, Erika Scavetta, Domenica Tonelli
-
Patent number: 8088706Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.Type: GrantFiled: April 29, 2009Date of Patent: January 3, 2012Assignee: Shell Oil CompanyInventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
-
Patent number: 8088707Abstract: A supported catalyst with a solid sphere structure of the present invention includes an oxide supporting body and a metal such as Ni, Co, Fe, or a combination thereof distributed on the surface and inside of the supporting body. The supported catalyst with a solid sphere structure can maintain a spherical shape during heat treatment and can be used with a floating bed reactor due to the solid sphere structure thereof.Type: GrantFiled: December 17, 2009Date of Patent: January 3, 2012Assignee: Cheil Industries Inc.Inventors: Byeong Yeol Kim, Yun Tack Lee, Seung Yong Bae, Young Sil Lee
-
Patent number: 8062990Abstract: A pliable refractory metal carrier (46) may have coated thereon an anchor layer (47) to improve adherence to the carrier (46) of a catalytic coating (48). The conformable catalyst member (26, 82, 82?, 126, 226, 326) may be bent to conform to a curved or bent exhaust pipe (20, 220, 320) within which it is mounted. The pliable metal carrier may be in the form of a tube such as carrier (46) having perforations (54) formed therein, or it may be a metal strip (76) which is folded into accordion pleats (80) and has perforations (78) formed therein. The perforations (54, 78) serve to permit the passage of exhaust gas therethrough. A series of interior closures (58) and annular baffles (60) may be provided to import a serpentine flow path to gases flowed through an exhaust pipe (22) containing a conformable catalyst member (226) therein. A mounting member (68) may be supplied to fasten one end of the conformable catalyst member (226) to the discharge end of an exhaust pipe (220).Type: GrantFiled: July 2, 2003Date of Patent: November 22, 2011Assignee: BASF CorporationInventors: Michael P. Galligan, Joseph C. Dettling, Shau-Lin F. Chen, Matthew P. Larkin
-
Patent number: 8062505Abstract: A process and apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. Performance of the iron oxide and alumina catalyst at high mean particle diameters is comparable to performance at low mean particle diameters.Type: GrantFiled: June 30, 2008Date of Patent: November 22, 2011Assignee: UOP LLCInventors: Alakananda Bhattacharyya, Maureen L. Bricker, Beckay J. Mezza, Lorenz J. Bauer
-
Patent number: 8057763Abstract: The invention relates to a process for recovering Group VIB metals from a catalyst, in particular a spent bulk catalyst, comprising one or more Group VIB metals and one or more Group VIII metals. Further, the invention relates to a solid Group VIB metal compound obtainable by the process according to the invention having the general formula H2XO4, wherein X=W1-yMoy, wherein y is between 0 and 1 and to its use in a process for the manufacture of a fresh catalyst.Type: GrantFiled: September 14, 2007Date of Patent: November 15, 2011Assignee: Albemarle Netherlands B.V.Inventors: Bob Gerardus Oogjen, Harmannus Willem Homan Free, Johannes Cornelis Sitters
-
Publication number: 20110274615Abstract: A catalyst has a long life span and efficiently separates hydrogen from water. A first metal element (Ni, Pd, Pt) for cutting the combination of hydrogen and oxygen and a second metal element (Cr, Mo, W, Fe) for helping the function of the first metal element are melted in alkaline metal hydroxide or alkaline earth metal hydroxide to make a mixture heated at a temperature above the melting point of the hydroxide to eject fine particles from the liquid surface, bringing steam into contact with the fine particles. Instead of this, a mixture of alkaline metal hydroxide and metal oxide is heated at a temperature above the melting point of the alkaline metal hydroxide to make metal compound in which at least two kinds of metal elements are melted, and fine particles are ejected from the surface of the metal compound to be brought into contact with steam.Type: ApplicationFiled: January 6, 2010Publication date: November 10, 2011Inventor: Yasuo Ishikawa
-
Patent number: 8003565Abstract: A method and catalysts for producing a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas contacts a water gas shift (WGS) catalyst, optionally in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) Pt, its oxides or mixtures thereof; b) Ru, its oxides or mixtures thereof; and c) at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Co, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu. Another disclosed catalyst formulation comprises Pt, its oxides or mixtures thereof; Ru, its oxides or mixtures thereof; Co, its oxides or mixtures thereof; and at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu, their oxides and mixtures thereof.Type: GrantFiled: April 28, 2006Date of Patent: August 23, 2011Assignees: Honda Giken Kogyo Kabushiki Kaisha, Freeslate, Inc.Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Peter Strasser, Robert K. Grasselli, Christopher James Brooks, Cory Bernard Phillips
-
Publication number: 20110176988Abstract: The ammonia decomposition catalyst of the present invention is a catalyst for decomposing ammonia into nitrogen and hydrogen, including a catalytically active component containing at least one kind of transition metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, manganese, iron, cobalt, and nickel, preferably including: (I) a catalytically active component containing: at least one kind selected from the group consisting of molybdenum, tungsten, and vanadium; (II) a catalytically active component containing a nitride of at least one kind of transition metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, manganese, iron, cobalt, and nickel; or (III) a catalytically active component containing at least one kind of iron group metal selected from the group consisting of iron, cobalt, and nickel, and at least one metal oxide, thereby making it possible to effectively decompose ammonia into nitrogen and hydrogen at relatively low temperatures and atType: ApplicationFiled: September 17, 2009Publication date: July 21, 2011Inventors: Junji Okamura, Masaru Kirishiki, Masanori Yoshimune, Hideaki Tsuneki
-
Publication number: 20110150742Abstract: Disclosed is a catalyst composition for reducing NOx through two steps including reacting NOx with H2 thus producing ammonia which is then reacted with NOx, instead of direct NOx reduction by H2, and a method of reducing NOx using the catalyst composition.Type: ApplicationFiled: August 6, 2008Publication date: June 23, 2011Applicant: HEESUNG CATALYSTS CORPORATIONInventors: Hyun-Sik Han, Eun-seok Kim, Gon Seo, Se-Min Park, Yun-Je Lee
-
Publication number: 20110104490Abstract: A catalyst for production of a carbon fiber is obtained by dissolving or dispersing [I] a compound containing Fe element; [II] a compound containing Co element; [III] a compound containing at least one element selected from the group consisting of Ti, V, Cr, and Mn; and [IV] a compound containing at least one element selected from the group consisting of W and Mo in a solvent to obtain a solution or a fluid dispersion, and then by impregnating a particulate carrier with the solution or the fluid dispersion. By means of a step of bringing a carbon source into contact with the catalyst in a vapor phase, the carbon fiber is obtained which is tubular and in which a graphite layer is approximately parallel with the carbon fiber axis, and a shell is in a multi-walled structure.Type: ApplicationFiled: June 16, 2009Publication date: May 5, 2011Inventors: Eiji Kambara, Akihiro Kitazaki
-
Publication number: 20110101265Abstract: A catalyst for producing a carbon nanofiber is obtained by dissolving or dispersing [I] a compound containing Fe element; [II] a compound containing Co element; [III] a compound containing at least one element selected from the group consisting of Ti, V, Cr, and Mn; and [IV] a compound containing at least one element selected from the group consisting of W and Mo in a solvent to obtain a solution or the fluid dispersion, and then impregnating a particulate carrier with the solution or the fluid dispersion. A carbon nanofiber is obtained by bringing a carbon element-containing compound into contact with the catalyst in a vapor phase at a temperature of 300 degrees C. to 500 degrees C.Type: ApplicationFiled: June 16, 2009Publication date: May 5, 2011Applicant: SHOWA DENKO K.K.Inventors: Eiji Kambara, Akihiro Kitazaki
-
Publication number: 20110105790Abstract: A method for the production of a nanocrystalline molybdenum mixed oxide, the use of the molybdenum mixed oxide as catalyst for chemical conversions, in particular for a conversion of acrolein to acrylic acid as well as a catalyst that contains the molybdenum mixed oxide.Type: ApplicationFiled: April 3, 2009Publication date: May 5, 2011Applicant: SUD-CHEMIE AGInventors: Alfred Hagemeyer, Gerhard Mestl, Silvia Neumann, Hans-Jörg Wölk
-
Patent number: 7915196Abstract: A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.Type: GrantFiled: October 7, 2005Date of Patent: March 29, 2011Assignee: Alliance for Sustainable Energy, LLCInventors: Yves O. Parent, Kim Magrini, Steven M. Landin, Marcus A. Ritland
-
Publication number: 20110068045Abstract: The invention provides a catalyst composition, which includes an emulsion of an aqueous phase in an oil phase, wherein the aqueous phase comprises an aqueous solution containing a group 6 metal and a group 8, 9 or 10 metal. The metals can be provided in two separate emulsions, and these emulsions are well suited for treating hydrocarbon feedstocks.Type: ApplicationFiled: December 3, 2010Publication date: March 24, 2011Applicant: INTEVEP, S.A.Inventors: Pedro Pereira, Guaicaipuro Rivas, José Córdova, Francisco Granadillo, Roger Marzin, Bruno Solari, Luis Zacarías
-
Patent number: 7906689Abstract: A catalyst composition for use in manufacturing methacrolein by reacting with one of isobutene and t-butanol, the catalyst composition being represented by the formula of: x (Mo12BiaFebCocAdBeOf)/y Z. Mo12BiaFebCocAdBeOf is an oxide compound. Z is a catalyst carrier is one of graphite, boron, silicon, germanium powder, and a mixture thereof. Mo, Bi, Fe, Co, and O are chemical symbols of molybdenum, bismuth, iron, cobalt, and oxygen respectively. A is one of W, V, Ti, Zr, Nb, Ni, and Re. B is one of K, Rb, Cs, Sr, and Ba. The catalyst is adapted to not only enhance the production of methacrolein with high activeness and high selectivity but also effectively control the heat point of the catalyst during the methacrolein manufacturing process to prolong the catalyst life.Type: GrantFiled: November 7, 2007Date of Patent: March 15, 2011Inventors: Yan Zhuang, Chunlei Zhang, Xin Wen, Jun Li, Jingming Shao, Peizhang Zhang
-
Patent number: 7902104Abstract: This invention relates to a solid divided composition comprising grains whose mean size is greater than 25 ?m and less than 2.5 mm, wherein each grain is provided with a solid porous core and a homogeneous continuous metal layer consisting of at least one type of transition non-oxidised metal and extending along a gangue coating the core in such a way that pores are inaccessible. A method for the production of said composition and for the use thereof in the form of a solid catalyst is also disclosed.Type: GrantFiled: June 21, 2005Date of Patent: March 8, 2011Assignees: Arkema France, Institut National Polytechnique de ToulouseInventors: Philippe Kalck, Philippe Serp, Massimiliano Corrias
-
Patent number: 7851401Abstract: The invention concerns solids comprising a single tungsten oxide layer on a zirconia support and/or titanium dioxide support, characterized in that the tungsten exhibits tetrahedral co-ordination, before and after calcining. The invention also concerns the method for preparing the solids, and their uses as acid catalysis reactions catalyst.Type: GrantFiled: July 1, 2003Date of Patent: December 14, 2010Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)Inventors: Francois Figueras, Nadine Essayem, Cyril Feche, Stephane Loridant, Jorge Palomeque, Georges Gelbard
-
Patent number: 7846977Abstract: The present invention relates to a catalyst comprising a preferably oxidic, core material, a shell of zinc oxide around said core material, and a catalytically active material in or on the shell, based on one or more of the metals cobalt, iron, ruthenium and/or nickel, preferably a Fischer-Tropsch catalyst, to the preparation of such a catalyst and the use thereof in GTL processes.Type: GrantFiled: June 17, 2008Date of Patent: December 7, 2010Assignee: BASF CorporationInventors: Cornelis Roeland Baijense, Geoffrey Johnson, Ahmad Moini
-
Patent number: 7846864Abstract: New types of photocatalyst materials are disclosed together with methods for preparing and using these materials, as well as air treatment systems incorporating such materials. The photocatalyst materials of this invention consist essentially of very small particles of a first-metal oxide, the first-metal being a metal that exhibits photo-induced semiconductor properties, having ions of a second-metal dispersed throughout its lattice structure, the second-metal being selected from the group of dopant metals. Such photocatalyst materials are prepared by the steps of mixing first-metal and second-metal precursors, removing nonessential ions from the mixture, drying the resulting product, and calcinating the dried product to produce the completed photocatalyst material.Type: GrantFiled: February 16, 2007Date of Patent: December 7, 2010Assignee: Samsung Electronics Co., Ltd.Inventors: Dong Seok Ham, Son Ki Ihm, Joo Il Park, Kwang Min Choi, Kwang Eun Jeong
-
Publication number: 20100292075Abstract: In one embodiment, a visible light responsive photocatalyst powder has organic gas decomposition performance that responds nonlinearly to an amount of irradiated light under visible light in an illuminance range of not less than 200 lx nor more than 2500 lx. The visible light responsive photocatalyst powder has a gas decomposition rate of 20% or more, for example, when visible light having only a wavelength of not less than 380 nm and an illuminance of 2500 lx is irradiated, the gas decomposition rate (%) being set as a value calculated based on [formula: (A?B)/A×100], where A represents a gas concentration before light irradiation and B represents a gas concentration when not less than 15 minutes have elapsed from the light irradiation and, at the same time, the gas concentration is stable, the gas concentrations being measured while allowing an acetaldehyde gas having an initial concentration of 10 ppm to flow into a flow-type apparatus in which 0.2 g of a sample is placed.Type: ApplicationFiled: July 27, 2010Publication date: November 18, 2010Inventors: Kayo NAKANO, Akira Sato, Yasuhiro Shirakawa, Keiichi Fuse, Masami Okamura, Shinya Kasamatsu, Yumi Ito
-
Publication number: 20100286448Abstract: This invention is related to a preparation method of a supported catalyst Mo—O—K-MexOy for the synthesis of methanethiol from H2S-containing syngas. The catalyst comprises of an active component of Mo—O—K-based species, an active promoter and a support denoted as metal (or metals)-carrier. The support is prepared by electroless plating method in such a way that the metal or metals chosen are plated onto the surface of the carrier. Transition metal, especially Fe, Co or Ni are selected to be the plating metal, while SiO2, Al2O3 or TiO2 are selected to be carrier. The catalyst thus prepared is found to be efficient for the synthesis of methanethiol from H2S-containing syngasor carbon oxides/hydrogen mixtures, especially regarding a minor formation of the by-product CO2.Type: ApplicationFiled: November 28, 2008Publication date: November 11, 2010Applicant: EVONIK DEGUSSA GMBHInventors: Yiquan Yang, Yingjuan Hao, Aiping Chen, Qi Wang, Lingmei Yang, Qiaoling Li, Shenjun Dai, Weiping Fang, Jan-Olaf Barth, Christoph Wecbecker, Klaus Hutmacher
-
Patent number: 7825064Abstract: A process for making a porous catalyst, comprises a) providing an aqueous solution containing a nanoparticle precursor, b) forming a composition containing nanoparticles, c) adding a first catalytic component or precursor thereof and a pore-forming agent to the composition containing nanoparticles and allowing the first catalytic component, the pore-forming agent, and the nanoparticles form an organic-inorganic structure, d) removing water from the organic-inorganic structure; and e) removing the pore-forming agent from the organic-inorganic structure so as to yield a porous catalyst.Type: GrantFiled: June 3, 2004Date of Patent: November 2, 2010Assignee: William Marsh Rice UniversityInventors: Michael S. Wong, Israel E. Wachs, William V. Knowles
-
Publication number: 20100266478Abstract: The present invention provides a metal nano catalyst, a method for preparing the same and a method for controlling the growth types of carbon nanotubes using the same. The metal nano catalyst can be prepared by burning an aqueous metal catalyst derivative comprising Co, Fe, Ni or a combination thereof in the presence of a supporting body precursor.Type: ApplicationFiled: November 30, 2009Publication date: October 21, 2010Applicant: CHEIL INDUSTRIES INC.Inventors: Byeong Yeol KIM, Seung Yong BAE, Young Sil LEE
-
Patent number: 7816299Abstract: A stacked bed catalyst system comprising at least one first catalyst selected from conventional hydrotreating catalyst having an average pore diameter of greater than about 10 nm and at least one second catalyst comprising a bulk metal hydrotreating catalyst comprised of at least one Group VIII non-noble metal and at least one Group VIB metal and optionally a binder material.Type: GrantFiled: March 31, 2009Date of Patent: October 19, 2010Assignee: ExxonMobil Research and Engineering CompanyInventors: Gary P. Schleicher, Kenneth L. Riley
-
Publication number: 20100261600Abstract: The present invention provides a metal structure for a compact reformer and a preparation method thereof, a catalyst-supported metal structure and a preparation method thereof, and a catalyst-supported metal structure module. More particularly, the present invention relates to a metal structure prepared through electrochemical treatment and heat treatment and a preparation method thereof, a catalyst-supported metal structure prepared by supporting a catalyst on the metal structure and a preparation method thereof, and a catalyst-supported metal structure module manufactured by irregularly layering the catalyst-supported metal structures to improve the contact between reaction gases and catalysts.Type: ApplicationFiled: August 12, 2009Publication date: October 14, 2010Applicant: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Wang-Lai YOON, Kee-Young KOO, Hyun-Ku JOO, Jae-Kyung YOON, Un-Ho JUNG
-
Patent number: 7807600Abstract: A catalyst for acrylonitrile synthesis is disclosed which is composed of particles containing silica and a composite oxide including at least molybdenum. When the Mo/Si atomic ratio in bulk composition of the catalyst is represented by A and the Mo/Si atomic ratio in surface composition of the particles is represented by B, B/A is not more than 0.6.Type: GrantFiled: April 14, 2004Date of Patent: October 5, 2010Assignee: Dia-Nitrix Co., Ltd.Inventors: Seigo Watanabe, Koichi Mizutani, Motoo Yanagita, Jinko Izumi
-
Publication number: 20100249252Abstract: Disclosed are solid titanium-free Fischer-Tropsch catalysts including iron homogeneously modified with a zirconium promoter/stabilizer. The homogeneously mixed solid catalysts can be formed through co-precipitation of iron and zirconium precursors followed by calcination and reduction to form the active catalyst materials. The catalysts can optionally include additional materials such as copper, potassium, and silicon promoters.Type: ApplicationFiled: June 12, 2008Publication date: September 30, 2010Inventors: James G. Goodwin, JR., Edgar Lotero, Nattaporn Lohitharn
-
Patent number: 7803734Abstract: The present invention relates to a metal catalyst containing fine metal particles, characterized in that the fine metal particles have a particle diameter of 3 nm or less and also have a proportion of metallic bond state of 40% or more, which is ascribed by subjecting to waveform separation of a binding energy peak peculiar to the metal as measured by using an X-ray photoelectron spectrometer. The fine metal particles are preferably fine platinum particles. The fine metal particles are preferably supported on the surface of carrier particles by reducing ions of metal to be deposited through the action of a reducing agent in a reaction system of a liquid phase containing the carrier particles dispersed therein, thereby to deposit the metal on the surface of carrier particles in the form of fine particles. The proportion of metallic bond state of the fine metal particles is adjusted within the above range by reducing after deposition thereby to decrease the oxidation state.Type: GrantFiled: May 20, 2005Date of Patent: September 28, 2010Assignee: Sumitomo Electric Industries, Ltd.Inventors: Masatoshi Majima, Kohei Shimoda, Kouji Yamaguchi
-
Patent number: 7799727Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.Type: GrantFiled: December 15, 2009Date of Patent: September 21, 2010Assignee: UOP LLCInventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
-
Patent number: 7790652Abstract: A method of hydroprocessing a heavy hydrocarbon feedstock using a hydroprocessing catalyst having specific properties making it effective in the hydroconversion of at least a portion of the heavy hydrocarbon feedstock to lighter hydrocarbons. The hydroprocessing catalyst comprises a Group VIB metal component (e.g., Cr, Mo, and W), a Group VIII metal component (e.g., Ni and Co) and, optionally, a potassium metal component that are supported on a support material comprising alumina. The alumina has novel physical properties that, in combination with the catalytic components, provide for the hydroprocessing catalyst. The hydroprocessing catalyst is particularly effective in the conversion of the heavy hydrocarbon feedstock. The alumina is characterized as having a high pore volume and a high surface area with a large proportion of the pore volume being present in the pores within a narrow pore diameter distribution about a narrowly defined range of median pore diameters.Type: GrantFiled: September 15, 2004Date of Patent: September 7, 2010Assignee: Shell Oil CompanyInventors: Russell Craig Ackerman, Josiane Marie-Rose Ginestra, Christian Gabriel Michel
-
Patent number: 7776782Abstract: A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.Type: GrantFiled: January 8, 2007Date of Patent: August 17, 2010Assignee: Battelle Memorial InstituteInventors: Todd Werpy, John G. Frye, Jr., Yong Wang, Alan H. Zacher
-
Patent number: 7777082Abstract: A process for preparing annular unsupported catalysts by thermally treating annular shaped unsupported catalyst precursor bodies, wherein the side crushing strength of the annular shaped unsupported catalyst precursor bodies is ?12 N and ?23 N; such precursor bodies per se; annular unsupported catalysts having a specific pore structure; and a method of using such annular unsupported catalysts for the catalytic partial oxidative preparation in the gas phase of (meth)acrolein.Type: GrantFiled: September 7, 2004Date of Patent: August 17, 2010Assignee: BASF AktiengesellschaftInventors: Jochen Petzoldt, Klaus Joachim Mueller-Engel, Signe Unverricht
-
Patent number: 7776784Abstract: A hydrodesulfurization catalyst used for hydrodesulfurization of catalytically cracked gasoline comprises a support composed mainly of alumina modified with an oxide of at least one metal selected from the group consisting of iron, chromium, cobalt, nickel, copper, zinc, yttrium, scandium and lanthanoid-based metals, with at least one metal selected from the group consisting of Group 6A and Group 8 metals loaded as an active metal on the support. Hydrogenation of olefins generated as by-products during hydrodesulfurization of the catalytically cracked gasoline fraction, as an important constituent base of gasoline, can be adequately inhibited to maintain the octane number, while sufficiently reducing the sulfur content of the hydrodesulfurized catalytically cracked gasoline fraction.Type: GrantFiled: July 13, 2004Date of Patent: August 17, 2010Assignees: Nippon Oil Corporation, Petroleum Energy CenterInventors: Hideshi Iki, Shigeto Hatanaka, Eitaro Morita, Shinya Takahashi
-
Patent number: 7772147Abstract: A solid catalyst carrier substrate coated with a surface area-enhancing washcoat composition including a catalytic component, a metal oxide and a refractory fibrous or whisker-like material having an aspect ratio of length to thickness in excess of 5:1.Type: GrantFiled: September 12, 2005Date of Patent: August 10, 2010Assignee: Johnson Matthey Public Limited CompanyInventors: Paul John Collier, Alison Mary Wagland