Of Manganese Patents (Class 502/324)
  • Publication number: 20100075390
    Abstract: The invention relates to the use of a ferrous ferric oxyhydroxy salt of the dual lamellar hydroxide family as a catalyst, or as a precursor of the catalyst having the same crystalline structure as the catalyst, for implementing an oxidation-reduction method, the ferrous ferric oxyhydroxy salt being used in association with ferri-reducing bacteria capable of reducing FeIII into FeII in the presence of organic material, in order to reduce a substance (S) into a reduced substance, the redox potential of the Sreduced/S couple being higher than that of the FeII/FeIII couple at the crystallographic sites of FeII.
    Type: Application
    Filed: January 31, 2008
    Publication date: March 25, 2010
    Applicant: UNIVERSITE HENRI POINCARE NANCY 1
    Inventors: Jean-Marie Genin, Christian Ruby
  • Patent number: 7674744
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a carrier in a reversed micelle, and a step of precipitating at least one of a noble metal particle and a transition metal particle in the reversed micelle in which the carrier is precipitated. By this method, it is possible to obtain catalyst powder excellent in heat resistance and high in the catalytic activity.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: March 9, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Shiratori, Toru Sekiba, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Hirofumi Yasuda
  • Publication number: 20100056360
    Abstract: Magnetic mesoporous materials as chemical catalyst and methods of making magnetic mesoporous materials as catalyst are provided. The mesoporous materials have mesopores. The mesoporous materials can contain magnetic nanoparticles in wall of the mesoporous material and chemical catalysts in the mesopores. The mesoporous material continaing magnetic nanoparticles and catalysts can be used in a chemical reaction as a catalyst. The mesoporous materials can be removed after the chemical reaction by applying a magnetic field to the chemical reaction medium to isolate the mesoporous materials containing magnetic nanoparticles.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 4, 2010
    Inventor: Kwangyeol Lee
  • Patent number: 7670985
    Abstract: The invention provides an activated carbon supported cobalt based catalyst for directly converting of synthesis gas to mixed linear alpha-alcohols and paraffins, comprising cobalt, an activated carbon carrier, a metal promoter which is at least one selected from the group consisting of a zirconium component, a lanthanum component, a cerium component, a chromium component, a vanadium component, a titanium component, a manganese component, a rhenium component, a potassium component, a ruthenium component, a magnesium component and a mixture thereof, wherein the cobalt and the promoter are deposited on the activated carbon carrier or substantially uniformly dispersed therein, and the metal promoter is present in the form of a metal, an oxide or a combination thereof.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: March 2, 2010
    Assignees: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CNOOC New Energy Investment Co., Ltd.
    Inventors: Yunjie Ding, Hejun Zhu, Tao Wang, Guiping Jiao, Yuan Lv
  • Patent number: 7670987
    Abstract: A hydrocarbon reforming catalyst which maintains carrier strength even after a long-term thermal history and which exhibits high catalytic activity is prepared by causing at least one noble metal component selected from among a ruthenium component, a platinum component, a rhodium component, a palladium component, and an iridium component to be supported on a carrier containing manganese oxide, alumina, and at least one compound selected from among lanthanum oxide, cerium oxide, and zirconium oxide, or a carrier containing silicon oxide, manganese oxide, and alumina. By use of the reforming catalyst, hydrogen is produced through steam reforming (1), autothermal reforming (2), partial-oxidation reforming (3), or carbon dioxide reforming (4). A fuel cell system is constituted from a reformer employing the reforming catalyst, and a fuel cell employing, as a fuel, hydrogen produced by the reformer.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: March 2, 2010
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Yoshimi Kawashima, Hiroshi Ohashi
  • Patent number: 7670986
    Abstract: A manganese dioxide catalyst for hydrolysing organic nitrites which bear readily oxidizable groups such as thiol or thioether groups to the corresponding carboxamides, and to a process for preparing the catalyst and to its use for hydrolysing organic nitrites.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: March 2, 2010
    Assignee: Degussa AG
    Inventors: Horst Weigel, Axel Ronneburg, Christoph Weckbecker
  • Patent number: 7662742
    Abstract: A method for producing a catalyst containing given atoms in a given atomic proportion for use in producing methacrylic acid through gas-phase catalytic oxidation of methacrolein with molecular oxygen comprising the steps of: (i) preparing a solution or slurry containing at least molybdenum, phosphorus, and vanadium (liquid I); (ii) preparing a solution or slurry containing ammonium radical (liquid II); (iii) preparing a mixture of the liquid I and the liquid II by introducing one liquid (liquid PR) of the liquid I and the liquid II into a tank (tank A) and pouring the other liquid (liquid LA) on a continuous region in the surface of the liquid PR, the continuous region occupying 0.01 to 10% of the whole area of the surface of the liquid PR; and (iv) drying and calcining the resultant solution or slurry containing a catalyst precursor comprising all the catalyst constituents.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: February 16, 2010
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Hiroyuki Naitou, Takashi Karasuda, Tomoki Fukui
  • Publication number: 20100009843
    Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.
    Type: Application
    Filed: September 21, 2009
    Publication date: January 14, 2010
    Applicant: MEMC ELECTRONIC MATERIALS, INC.
    Inventors: Vithal Revankar, Jameel Ibrahim
  • Publication number: 20100008840
    Abstract: The present invention relates to a novel method for preparing a new type of catalyst for the oxidation of CO in a reactant gas or air. The method provides the preparation of a catalyst having nano-sized metal particles and a capping agent deposited on a solid support. The size and distribution of the metal particles can be easily controlled by adjusting reaction condition and the capping agent used. The catalyst prepared has high activity at low temperature toward selective oxidation of CO and is stable over an extended period of time. The catalyst can be used in air filter devices, hydrogen purification processes, automotive emission control devices (decomposition of NOx, x is the integer 1 or 2), F-T synthesis, preparation of fuel-cell electrode, photocatalysis and sensors.
    Type: Application
    Filed: November 13, 2006
    Publication date: January 14, 2010
    Applicant: Agency For Science, Technology and Research
    Inventors: Ziyi Zhong, Jianyi Lin
  • Publication number: 20100010271
    Abstract: The present invention provides a slurry catalyst and a method for preparing the same, and belongs to the technical field of preparing catalyst. Particularly, the present invention provides a slurry catalyst directly used in a slurry bed reactor for synthesizing methanol and dimethyl ether and a method for preparing the same, which uses the complete liquid phase preparation from solution to slurry without the conventional slurry-producing process of firstly forming a solid catalyst and dispersing it into an inert medium after crushing and milling. This catalyst mainly comprises Cu, Zn, Al and Zr, wherein atomic ratios of each of components are Cu/Zn/(Al+Zr)=1/0.1-5/0.15-15 and Zr/Al=1:1.0-1:30, and one or two selected from the group consisting of lanthanide metals, Mn, Mo, Si, V, W, Cr, Mg, Ni, K, Pd, Rh, Ru, Re, Pt and Sr is used a promoter.
    Type: Application
    Filed: October 25, 2007
    Publication date: January 14, 2010
    Applicant: Taiyuan University of Technology
    Inventors: Wei Huang, Zhihua Gao, Lihua Yin, Kechang Xie
  • Publication number: 20100009844
    Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.
    Type: Application
    Filed: September 21, 2009
    Publication date: January 14, 2010
    Applicant: MEMC ELECTRONIC MATERIALS, INC.
    Inventors: Vithal Revankar, Jameel Ibrahim
  • Patent number: 7641875
    Abstract: A multi-phase catalyst for the simultaneous conversion of oxides of nitrogen, carbon monoxide, and hydrocarbons is provided. A catalyst composition comprising the multi-phase catalyst and methods of making the catalyst composition are also provided. The multi-phase catalyst may be represented by the general formula of CeyLn1-xAx+sMOZ, wherein Ln is a mixture of elements originally in the form of single-phase mixed lanthanides collected from natural ores, a single lanthanide, or a mixture of lanthanides; A is an element selected from a group consisting of Mg, Ca, Sr, Ba, Li, Na, K, Cs, Rb, or any combination thereof; and M is an element selected from the group consisting of Fe, Mn, Cr, Ni, Co, Cu, V, Zr, Pt, Pd, Rh, Ru, Ag, Au, Al, Ga, Mo, W, Ti, or any combination thereof; x is a number defined by 0?x<1.0; y is a number defined by 0?y<10; s is a number defined by 0?s<10; where s=0 only when y>0 and y=0 only when s>0.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: January 5, 2010
    Assignee: Catalytic Solutions, Inc.
    Inventor: Stephen J. Golden
  • Publication number: 20090324468
    Abstract: The present invention pertains to catalyst systems for nitrogen oxide, carbon monoxide, hydrocarbon, and sulfur reactions that are free or substantially free of platinum group metals. The catalyst system of the present invention comprise a substrate and a washcoat, wherein the washcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst system may optionally have an overcoat, wherein the overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalysts, or mixtures thereof.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 31, 2009
    Inventors: Stephen J. Golden, Randal Hatfield, Jason Pless, Johnny Ngo, Mann Sakbodin
  • Publication number: 20090325794
    Abstract: The present invention relates to a process for the preparation of nanocrystalline metal oxide particles comprising the steps of a) the introduction of a starting compound into a reaction chamber by means of a carrier fluid, b) the subjecting of the starting compound in a treatment zone to a pulsating thermal treatment, c) the forming of nanocrystalline metal oxide particles, d) the removal of the nanocrystalline metal oxide particles obtained in steps b) and c) from the reactor, wherein the starting compound is introduced into the reaction chamber in the form of a solution, slurry, suspension or in solid aggregate state. Further, the present compound relates to a catalyst material, obtainable by the process according to the invention, in particular a catalyst material for use in the preparation of methanol from carbon monoxide and hydrogen.
    Type: Application
    Filed: July 11, 2007
    Publication date: December 31, 2009
    Inventors: Hans Jörg Wölk, Götz Burgfels, Sigrun Polier, Gernot Polier, Astrid Polier
  • Patent number: 7638459
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Publication number: 20090317672
    Abstract: To provide a CO conversion catalyst for use in a fuel cell in a DSS operation, which includes a Cu—Al-Ox catalyst, in which the Cu—Al-Ox catalyst has a boehmite phase formed in at least a part of the Cu—Al-Ox catalyst. The CO conversion catalyst has an improved degree of dispersion of Cu metal by the boehmite phase formed therein, and hence can be prevented from sintering of copper caused due to steam, thereby achieving improved durability with respect to the function as the CO conversion catalyst.
    Type: Application
    Filed: March 30, 2009
    Publication date: December 24, 2009
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masanao YONEMURA, Toshinobu YASUTAKE, Tetsuya SHISHIDO
  • Publication number: 20090314993
    Abstract: The present invention relates to a novel composite metal oxide catalyst, a method of making the catalyst, and a process for producing synthesis gas using the catalyst. The catalyst may be a nickel and cobalt based dual-active component composite metal oxide catalyst. The catalyst may be used to produce synthesis gas by the carbon dioxide reforming reaction of methane. The catalyst on an anhydrous basis after calcinations has the empirical formula: M a m + ? N b n + ? Al c 3 + ? Mg d 2 + ? O ( am 2 + bn 2 + 3 2 ? c + d ) Mm+ and Nn+ are two transition metals serving as dual-active components and selected from the group consisting of Ni, Co, Fe, Mn, Mo, Cu, Zn or mixtures thereof, a+b+c+d=1, and 0.001?a?0.8, 0.001?b?0.8, 0.1?c?0.99, 0.01?d?0.99.
    Type: Application
    Filed: June 19, 2008
    Publication date: December 24, 2009
    Applicant: UNIVERSITY OF SASKATCHEWAN
    Inventors: Jianguo ZHANG, Hui WANG, Ajay Kumar DALAI
  • Publication number: 20090317308
    Abstract: Catalysts are formulated to resemble a direct ammonia/air fuel cell at short circuit at the nanoscale level to convert ammonia in aqueous solution directly and spontaneously to nitrogen at near or above ambient temperature. The catalyst particle contains a type-A catalyst subparticles for ammonia oxidation to nitrogen, and a type-C catalyst subparticles for oxygen reduction, with the type-A and type-C catalyst subparticles electrically shorted. Advantages realized at the nanoscale level are enhanced conductances for electrons and hydroxyl anions between the neighboring type-A and type-C catalyst subparticles. With the catalysts packed and confined in a catalyst bed in a chemical reactor, the direct conversion of ammonia in an aqueous phase to nitrogen can be carried out continuously for ammonia removal from a water stream in a compact package, and without the high cost arising from constructing and maintaining a bulk electrochemical device, and without the step of exacting the ammonia into gas phase.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 24, 2009
    Inventor: Xiaoming Ren
  • Patent number: 7635533
    Abstract: An improved metal alloy composition for a fuel cell catalyst containing platinum, manganese, and cobalt.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: December 22, 2009
    Assignees: Symyx Solutions, Inc., Honda Giken Kogyo Kabushike Kaisha
    Inventors: Qun Fan, Peter Strasser, Alexander Gorer, Martin Devenney, Konstantinos Chondroudis, Daniel M. Giaquinta, Ting He, Hiroyuki Oyanagi, Kenta Urata, Kazuhiko Iwasaki, Hiroichi Fukuda
  • Patent number: 7635461
    Abstract: Composite combustion catalyst particles are described and disclosed. A metal core of a combustible metal can be coated with a metal oxide coating. Additionally, a catalyst coating can at least partially surround the metal oxide coating to form a composite catalyst particle. The composite catalyst particles can be dispersed in a variety of fuels such as propulsion fuels and the like to form an enhanced fuel. During initial stages of combustion, the catalyst coating acts to increase combustion of the fuel. As combustion proceeds, the metal core heats sufficiently to disturb the metal oxide coating. The metal core then combusts in highly exothermic reactions with an oxidizer and the catalyst coating to provide improved energy densities to the enhanced fuel.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: December 22, 2009
    Assignee: University of Utah Research Foundation
    Inventor: Scott L. Anderson
  • Publication number: 20090305872
    Abstract: Fluid catalytic cracking process comprising the steps of (a) preparing a physical 5 mixture comprising (i) aluminium trihydrate and/or flash-calcined aluminium trihydrate and (ii) a divalent metal oxide, hydroxide, carbonate, or hydroxycarbonate, (b) shaping the physical mixture of step a) to form fluidisable particles, and (c) adding the fluidisable particles obtained from step b) or step c) to a fluid catalytic cracking unit. In this FCC process, active sites of the catalyst composition are formed in-situ, i.e. in the FCC unit, without requiring peptisation, aging, or calcination steps prior to the addition of the composition to the hydrocarbon conversion unit.
    Type: Application
    Filed: November 19, 2005
    Publication date: December 10, 2009
    Applicant: ALBEMARLE NETHERLANDS BV
    Inventors: Dennis Stamires, Paul O'Connor
  • Patent number: 7628968
    Abstract: The present invention is directed to high activity titanium oxide DeNOx catalysts. In preferred embodinents, by depositing vanadium oxide on a titania supported metal oxide such as tungsten oxide, an improved catalyst may be generated. This catalyst may be used in the treatment of exhaust from sources such as automobiles and industrial plants.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: December 8, 2009
    Assignee: Millenium Inorganic Chemicals, Inc.
    Inventors: Steven M Augustine, Guoyi Fu
  • Patent number: 7625834
    Abstract: In a method of producing a catalyst for the production of methacrylic acid, which has a composition of the following formula (1), when mixing 100 parts by mass of a solution or a slurry (liquid A) containing molybdenum atoms, phosphorous atoms and vanadium atoms in which the content of ammonium species is 0 to 1.5 mol relative to 12 mol of the molybdenum atoms, 5 to 300 parts by mass of a solution or a slurry (liquid B) containing 6 to 17 mol of ammonium species relative to 12 mol of the molybdenum atoms contained in the liquid A and a solution or a slurry (liquid C) containing an element Z such as cesium, the liquid B is mixed with the liquid A, the liquid C or a mixture of the liquid A and the liquid C over 0.1 to 15 minutes PaMobVcCudXeYfZgOh??(1).
    Type: Grant
    Filed: July 4, 2003
    Date of Patent: December 1, 2009
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Hiroyuki Naitou, Takashi Karasuda
  • Publication number: 20090285741
    Abstract: The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=?12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from the group consisting of oxides of Fe, Cu, V, Cr, Mn, and any mixtures thereof.
    Type: Application
    Filed: September 25, 2007
    Publication date: November 19, 2009
    Applicant: Technical University of Denmark
    Inventors: Soren Birk Rasmussen, Arkady Kustov, Rasmus Fehmann, Johannes Due-Hansen
  • Publication number: 20090280978
    Abstract: An exhaust gas purifying catalyst 1 has a composite compound 2 in which a metal selected from among Al, Ce, La, Zr, Co, Mn, Fe, Mg, Ba and Ti is uniformly dispersed on an oxide selected from among Al2O3, ZrO2 and CeO2, and a precious metal 4 selected from among Pt, Pd and Rh, supported on a compound 3 of the metal, and covered with the composite compound 2.
    Type: Application
    Filed: October 31, 2005
    Publication date: November 12, 2009
    Inventors: Masanori Nakamura, Katsuo Suga, Hironori Wakamatsu, Kazuyuki Shiratori, Hirofumi Yasuda, Makoto Aoyama
  • Patent number: 7615194
    Abstract: A composition for purifying an ozone-containing gas comprising activated carbon, in which the percentage of the volume of pores having a pore diameter of 0.4-0.8 nm in the volume of pores having a pore diameter of 0.4-2.0 nm is 75% or more, and an ozone decomposition catalyst powder is disclosed. Also disclosed is a filter for purifying an ozone-containing exhaust gas comprising activated carbon powder, in which the percentage of the volume of pores having a pore diameter of 0.4-0.8 nm in the volume of pores having a pore diameter of 0.4-2.0 nm is 75% or more, and an ozone decomposition catalyst powder carried on a fiber supporting body. The composition and filter of the present invention can remarkably reduce the content of ozone and volatile organic compounds in ozone-containing exhaust gas from printers.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: November 10, 2009
    Assignee: Nichias Corporation
    Inventors: Yuji Matumura, Masahiko Yoneda, Kazuki Yamana, Satoshi Minobe
  • Patent number: 7612010
    Abstract: Use of metal complex compounds of formula (1) and/or (1?) [LnMemXp]zYq??(1), [L?nMemXp]zYq??(1?), wherein all substituents are as defined in the claims, as catalysts for oxidation reactions, and also novel metal complex compounds and novel ligands.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: November 3, 2009
    Assignee: Ciba Specialty Chemicals Corp.
    Inventors: Gunther Schlingloff, Torsten Wieprecht, Uwe Heinz, Albert Schneider, Marie-Josée Dubs, Frank Bachmann, Menno Hazenkamp, Thomas Ehlis, Cornelia Vincenzi, Josef Dannacher
  • Patent number: 7612013
    Abstract: An object of the present invention is to provide a catalyst which, in the FT process, exhibits a high chain growth probability, and a high catalytic activity, can stably and smoothly promote the reaction, exhibits a high productivity of C5+, and can efficiently produce liquid hydrocarbons, and a process therefore. The invention relates to a hydrocarbon-producing catalyst obtainable by supporting a ruthenium compound on a support composed of a manganese oxide and an aluminum oxide, and which satisfies at least one of characteristics (1) and (2): (1) the catalyst being treated with an aqueous alkaline solution and subsequently subjected to calcination treatment in the air at 150 to 500° C., (2) the aluminum oxide being an aluminum oxide wherein pore volume formed by pores having a pore diameter of 8 nm or more accounts for 50% or more of total pore volume.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: November 3, 2009
    Assignees: Japan Oil, Gas and Metals National Corporation, Cosmo Oil Co., Ltd.
    Inventors: Kazuhito Sato, Shigenori Nakashizu, Osamu Iwamoto, Hiroaki Otsuka
  • Publication number: 20090270250
    Abstract: According to a first embodiment of a production method of an oxidation catalyst device for exhaust gas purification of the present invention, a plurality of slurries containing a catalyst precursor prepared from mutually different organic acids is coated respectively on a porous filter carrier (2) and calcined. According to a second embodiment of the present invention, the slurry contains the catalyst precursor having a particle diameter distribution ranging from 0.5 to 10 ?m, and the slurry has a viscosity equal to or below 2.0 mPa·s. The oxidation catalyst device of the present invention is composed of a composite metal oxide on a surface of a cell division and a surface of an air pore of the porous filter carrier having a wall-flow structure.
    Type: Application
    Filed: April 8, 2009
    Publication date: October 29, 2009
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Kiyoshi TANAAMI, Yuji ISOGAI
  • Publication number: 20090269269
    Abstract: The disclosed subject matter provides a copper oxide nanoparticle, a catalyst that includes the copper oxide nanoparticle, and methods of manufacturing and using the same. The catalyst can be used to catalyze a chemical reaction (e.g., oxidizing carbon monoxide (CO) to carbon dioxide (CO2)).
    Type: Application
    Filed: October 14, 2008
    Publication date: October 29, 2009
    Applicant: The Trustees of Columbia University in City of New York
    Inventors: Brian Edward White, Stephen O'Brien
  • Publication number: 20090264285
    Abstract: A catalyst is invented for the synthesis of C2-oxygenates by the hydrogenation of CO. The catalyst is composed of Rh—Mn—Fe-M1-M2/SiO2, among them Mn, Fe, M1 and M2 and additives. M1 can be Li or Na while M2 can be Ru or Ir. The content of Rh is 0.1-3% by weight; the weight ratio of Mn/Rh is 0.5-12, the weight ratio of Fe/Rh is 0.01-0.5, the weight ratio of M1/Rh is 0.01-1 and the weight ratio of M2/Rh is 0.1-1.0. The catalyst is prepared by impregnation of the solution of corresponding compounds of each component in desired amount onto the carrier of SiO2, which is followed by drying at 283-473 K. Before using, the catalyst is reduced by hydrogen or hydrogen-containing gas at 573-673 K for at least one hour after drying or after calcinations at 473-673 K for 2-20 h. These catalysts can convert CO and H2 into ethanol, acetaldehyde, acetic acid and other C2-oxygenates at a high conversion and a high selectivity under mild conditions.
    Type: Application
    Filed: June 23, 2009
    Publication date: October 22, 2009
    Applicants: BP P.L.C., Dalian Institute of Chemical Physics
    Inventors: Hongyuan Luo, Yunjie Ding, Hongmei Yin
  • Publication number: 20090247400
    Abstract: A method of preparing a nanosegregated Pt alloy having enhanced catalytic properties. The method includes providing a sample of Pt and one or more of a transition metal in a substantially inert environment, and annealing the sample in such an environment for a period of time and at a temperature profile to form a nanosegregated Pt alloy having a Pt-skin on a surface. The resulting alloy is characterized by a plurality of compositionally oscillatory atomic layers resulting in an advantageous electronic structure with enhanced catalytic properties.
    Type: Application
    Filed: December 18, 2008
    Publication date: October 1, 2009
    Inventors: Vojislav Stamenkovic, Nenad M. Markovic
  • Publication number: 20090239739
    Abstract: A catalyst 1 has a heat-resistant support 2 selected from among Al2O3, SiO2, ZrO2, and TiO2, and a first metal 4 supported on an outer surface of the support 2, and included by an inclusion material 3 containing a component of the support 2.
    Type: Application
    Filed: December 5, 2005
    Publication date: September 24, 2009
    Inventors: Hirofumi Yasuda, Katsuo Suga, Makoto Aoyama, Toshiharu Miyamura
  • Patent number: 7592290
    Abstract: The invention relates to supported catalysts and a process for the production of these catalysts. These supported catalysts may be used in various reactions such as reforming reactions (e.g. steam methane reforming (SMR) reactions and autothermal reforming (ATR) reactions). In one aspect of the invention, the supported catalyst comprises a transition metal oxide; optionally a rare-earth metal oxide; and a transition metal aluminate.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: September 22, 2009
    Assignee: Sulzer Metco(Canada) Inc.
    Inventors: Syed Tajammul Hussain, Eugene Stelmack
  • Patent number: 7585477
    Abstract: The invention provides a catalyst for catalytic reduction of nitrogen oxides contained in exhaust gases wherein fuel is supplied and subjected to combustion under periodic rich/lean conditions and the resulting exhaust gases are brought into contact therewith, which catalyst comprises: (A) a catalyst component A comprising (c) ceria or (d) praseodymium oxide or (e) an oxide and/or a composite oxide of at least two elements selected from the group consisting of cerium, zirconium, praseodymium, neodymium, terbium, samarium, gadolinium and lanthanum; (B) a catalyst component B comprising (d) a noble metal catalyst component selected from the group consisting of platinum, rhodium, palladium and oxides thereof and (e) a carrier; and (C) a catalyst component C comprising (f) a solid acid, and (g) a solid acid supporting an oxide of at least one element selected from the group consisting of vanadium, tungsten, molybdenum, copper, iron, cobalt, nickel and manganese.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: September 8, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tadao Nakatsuji, Norio Suzuki, Hiroshi Ohno, Naohiro Sato, Tomoko Morita, Katsuji Wada
  • Publication number: 20090217590
    Abstract: Particulate compositions are described comprising an intimate mixture of a coal and a gasification catalyst in the presence of steam to yield a plurality of gases including methane and at least one or more of hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, ammonia and other higher hydrocarbons are formed. Processes are also provided for the preparation of the particulate compositions and converting the particulate composition into a plurality of gaseous products.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 3, 2009
    Applicant: GREATPOINT ENERGY, INC.
    Inventors: Alkis S. Rappas, George Frederick Salem
  • Patent number: 7582588
    Abstract: A method of manufacturing a catalyst, a catalyst precursor, or a catalyst support comprising: (a) mixing a refractory metal oxide or precursor thereof with a liquid to form a paste; (b) adding said paste to an extruder, the extruder having a die plate comprising one or more dies, each die having a plurality of apertures, the outlet of each aperture having a cross sectional area of 6 mm2 or less; (c) extruding the paste through the apertures to form catalyst support extrudates; wherein the inlet of the apertures has a greater cross sectional area than the outlet of said apertures; and wherein for at least one die the combined cross sectional area of all apertures at the inlet relative to the total cross sectional area of the die at the inlet is higher than 50%.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: September 1, 2009
    Assignee: Shell Oil Company
    Inventors: Peter John Van Den Brink, Ronald Jan Dogterom, Carolus Matthias Anna Maria Mesters
  • Publication number: 20090215613
    Abstract: The present invention is directed to yttrium compositions and methods for making such metal oxide compositions, specifically, metal oxide compositions having high surface area, high metal/metal oxide content, and/or thermal stability with inexpensive and easy to handle materials.
    Type: Application
    Filed: November 1, 2007
    Publication date: August 27, 2009
    Applicant: Symyx Technologies, Inc.
    Inventor: Alfred Hagemeyer
  • Publication number: 20090209415
    Abstract: A composite material includes an aggregate which contains a first metal particle constituting a core and second metal oxide particulates surrounding the first metal particle and having an average primary particle diameter ranging from 1 to 100 nm.
    Type: Application
    Filed: July 20, 2006
    Publication date: August 20, 2009
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Tomoyuki Kayama, Kouzi Banno, Kiyoshi Yamazaki, Koji Yokota
  • Publication number: 20090209412
    Abstract: A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.
    Type: Application
    Filed: October 7, 2005
    Publication date: August 20, 2009
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: Yves O. Parent, Kim Magrini, Steven M. Landin, Marcus A. Ritland
  • Patent number: 7576035
    Abstract: A pillar-shaped honeycomb structure has a plurality of cells longitudinally placed in parallel with one another with a wall portion therebetween, wherein the honeycomb structure mainly includes inorganic fibers which form the honeycomb structure without lamination interfaces.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: August 18, 2009
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazushige Ohno, Tomokazu Oya
  • Patent number: 7572751
    Abstract: The present invention provides an oxidation catalyst for cleaning exhaust gas, capable of achieving an excellent catalytic activity at a lower temperature for particulates and high boiling point hydrocarbons in exhaust gas from internal-combustion engines. The oxidation catalyst for cleaning exhaust gas according to the present invention is a composite metal oxide represented by the general formula: LnyMn1-xAxO3, wherein Ln is a metal selected from the group consisting of Sc, Y, Ho, Er, Tm, Yb, and Lu; A is a metal selected from the group consisting of Ti, Nb, Ta, and Ru; 0.005?x?0.2; and 0.9?y?1. Ln is Y. The composite metal oxide has a hexagonal structure.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: August 11, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yuji Isogai, Kiyoshi Tanaami
  • Publication number: 20090196822
    Abstract: Complex metal oxide-containing pellets and their use for producing hydrogen. The complex metal oxide-containing pellets are suitable for use in a fixed bed reactor due to sufficient crush strength. The complex metal oxide-containing pellets comprise one or more complex metal oxides and at least one of in-situ formed calcium titanate and calcium aluminate. calcium titanate and calcium aluminate are formed by reaction of suitable precursors in a mixture with one or more complex metal carbonates. The complex metal oxide-containing pellets optionally comprise at least one precious metal.
    Type: Application
    Filed: January 13, 2009
    Publication date: August 6, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Diwakar Garg, Robert Quinn, Frederick Carl Wilhelm, Gokhan Alptekin, Margarita Dubovik, Matthew Schaefer
  • Publication number: 20090192033
    Abstract: The present invention provides a method of producing an oxidation catalyst for cleaning exhaust gas, capable of achieving an excellent catalytic activity at a lower temperature for particulates and high boiling point hydrocarbons in exhaust gas from internal-combustion engines. A primary firing is performed after mixing nitrate of a first metal element Ln, manganese nitrate, and oxide of a third metal element A. A resultant material from the primary firing is subjected to grinding and then a secondary firing is performed at the range of to 1200° C. for 1 to 5 hours. By doing so, a catalyst comprising a composite metal oxide represented by the general formula LnyMn1-xAxO3 is obtained.
    Type: Application
    Filed: April 2, 2009
    Publication date: July 30, 2009
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Yuji ISOGAI, Kiyoshi Tanaami
  • Publication number: 20090187036
    Abstract: The present invention is directed to nickel compositions and methods for making nickel oxide compositions, specifically, such metal oxide compositions having high surface area, high metal/metal oxide content, and/or thermal stability with inexpensive and easy to handle materials.
    Type: Application
    Filed: November 1, 2007
    Publication date: July 23, 2009
    Applicant: Symyx Technologies, Inc.
    Inventor: Alfred Hagemeyer
  • Patent number: 7560411
    Abstract: A process is provided for preparing a carrier which process comprises incorporating into the carrier at any stage of the carrier preparation a strength-enhancing additive. Also provided is the resultant carrier having incorporated therein a strength-enhancing additive and a catalyst comprising the carrier. Also provided is a process for the epoxidation of an olefin employing the catalyst. Also provided is a method of using the olefin oxide so produced for making a 1,2-diol, a 1,2-diol ether or an alkanolamine.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: July 14, 2009
    Assignee: Shell Oil Company
    Inventors: Randall Clayton Yeates, John Robert Lockemeyer, Marek Matusz
  • Publication number: 20090177000
    Abstract: A supported silver catalyst and use thereof in a process for producing an alkylene oxide, such as ethylene oxide, by the direct oxidation of an alkylene with oxygen or an oxygen-containing gas, wherein the catalyst provides improved stability and improved resilience to reactor upsets and timely recovery to substantially pre-upset levels of catalyst activity and/or efficiency. In some embodiments, the catalyst also exhibits improved activity. A catalyst capable of producing ethylene oxide at a selectivity of at least 87 percent while achieving a work rate of at least 184 kg/h/m3 at a temperature of no greater than 235° C. when operated in a process where the inlet feed to a reactor containing the catalyst comprises ethylene, oxygen, and carbon dioxide, wherein the concentration of carbon dioxide in the inlet feed is greater than or equal to 2 mole percent.
    Type: Application
    Filed: April 17, 2007
    Publication date: July 9, 2009
    Inventors: Manuel A. W. Natal, Madan M. Bhasin, Hwaili Soo, Albert C. Liu
  • Publication number: 20090149319
    Abstract: To provide a production process of an oxidation catalyst apparatus for purifying an exhaust gas which enables to oxidize and purify particulate matter in the exhaust gas of an internal combustion engine at a lower temperature. The production process of the oxidation catalyst apparatus 1 for purifying an exhaust gas comprises a step of burning a plurality of metal compounds to obtain a burnt product, a step of mixing and grinding the obtained burnt product with water and a binder which is a sol comprising zirconia to prepare a slurry, a step of applying the slurry to a porous filter base material 2, and a step of burning the porous filter base material 2 to form a porous catalyst layer 3 supported on the porous filter base material 2. The porous catalyst layer 3 has a thickness in a range of 10 to 150 ?m and fine pores having a diameter in a range of 0.01 to 5 ?m, the total porosity of and the porous filter base material 2 and the porous catalyst layer 3 have a porosity of 35 to 70% as a whole.
    Type: Application
    Filed: December 4, 2008
    Publication date: June 11, 2009
    Inventors: Kiyoshi Tanaami, Yuji Isogai
  • Publication number: 20090142242
    Abstract: Disclosed is a vanadium/titania-based catalyst including natural manganese ore for removing nitrogen oxides and dioxin in a wide operating temperature range and a method of using the same. Specifically, this invention pertains to a vanadium/titania (V/TiO2)-based catalyst including natural manganese ore for removing nitrogen oxides and dioxin in a wide operating temperature range, in which the WTiO2 catalyst for selective catalytic reduction of nitrogen oxides and removal of dioxin contained in flue gas includes 5-30 wt % of natural manganese ore, thus exhibiting excellent activity of removing nitrogen oxides even in the low temperature range and of removing dioxin at the same time, and to a method of using the same. The catalyst of this invention has good thermal stability and thus can simultaneously manifest nitrogen oxides removal performance and dioxin removal performance superior to conventional vanadium/titania catalysts in a wide temperature range (150˜450° C.
    Type: Application
    Filed: August 31, 2006
    Publication date: June 4, 2009
    Inventors: Sung Ho Hong, Jun Yub Lee, Seok Joo Hong, Sung Pill Cho, Sung Chang Hong, Do Gyong Lee, Sang Hyun Choi
  • Publication number: 20090140215
    Abstract: The present invention relates to a process for the production of carbon nanotubes, in particular those having a diameter of 3-150 nm and an aspect ratio of length:diameter (L:D)>100, by decomposition of hydrocarbons on a heterogeneous catalyst which comprises Mn, Co, preferably also molybdenum, and an inert support material, and the catalyst and the carbon nanotubes themselves and the use thereof.
    Type: Application
    Filed: November 8, 2005
    Publication date: June 4, 2009
    Applicant: Bayer Material Science AG
    Inventors: Sigurd Buchholz, Daniel Gordon Duff, Volker Michele, Leslaw Mleczko, Christian Munnich, Reiner Rudolf, Aurel Wolf