And Group I Metal Containing (i.e., Alkali, Ag, Au Or Cu) Patents (Class 502/330)
  • Patent number: 12116278
    Abstract: Catalysts for converting carbon dioxide and methane to synthesis gas include an alumina supported copper-nickel alloy composition having the formula NixCuy. The catalyst comprises about 70% to about 98% by weight of alumina in the catalyst, wherein x is an atomic percentage nickel content and y is an atomic percentage copper content, and wherein a ratio of x to y is about 3:1 to about 10:1. In one embodiment, the Ni—Cu catalyst composition according to the present disclosure is derived by state of the art electronic structure calculations based on Density Functional Theory (DFT).
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: October 15, 2024
    Assignee: QATAR FOUNDATION FOR EDUCATION, SCIENCE AND COMMUNITY DEVELOPMENT
    Inventors: Nimir Elbashir, Chatla Anjaneyulu, Minhaj Mohammed Ghouri
  • Patent number: 11492336
    Abstract: The present invention provides: a method for producing an epoxyalkane capable of obtaining an epoxide in a high yield while attaining a high olefin conversion rate and a high selectivity for epoxides even when an olefin includes a long carbon chain, and a solid oxidation catalyst. The method for producing an epoxyalkane of the present invention comprises reacting an olefin with an oxidant in the presence of a solid oxidation catalyst, wherein the solid oxidation catalyst comprises a transition metal and a carrier that supports the transition metal, and the carrier is a composite of a metal oxide with a phosphonic acid.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: November 8, 2022
    Assignee: KAO CORPORATION
    Inventors: Mee Lin Yap, Shingo Takada
  • Patent number: 10815175
    Abstract: A method is provided for fabricating a diol containing a bis-cycloaliphate. The diol is hydrogenated with hydrogen and a catalyst. Therein, the diol has a bis-aromatic. The catalyst comprises an active metal and a catalyst carrier. The active metal is a VIII-B-group transition element. The catalyst carrier is an oxide of IV-B-group element. Thus, the diol containing the bis-cycloaliphate is generated.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: October 27, 2020
    Assignee: CPC Corporation, Taiwan
    Inventors: Ching-Fa Chi, Ying-Chieh Yang, Yi-Hui Chen, Chyi-Liuh Ho, Yih-ping Wang
  • Patent number: 10786804
    Abstract: A method for producing a dehydrogenation catalyst, comprising: a step of impregnating a carrier with a first solution having a tin source dissolved therein, so as to have tin supported on the carrier; and a step of impregnating the carrier with a second solution having an active metal source dissolved therein, so as to have the active metal supported on the carrier, wherein the tin source is at least one selected from the group consisting of sodium stannate and potassium stannate, and the active metal source has at least one active metal selected from the group consisting of platinum, ruthenium and iridium, and has no chlorine atom.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: September 29, 2020
    Assignee: ENEOS Corporation
    Inventors: Atsushi Segawa, Nobuhiro Kimura
  • Patent number: 10730113
    Abstract: A large-scale multi-step synthesis method for ultralong silver nanowire with controllable diameter, comprises: an ethylene glycol solution containing polyvinylpyrrolidone and sodium chloride is fully heated to obtain a solution with strong reducibility, and then silver nitrate in glycol solution is added for a generation of a large number of crystal seeds; hydrogen peroxide is used to achieve the selection of the crystal seeds for a small amount of crystal seeds with particular sizes; the temperature is immediately raised to increase the reaction rate until the threshold of the etching crystal seeds of nitric acid is broke through; the temperature is lowered for long-timed reaction to slow down the reaction rate, reduce the probability of the isotropic seeds by self-nucleation and promote the absorption of small nucleus in the radial direction of large nucleus or nanowire, thus obtaining the ultralong silver nanowire.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: August 4, 2020
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Xiaoyang Zhang, Tong Zhang, Xiaomei Xue
  • Patent number: 10688475
    Abstract: A catalysed substrate monolith 12 for use in treating exhaust gas emitted from a lean-burn internal combustion engine, which catalysed substrate monolith 12 comprising a first washcoat coating 16 and a second washcoat coating 18, wherein the first washcoat coating comprises a catalyst composition comprising at least one platinum group metal (PGM) and at least one support material for the at least one PGM, wherein at least one PGM in the first washcoat coating is liable to volatilise when the first washcoat coating is exposed to relatively extreme conditions including relatively high temperatures, wherein the second washcoat coating comprises at least one metal oxide for trapping volatilised PGM and wherein the second washcoat coating is oriented to contact exhaust gas that has contacted the first washcoat coating.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: June 23, 2020
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Philip Gerald Blakeman, Gavin Michael Brown, Sougato Chatterjee, Andrew Francis Chiffey, Jane Gast, Paul Richard Phillips, Raj Rao Rajaram, Glen Spreitzer, Andrew Peter Walker
  • Patent number: 10323314
    Abstract: This invention relates to an autodeposition bath composition comprising a nitrogen containing compound, said bath being suitable for generating a uniform autodeposition coating on two or more of ferrous, aluminum, magnesium and zinciferous multi-metal substrate surfaces, treated either sequentially or simultaneously. The invention also provides autodeposition concentrate compositions for use in the bath, methods of making and using the concentrate and bath, as well as metal articles comprising an autodeposition coating according to the invention.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: June 18, 2019
    Assignee: Henkel AG & Co. KGaA
    Inventors: Girdhari Kumar, Manesh Nadupparambil Sekharan, Bashir M. Ahmed, Xueting Qiu, Omar L. Abu-Shanab, Brian J. Marvin
  • Patent number: 10315970
    Abstract: The present invention relates to a catalyst based on iron oxide for the dehydrogenation of hydrocarbons and also a process for producing it. The catalyst comprises at least one iron compound, at least one potassium compound and at least one cerium compound, wherein the at least one iron compound and the at least one potassium compound are at least partly present in the form of one or more K/Fe mixed oxide phases of the general formula KxFeyOz, where x is from 1 to 17; y is from 1 to 22 and z is from 2 to 34, where the catalyst comprises at least 20% by weight, based on the total catalyst, of the K/Fe mixed oxide phases and comprises crystalline cerium dioxide having a crystallite size in the range from 10 nm to 30 nm.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: June 11, 2019
    Assignee: BASF SE
    Inventors: Florina C. Patcas, Bernd Hinrichsen, Martin Dieterle
  • Patent number: 10118157
    Abstract: A preparation method of an iron-cobalt fenton-like catalyst includes steps of: adopting FeCl2.4H2O and CoCl2.6H2O as reaction precursors, KBH4 as a reaction reducing agent, and polyvinyl pyrrolidone (PVP) as a surface protecting agent; preparing with a liquid phase reduction method; and after aging, suction filtration, washing, and vacuum drying, obtaining a product of the iron-cobalt fenton-like catalyst. The iron-cobalt fenton-like catalyst has a fast reaction, a relatively high treatment efficiency and a relatively wide adaptability. Moreover, an application of the iron-cobalt fenton-like catalyst in an industrial wastewater treatment is provided.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: November 6, 2018
    Assignee: CHINESE RESEARCH ACADEMY OF ENVIRONMENTAL SCIENCES
    Inventors: Jinyuan Jiang, Yuexi Zhou
  • Patent number: 9873114
    Abstract: The invention relates to a method for producing a shell catalyst that is suitable for producing vinyl acetate monomer (VAM). The invention further relates to a shell catalyst that is obtainable by the method according to the invention and to the use of the shell catalyst according to the invention for producing VAM.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: January 23, 2018
    Assignee: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH
    Inventors: Gerhard Mestl, Peter Scheck, Alfred Hagemeyer, Carolin Fischer, Roman Bobka
  • Patent number: 9793552
    Abstract: The present disclosure relates to a PtAu nanoparticle catalyst heat-treated in the presence of carbon monoxide (CO) and a method for preparing same. Since the PtxAuy nanoparticle catalyst heat-treated under CO atmosphere has high Pt surface area and superior oxygen reduction reaction (ORR) activity, a high-efficiency, high-quality fuel cell can be achieved by applying the catalyst to a fuel cell.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: October 17, 2017
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jong Hyun Jang, Yung-Eun Sung, Hee-young Park, Hyoung-Juhn Kim, Dirk Henkensmeier, Suk Woo Nam, Hyung Chul Ham, Tae-Hoon Lim, Sung Jong Yoo, Eun Ae Cho, Kug-Seung Lee
  • Patent number: 9718026
    Abstract: An exhaust gas purification filter that is suitable for arrangement in an exhaust passage of an internal combustion engine and for collecting particulate matter contained in exhaust gas, comprises: exhaust gas inflow passages and exhaust gas outflow passages that are arranged alternately; and porous partitions that separate the exhaust gas inflow passages and the exhaust gas outflow passages from each other. Each of the partitions is divided into a coated zone in which a surface of a partition base is coated with a coating layer having a smaller average pore diameter than an average pore diameter of the partition base and a non-coated zone that is located on a downstream side of the coated zone and in which a surface of the partition base is not coated with the coating layer.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: August 1, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Otsuki, Hiromasa Nishioka, Yoshihisa Tsukamoto, Daichi Imai, Kazuhiro Itoh, Ryota Koutake
  • Patent number: 9522372
    Abstract: A method of preparing a spray dried catalyst by combining spray dried catalyst particles with wax so the spray dried catalyst particles are coated with wax, yielding wax coated catalyst particles, and shaping the wax coated catalyst to provide shaped wax coated catalyst. A method of activating Fischer-Tropsch catalyst particles containing oxides by contacting the catalyst particles with a reducing gas in an activation vessel to produce an activated catalyst, wherein contacting is performed in the absence of a liquid medium under activation conditions. A system for activating a Fischer-Tropsch catalyst containing an activation reactor configured to introduce an activation gas to a fixed or fluidized bed of the Fischer-Tropsch catalyst in the absence of a liquid medium and at least one separation device configured to separate a gas stream comprising entrained catalyst fines having an average particle size below a desired cutoff size from the activation reactor.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: December 20, 2016
    Assignee: RES USA, LLC
    Inventors: Harold A. Wright, Belma Demirel, Sergio Mohedas, Bahman Rejai, Ray J. Huang, Deena Ferdous, Jesse W. Taylor, Dawid J. Duvenhage, Sara L. Rolfe
  • Patent number: 9409155
    Abstract: Provided are a metal structure catalyst and a method of preparing the same. Particularly, the method includes forming a metal precipitate on a metal support by contact of a mixed solution including a precursor of a metal catalyst and a precipitating agent with the metal support, and forming metal particles by thermally treating and reducing the metal precipitate formed on the metal support. The metal structure catalyst includes a metal support, a metal oxide layer formed on the metal support, and metal nanoparticles formed on the metal oxide layer. In addition, the metal nanoparticles are uniform and have enhanced binding strength.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: August 9, 2016
    Assignee: Korea Institute of Energy Research
    Inventors: Kee Young Koo, Wang Lai Yoon, Un Ho Jung, Sang Ho Park, Young Jae Hwang
  • Patent number: 9314757
    Abstract: A method to generate a ternary carburizing gas mixture, using a reaction of selective hydrogenation of acetylene in a stream of hydrocarbons to the form of ethylene, comprising the following steps: heating of the inside of the reactor with an inert gas to an operating temperature for a period of 20 minutes at a temperature of 300° K, passing a mixture of hydrogen and acetylene by the regiospecific catalyst, and moving out the reaction products on the outside after passing the mixture through the regiospecific catalyst, but generation is effected in a continuous mode in the operating temperature range of the regiospecific catalyst between 293° K and 398° K, preferably at a temperature of 350° K.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: April 19, 2016
    Assignees: SECO/WARWICK S.A., POLITECHNIKA LODZKA
    Inventors: Piotr Kula, Robert Pietrasik, Ɫukasz Kaczmarek, Agnieszka Gładka, Maciej Korecki
  • Patent number: 9273583
    Abstract: A vehicle comprises a compression ignition engine provided with engine management means and having a catalyst for exhaust gas aftertreatment, wherein the engine management means is configured, when in use, to detect idle conditions and upon determining that idle conditions exist, stops the engine entirely, wherein the catalyst comprises a honeycomb substrate monolith coated with a catalytic washcoat comprising one or more precious metal, which catalytic washcoat being arranged between a first, upstream washcoat zone and a second, downstream washcoat zone, wherein a thermal mass in the first washcoat zone is different from a thermal mass in the second washcoat zone and wherein a washcoat layer in the first, upstream washcoat zone is substantially contiguous with a washcoat layer in the second, downstream washcoat zone.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 1, 2016
    Assignee: Johnson Matthey Public Limited Company
    Inventors: David Bergeal, Paul Richard Phillips
  • Patent number: 9150423
    Abstract: The present invention provides a catalyst substance that is stable and performs well in the synthesis of ammonia, one of the most important chemical substances for fertilizer ingredients and the like. The catalyst substance exhibits catalytic activity under mild synthesis conditions not requiring high pressure, and is also advantageous from a resource perspective. Further provided is a method for producing the same. This catalyst comprises a supported metal catalyst that is supported on a mayenite type compound including conduction electrons of 1015 cm?3 or more and serving as a support for the ammonia synthesis catalyst. The mayenite type compound used as the support may take any form, including that of powder, a porous material, a sintered body, a thin-film, or a single crystal. Use of this catalyst makes it possible to increase the electron donating ability toward a transition metal.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: October 6, 2015
    Assignee: TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Hideo Hosono, Michikazu Hara, Masaaki Kitano, Sung Wng Kim, Satoru Matsuishi, Yoshitake Toda, Toshiharu Yokoyama, Fumitaka Hayashi
  • Patent number: 9101917
    Abstract: The present invention relates to novel structured catalysts based on sintered metal fibers (SMF) coated by a basic oxide layer with Pd-nanoparticles, to reactions of organic compounds with hydrogen in the presence of said catalyst and an organic base as well as to vitamins, carotinoids, perfume ingredients, and/or food or feed ingredients prepared by using this reaction.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 11, 2015
    Assignee: DSM IP ASSETS B.V.
    Inventors: Werner Bonrath, Lioubov Kiwi-Minsker, Igor Iouranov
  • Patent number: 9029286
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 12, 2015
    Assignee: Massachusettes Institute of Technology
    Inventors: Brian Neltner, Angela M. Belcher
  • Publication number: 20150126361
    Abstract: The present invention relates to a method for producing a shell catalyst which is suitable for the synthesis of alkenyl carboxylic acid esters, in particular for producing vinyl acetate monomers (VAM) from ethylene and allyl acetate monomers from propylene by means of oxy-acetylation. The present invention also relates to a shell catalyst that can be obtained by the method according to the invention as well as the use of the shell catalyst produced using the method according to the invention or of the shell catalyst according to the invention for producing alkenyl carboxylic acid esters, in particular VAM and allyl acetate monomer.
    Type: Application
    Filed: May 3, 2013
    Publication date: May 7, 2015
    Applicant: CLARIANT INTERNATIONAL LTD
    Inventors: Gerhard Mestl, Peter Scheck, Alfred Hagemeyer, Carolin Fischer
  • Publication number: 20150126360
    Abstract: The present invention relates to a method for producing a shell catalyst which is suitable for the synthesis of alkenyl carboxylic acid esters, in particular for producing vinyl acetate monomers (VAM) from ethylene and allyl acetate monomers from propylene by means of oxy-acetylation. The present invention also relates to a shell catalyst that can be obtained by the method according to the invention as well as the use of the shell catalyst produced using the method according to the invention or of the shell catalyst according to the invention for producing alkenyl carboxylic acid esters, in particular VAM and allyl acetate monomer.
    Type: Application
    Filed: May 3, 2013
    Publication date: May 7, 2015
    Applicant: Clariant International Ltd.
    Inventors: Gerhard Mestl, Peter Scheck, Alfred Hagemeyer, Carolin Fischer
  • Patent number: 9024090
    Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 5, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Publication number: 20150118599
    Abstract: A method of fabricating composite filaments is provided. An initial composite filament including a core and a cladding (such as a Pt-group metal) is cut into smaller pieces (or is first mechanically reduced and then cut into smaller pieces). The smaller pieces of the filaments are inserted into a metal matrix, and the entire structure is then further reduced mechanically in a series of reduction steps. The process can be repeated until the desired cross sectional dimension of the filaments is achieved. The matrix can then be chemically removed to isolate the final composite filaments with the cladding thickness down to the nanometer range. The process allows the organization and integration of filaments of different sizes, compositions, and functionalities into arrays suitable for various applications.
    Type: Application
    Filed: February 24, 2014
    Publication date: April 30, 2015
    Inventor: Joze Bevk
  • Patent number: 9018129
    Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also disclosed is a production process for producing an exhaust gas purifying catalyst. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
  • Patent number: 9018126
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: April 28, 2015
    Assignee: Shell Oil Company
    Inventor: Marek Matusz
  • Patent number: 9012348
    Abstract: A composition comprising a supported hydrogenation catalyst comprising palladium and an organophosphorous compound, the supported hydrogenation catalyst being capable of selectively hydrogenating highly unsaturated hydrocarbons to unsaturated hydrocarbons. A method of making a selective hydrogenation catalyst comprising contacting a support with a palladium-containing compound to form a palladium supported composition, contacting the palladium supported composition with an organophosphorus compound to form a catalyst precursor, and reducing the catalyst precursor to form the catalyst.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 21, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Zongxuan Hong
  • Patent number: 9006133
    Abstract: The present invention relates to electrochemical catalyst particles, including nanoparticles, which can be used membrane electrode assemblies and in fuel cells. In exemplary embodiments, the present invention provides electrochemical catalysts supported by various materials. Suitably the catalysts have an atomic ratio of oxygen to a metal in the nanoparticle of about 3 to about 6.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: April 14, 2015
    Assignees: OneD Material LLC, Sharp Kabushiki Kaisha
    Inventors: Yimin Zhu, Jay L. Goldman, Baixin Qian, Ionel C. Stefan, Mutsuko Komoda, Hirotaka Mizuhata, Takenori Onishi
  • Publication number: 20150096900
    Abstract: Disclosed is an alloy of the formula: Fe3?xAl1+xMyTzTat wherein M represents at least one catalytic specie selected from the group consisting of Ru, Ir, Pd, Pt, Rh, Os, Re and Ag; T represents at least one element selected from the group consisting of Mo, Co, Cr, V, Cu, Zn, Nb, W, Zr, Y, Mn, Cd, Si, B, C, O, N, P, F, S, CI, Na and Ti; and Ta represents tantalum. Such an alloy can be used as an electrode material for the synthesis of sodium chlorate. It can also be used as a coating for protection against corrosion.
    Type: Application
    Filed: April 26, 2013
    Publication date: April 9, 2015
    Inventors: Robert Schulz, Sylvio Savoie
  • Patent number: 8986637
    Abstract: An emission control catalyst composition comprising a supported bimetallic catalyst consisting of gold and a metal selected from the group consisting of platinum, rhodium, ruthenium, copper and nickel is disclosed. Also disclosed is a catalytic convertor comprising a substrate monolith coated with the emission control catalyst composition and a lean burn internal combustion engine exhaust gas emission treatment system comprising the catalytic convertor. A variety of processes for preparing the catalyst composition are claimed.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: March 24, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Janet Mary Fisher, David Thompsett
  • Publication number: 20150038758
    Abstract: The provided is a method for preparing a platinum-tin-metal-alumina catalyst by comprising: as an active ingredient, platinum which has a high activity in a direct dehydrogenation reaction of n-butane, tin which can increase the catalyst stability by preventing carbon deposition; additionally metal for reducing the level of catalyst inactivation over the reaction time; and an alumina carrier for supporting said components. Further, provided is a method for producing a high value product, C4 olefins from low cost n-butane by using the catalyst prepared by the method according to the present invention in a direct dehydrogenation reaction.
    Type: Application
    Filed: July 28, 2014
    Publication date: February 5, 2015
    Inventors: Gle PARK, Yeon Shick YOO, Jin Suk LEE, Ho Sik CHANG, Chang Hyun CHOI, In Kyu SONG, Hyun SEO, Jong Kwon LEE
  • Publication number: 20150037711
    Abstract: The present application provides a method for fabricating core-shell particles, including: forming a first solution by adding a first metal salt and a first surfactant to a first solvent; forming core particles including a first metal included in the first metal salt by adding a first reducing agent to the first solution; forming a second solution by adding the core particles, a second metal salt, and a second surfactant to a second solvent; and forming core-shell particles by adding a second reducing agent to the second solution and forming shells on the surface of the core particle, in which the first surfactant and the second surfactant are polyoxyethylene, polyoxyethylene sorbitan monolaurate or polyoxyethylene oleyl ether, and core-shell particles fabricated by the method.
    Type: Application
    Filed: April 22, 2013
    Publication date: February 5, 2015
    Inventors: Jun Yeon Cho, Sang Hoon Kim, Gyo Hyun Hwang
  • Patent number: 8946108
    Abstract: A structurally promoted, precipitated, Fischer-Tropsch catalyst that exhibits an RCAI-10 of 0-2.8 and/or produces less than 6 wt % fines after 5 hours ASTM Air Jet Attrition testing, due to formation via: preparing a nitrate solution by forming at least one metal slurry and combining the at least one metal slurry with a nitric acid solution; combining the nitrate solution with a basic solution to form a precipitate; structurally promoting the precipitate with at least one source of silicon to form a promoted mixture, wherein promoting comprises combining the precipitate with (a) silicic acid and one or more component selected from the group consisting of non-crystalline silicas, crystalline silicas, and sources of kaolin or (b) a component selected from the group consisting of non-crystalline silicas and sources of kaolin, in the absence of silicic acid; and spray drying the promoted mixture to produce catalyst having a desired particle size.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: February 3, 2015
    Assignee: RES USA, LLC.
    Inventors: Dawid J. Duvenhage, Belma Demirel
  • Publication number: 20150031911
    Abstract: The invention relates to a method for producing a shell catalyst that is suitable for producing vinyl acetate monomer (VAM). The invention further relates to a shell catalyst that is obtainable by the method according to the invention and to the use of the shell catalyst according to the invention for producing VAM.
    Type: Application
    Filed: February 19, 2013
    Publication date: January 29, 2015
    Applicant: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH
    Inventors: Gerhard Mestl, Peter Scheck, Alfred Hagemeyer, Carolin Fischer, Roman Bobka
  • Patent number: 8937203
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Patent number: 8932977
    Abstract: A catalyst for the electrolysis of water molecules and hydrocarbons, the catalyst including catalytic groups comprising A1-xB2-yB?yO4 spinels having a cubical M4O4 core, wherein A is Li or Na, B and B? are independently any transition metal or main group metal, M is B, B?, or both, x is a number from 0 to 1, and y is a number from 0 to 2. In photo-electrolytic applications, a plurality of catalytic groups are supported on a conductive support substrate capable of incorporating water molecules. At least some of the catalytic groups, supported by the support substrate, are able to catalytically interact with water molecules incorporated into the support substrate. The catalyst can also be used as part of a photo-electrochemical cell for the generation of electrical energy.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: January 13, 2015
    Assignee: Rutgers, The State University of New Jersey
    Inventors: G. Charles Dismukes, Martha Greenblatt
  • Publication number: 20150011386
    Abstract: The present invention relates to a method for producing a shell catalyst that is suitable for producing vinyl acetate monomer (VAM). The present invention also relates to a shell catalyst that can be obtained by the method according to the invention as well as the use of the shell catalyst according to the invention for producing VAM.
    Type: Application
    Filed: February 20, 2013
    Publication date: January 8, 2015
    Applicant: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH
    Inventors: Alfred Hagemeyer, Carolin Fischer, Gerhard Mestl, Peter Scheck, Roman Bobka
  • Publication number: 20150005535
    Abstract: The present invention relates to a structured catalyst based on sintered metal fibers (SMF) coated by a non-acidic metal oxide layer impregnated with Pd and Agnanopartides, characterized in that the ratio of the Pd:Ag is 1:1 to 10:1, as well as the use of such a catalyst in selective catalytic hydrogenations of organic compounds.
    Type: Application
    Filed: October 26, 2012
    Publication date: January 1, 2015
    Applicant: DSM IP ASSETS B.V.
    Inventors: Werner Bonrath, Lioubov Kiwi-Minsker, Igor Iouranov
  • Patent number: 8921587
    Abstract: The present invention relates to a shaped catalyst body for preparing ethylene oxide, which comprises at least silver and rhenium applied to an alumina support, and also to a process for producing it, wherein the alumina support has the geometry of a hollow cylinder and the shaped catalyst body has a rhenium content CR and CR/ppm by weight, based on the wall thickness of the hollow cylinder dW in mm, and calculated as element, in the range 120?CR/dW?200.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: December 30, 2014
    Assignee: BASF SE
    Inventors: Tobias Rosendahl, Torsten Mäurer, Cornelia Katharina Dobner
  • Patent number: 8920985
    Abstract: A method of generating electrical power includes flowing hydrogen across an anode, splitting the hydrogen into protons and electrons using a catalyst attached to the anode, directing the electrons to a circuit to produce electrical power, flowing oxygen across a cathode, splitting the oxygen molecules into oxygen atoms using a cathode catalyst, passing the protons through an electrolyte to the cathode, and combining the protons with oxygen to form water. The cathode catalyst includes a plurality of nanoparticles having terraces formed of platinum, and corner regions and edge regions formed of a second metal.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 30, 2014
    Assignee: Ballard Power Systems Inc.
    Inventors: Minhua Shao, Belabbes Merzougui, Patrick L. Hagans, Susanne M. Opalka
  • Patent number: 8920759
    Abstract: One embodiment includes an oxidation catalyst assembly formed by applying a washcoat of platinum and a NOx storage material to a portion of a substrate material.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jong H. Lee, David B. Brown, Michael J. Paratore, Jr., Yongsheng He
  • Patent number: 8921260
    Abstract: A catalytic nanoparticle includes a porous, hollow core and an atomically thin layer of platinum atoms on the core. The core is a porous palladium, palladium-M or platinum-M core, where M is selected from the group consisting of gold, iridium, osmium, palladium, rhenium, rhodium and ruthenium.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: December 30, 2014
    Assignee: Ballard Power Systems Inc.
    Inventors: Minhua Shao, Lesia V. Protsailo
  • Patent number: 8921259
    Abstract: An exhaust gas purification catalyst for removing CO or HC, which contains a carrier and an alloy of palladium and silver supported on this carrier.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: December 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Naoto Nagata, Hirohito Hirata, Yusaku Inatomi
  • Publication number: 20140378299
    Abstract: This invention relates to a titanium dioxide catalyst particle, the catalyst particle comprising ruffle nanorods having metal nanoparticles deposited at or near the free ends of the nanorods, which is suitable to catalyse reactions after exposure to temperatures above 550 deg C. The invention also provides for the use of a catalyst particle in catalysing reactions and a method of catalysing reactions, the catalyst particle being suitable to catalyse reactions after exposure to temperatures above 550 deg C.
    Type: Application
    Filed: August 19, 2012
    Publication date: December 25, 2014
    Applicant: University of the Witwatersrand, Johannesburg
    Inventors: Dean Howard Barrett, Paul John Franklyn
  • Patent number: 8912110
    Abstract: One embodiment is a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, an alkali or alkaline-earth metal, a lanthanide-series metal, and a support. Generally, an average bulk density of the catalyst is about 0.300 to about 1.00 gram per cubic centimeter. The catalyst has a platinum content of less than about 0.375 wt %, a tin content of about 0.1 to about 2 wt %, a potassium content of about 100 to about 600 wppm, and a cerium content of about 0.1 to about 1 wt %. The lanthanide-series metal can be distributed at a concentration of the lanthanide-series metal in a 100 micron surface layer of the catalyst less than two times a concentration of the lanthanide-series metal at a central core of the catalyst.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: Manuela Serban, Mark P. Lapinski
  • Publication number: 20140356761
    Abstract: An electrocatalyst suitable for use in a fuel cell, the electrocatalyst comprising: palladium, iridium and an anionic polymer.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 4, 2014
    Applicant: AMALYST LIMITED
    Inventors: Chris Gibbs, Liu Fang, Dimitrios Papageorgopoulos
  • Patent number: 8889095
    Abstract: Provided is a method for stabilizing a size of a platinum hydroxide polymer capable of maintaining solution stability of a platinum hydroxide polymer in a solution. The method may include adding Zr ions to a solution containing a platinum hydroxide polymer at a Zr/Pt ratio of 1.0 to 40 in terms of molar concentration ratio.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: November 18, 2014
    Assignee: Suzuki Motor Corporation
    Inventors: Toyofumi Tsuda, Fumikazu Kimata, Kazuya Miura
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Patent number: 8883675
    Abstract: A process for the preparation of a catalyst useful for the vapor phase production of ethylene oxide from ethylene and oxygen comprising providing a catalyst precursor comprising an inert support having a catalytically effective amount of a silver containing compound, a promoting amount of an alkali metal containing compound, and a promoting amount of a transition metal containing compound disposed thereon; calcining the catalyst precursor to convert the silver in the silver containing compound to metallic silver by heating the catalyst precursor to form a catalyst; and curing the catalyst in an inert gas atmosphere at temperatures of about 250° C. to about 600° C. for a period of about 1 hour to 200 hours.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: November 11, 2014
    Assignee: Scientific Design Company, Inc.
    Inventors: Nabil Rizkalla, Andrzej Rokicki
  • Publication number: 20140322622
    Abstract: In a method of preparing a ruthenium-containing catalyst on a non-conductive metal oxide support comprises dissolving one or more ruthenium precursor compounds in an liquid organic polyol, combining the thus obtained solution with (a) nano-powder(s) of one or more metal oxides in a ratio of moles metal oxide(s) to moles ruthenium atoms in the one or more ruthenium precursor compounds of about 0:1 to about 6:1, the metal oxide nano-powder(s) having a surface area of from about 5 to about 300m2/g and a point of zero charge (PZC) of pH 5.5 or higher, agitating the thus obtained mixture, adding pre-shaped alumina sup port pellets to the agitated mixture, which is than heated at a temperature of about 50° C.
    Type: Application
    Filed: May 15, 2012
    Publication date: October 30, 2014
    Applicant: CELLERA, INC.
    Inventor: Debasish Chakraborty
  • Patent number: 8871669
    Abstract: A catalyst composition is provided comprising a homogeneous solid mixture having ordered directionally aligned tubular meso-channel pores having an average diameter in a range of about 1 nanometer to about 15 nanometers, wherein the homogeneous solid mixture is prepared from a gel formed in the presence of a solvent, modifier, an inorganic salt precursor of a catalytic metal, an inorganic precursor of a metal inorganic network, and a templating agent. The templating agent comprises an octylphenol ethoxylate having a structure [I]: wherein “n” is an integer having a value of about 8 to 20.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 28, 2014
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Ashish Balkrishna Mhadeshwar, Ming Yin