Copper Containing Patents (Class 502/331)
  • Patent number: 10384942
    Abstract: Halogen-doped phosphorous nanoparticles and a manufacturing method thereof are provided. The manufacturing method includes a mixing process and a centrifugation or filtration process. The mixing process has the step of mixing a precursor with a reducing agent solution to form a mixed solution, the precursor is a halogen-based phosphide. Then, the mixed solution is centrifuged or filtrated to obtain the halogen-doped phosphorous nanoparticles.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: August 20, 2019
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Wei-Chung Chang, Kuan-Wei Tseng, Hsing-Yu Tuan
  • Patent number: 10086365
    Abstract: A method of strengthening a precipitated unsupported iron catalyst by: preparing a precipitated unsupported iron catalyst containing copper and potassium; adding a solution comprising a structural promoter to the previously prepared catalyst; drying the mixture; and calcining the dried catalyst. A method for preparing an iron catalyst, the method comprising: precipitating a catalyst precursor comprising iron phases selected from hydroxides, oxides, and carbonates; adding a promoter to the catalyst precursor to yield a promoted precursor; drying the promoted precursor to yield dried catalyst; and calcining the dried catalyst, wherein the catalyst further comprises copper and potassium. A method of preparing a strengthened precipitated iron catalyst comprising: co-precipitating iron, copper, magnesium, and aluminum; washing the precipitate; alkalizing the precipitate; and drying the precipitate to yield a dried catalyst precursor.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: October 2, 2018
    Assignee: RES USA, LLC
    Inventors: Belma Demirel, Charles B. Benham, Dan Fraenkel, Richard A. Bley, Jesse W. Taylor, Sara L. Rolfe, Harold A. Wright
  • Patent number: 10005068
    Abstract: A catalyst is provided. The catalyst includes a carrier and a metal. The carrier is represented by a formula: MxAl(1-x)O(3-x)/2, where M is an alkaline earth metal, and x is between 0.09 and 0.24. The metal is loaded on the carrier. A method for manufacturing the catalyst is also provided.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: June 26, 2018
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Ching Wu, Chiou-Hwang Lee
  • Patent number: 9700875
    Abstract: The present invention relates generally to a magnetic catalyst for wet oxidation of organic waste and the preparation method thereof. According to the present invention, after the raw materials are dissolved and mixed in water, the pH value is adjusted for producing precipitates. Then after heating, filtering, drying, grinding, sifting, and calcinations are performed, the given magnetic catalyst can be reused without losing its activity. In addition, during treating organic waste by using wet oxidation method, no secondary waste is produced. Besides, the magnetic catalyst can be recycled by magnetic devices, making it excellent in terms of performance and convenience.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: July 11, 2017
    Assignee: Atomic Energy Council—Institute of Nuclear Energy Research
    Inventors: Yih-Ping Chen, Chao-Rui Chen, Yin-Mao Hsu
  • Patent number: 9486789
    Abstract: The present invention describes a catalyst containing an active phase comprising at least one metal of group VIIIB selected from cobalt, nickel, ruthenium and iron deposited on an oxides support comprising alumina, silica, a spinel and phosphorus. It also concerns the process for preparation of said catalyst and its use in a Fischer-Tropsch process. The catalyst has an improved hydrothermal and mechanical resistance in a Fischer-Tropsch process while improving its catalytic performances.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: November 8, 2016
    Assignees: IFP Energies nouvelles, ENI S.P.A.
    Inventors: Dominique Decottignies, Fabrice Diehl, Vincent Lecocq, Marie Velly
  • Patent number: 9346044
    Abstract: A copper-based catalyst precursor capable of achieving a high conversion ratio and high selectivity in the isomerization reaction of a ?,?-unsaturated alcohol portion and a method for producing the same and to provide a hydrogenation method in which the copper-based catalyst precursor is used are provided. Specifically, a copper-based catalyst precursor obtained by calcining a mixture containing copper, iron, aluminum, and calcium silicate in which an atomic ratio of iron and aluminum to copper [(Fe+Al)/Cu] is in a range of 1.71 to 2.5, an atomic ratio of aluminum to iron [Al/Fe] is in a range of 0.001 to 3.3, and calcium silicate is contained in a range of 15% by mass to 65% by mass at a temperature in a range of 500° C. to 1,000° C. and a hydrogenation method in which the copper-based catalyst precursor is used are provided.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 24, 2016
    Assignees: KURARAY CO., LTD., SAKAI CHEMICAL INDUSTRY CO., LTD.
    Inventors: Tomoaki Tsuji, Keiichi Tabata, Toshihiro Sugaya, Akio Nakashima
  • Patent number: 9114378
    Abstract: A method of making iron and cobalt pre-catalysts and catalysts in activated, finished form suitable for use in Fischer-Tropsch synthesis. The pre-catalysts are prepared by mixing an iron or cobalt salt, a base, and a metal oxide textural promoter or support. The reaction is carried out in a solvent deficient environment. The resulting product is then calcined at temperatures of about 300-500° C. to produce a metal oxide. The catalysts are prepared by reducing the metal oxide in the presence of hydrogen at temperatures of about 300-500° C. and carbiding the reduced metal in the case of iron.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 25, 2015
    Assignee: Brigham Young University
    Inventors: Brian F. Woodfield, Calvin H. Bartholomew, Kyle Brunner, William Hecker, Xuchu Ma, Fen Xu, Lynn Astle
  • Patent number: 9095844
    Abstract: Disclosed herein is a catalyst for aqueous-phase reforming of biomass-derived polyols, which comprises platinum and copper as active metals and a mixture of magnesia and alumina as a support. The catalyst contains a small amount of platinum and, at the same time, has high hydrogen selectivity and low methane selectivity.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 4, 2015
    Assignee: SK Innovation Co., Ltd.
    Inventors: Young Min Chung, Tae Jin Kim, Seung Hoon Oh, Dilek Ayse Boga, Pieter C. A. Bruijnincx, Bert M. Weckhuysen
  • Publication number: 20150147681
    Abstract: A self-supporting porous alloyed metal material and methods for forming the same. The method utilizes a sacrificial support based technique that enables the formation of uniquely shaped voids in the material. The material is suitable for use as an electrocatalyst in a variety of fuel cell and other applications.
    Type: Application
    Filed: October 2, 2014
    Publication date: May 28, 2015
    Applicant: STC.UNM
    Inventors: Alexey Serov, Plamen B. Atanassov
  • Patent number: 9034785
    Abstract: Solution suitable for accelerating the cure of a curable resin using a peroxide, said accelerator solution comprising (i) at least one organic solvent, (ii) a manganese salt, a copper salt, or a combination thereof, and (iii) an iron complex of a tetradentate, pentadentate or hexadentate nitrogen donor ligand.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: May 19, 2015
    Assignee: AKZO NOBEL CHEMICALS INTERNATIONAL B.V.
    Inventors: Frederik Willem Karel Koers, Johannes Martinus Gerardus Maria Reijnders, Auke Gerardus Talma, Johannes Hermanus Ter Beek
  • Patent number: 9029286
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 12, 2015
    Assignee: Massachusettes Institute of Technology
    Inventors: Brian Neltner, Angela M. Belcher
  • Patent number: 9024090
    Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 5, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Publication number: 20150118599
    Abstract: A method of fabricating composite filaments is provided. An initial composite filament including a core and a cladding (such as a Pt-group metal) is cut into smaller pieces (or is first mechanically reduced and then cut into smaller pieces). The smaller pieces of the filaments are inserted into a metal matrix, and the entire structure is then further reduced mechanically in a series of reduction steps. The process can be repeated until the desired cross sectional dimension of the filaments is achieved. The matrix can then be chemically removed to isolate the final composite filaments with the cladding thickness down to the nanometer range. The process allows the organization and integration of filaments of different sizes, compositions, and functionalities into arrays suitable for various applications.
    Type: Application
    Filed: February 24, 2014
    Publication date: April 30, 2015
    Inventor: Joze Bevk
  • Patent number: 9012353
    Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 21, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Publication number: 20150105243
    Abstract: Variations of bulk powder catalyst material including Cu—Mn, Cu—Fe, and Fe—Mn spinel systems for ZPGM TWC applications are disclosed. The disclosed bulk powder catalyst samples include stoichiometric and non-stoichiometric Cu—Mn, Cu—Fe, and Fe—Mn spinels on Pr6O11—ZrO2 support oxide, prepared using incipient wetness method. Activity measurements under isothermal steady state sweep test condition may be performed under rich to lean condition. Catalytic activity of samples may be compared to analyze the influence that different binary spinel system bulk powders may have on TWC performance of ZPGM materials for a plurality of TWC applications. Stoichiometric Cu—Mn, Cu—Fe, and Fe—Mn spinel systems exhibit higher catalytic activity than non-stoichiometric Cu—Mn, Cu—Fe, and Fe—Mn spinel systems. The influence of prepared Cu—Mn, Cu—Fe, and Fe—Mn spinel systems may lead into cost effective manufacturing solutions for ZPGM TWC systems.
    Type: Application
    Filed: October 31, 2014
    Publication date: April 16, 2015
    Applicant: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20150096900
    Abstract: Disclosed is an alloy of the formula: Fe3?xAl1+xMyTzTat wherein M represents at least one catalytic specie selected from the group consisting of Ru, Ir, Pd, Pt, Rh, Os, Re and Ag; T represents at least one element selected from the group consisting of Mo, Co, Cr, V, Cu, Zn, Nb, W, Zr, Y, Mn, Cd, Si, B, C, O, N, P, F, S, CI, Na and Ti; and Ta represents tantalum. Such an alloy can be used as an electrode material for the synthesis of sodium chlorate. It can also be used as a coating for protection against corrosion.
    Type: Application
    Filed: April 26, 2013
    Publication date: April 9, 2015
    Inventors: Robert Schulz, Sylvio Savoie
  • Patent number: 8986637
    Abstract: An emission control catalyst composition comprising a supported bimetallic catalyst consisting of gold and a metal selected from the group consisting of platinum, rhodium, ruthenium, copper and nickel is disclosed. Also disclosed is a catalytic convertor comprising a substrate monolith coated with the emission control catalyst composition and a lean burn internal combustion engine exhaust gas emission treatment system comprising the catalytic convertor. A variety of processes for preparing the catalyst composition are claimed.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: March 24, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Janet Mary Fisher, David Thompsett
  • Publication number: 20150080208
    Abstract: Fabrication of oxide nanowire heterostructures with controlled morphology, interface and phase purity are desired for high-efficiency and low-cost photocatalysis. Disclosed herein is the formation of oxide nanowire heterostructures by sputtering and subsequent air annealing to result in oxide nanowires. This approach allows for fabrication of standing nanowire heterostructures with tunable compositions and morphologies.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 19, 2015
    Inventor: Nitin Chopra
  • Publication number: 20150080210
    Abstract: A method for preparing an iron-based catalyst, the method including preparing iron ore particles by grinding iron ore; and impregnating the iron ore particles with a first metal and second metal, wherein the first metal is selected from copper, cobalt, or manganese, or a combination thereof, and the second metal is selected from an alkali metal or alkali earth metal, or a combination thereof.
    Type: Application
    Filed: July 29, 2014
    Publication date: March 19, 2015
    Inventors: Dong Hyun Chun, Ji Chan Park, Heon Jung, Fanor Mondragon Pérez, María Angélica Forgionny Flórez, Ho-Tae Lee, Jung-Il Yang, SungJun Hong
  • Patent number: 8980104
    Abstract: An activated carbon cloth-supported bimetallic Pd—Cu nanocatalyst is disclosed comprising about 1 wt % Pd and about 0.35-0.45 wt % Cu and having a surface Cu/Pd metal ratio of about 8-10 m2/m2. The nanocatalyst is capable of removing nitrate and/or nitrite from wastewater with a high selectivity to nitrogen.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: March 17, 2015
    Assignee: Technion Research and Development Foundation Ltd.
    Inventors: Moshe Sheintuch, Uri Matatov-Meytal
  • Patent number: 8962897
    Abstract: In one embodiment, the invention is to a catalyst composition for converting ethanol to higher alcohols, such as butanol. The catalyst composition comprises one or more metals and one or more supports. The one or more metals selected from the group consisting of cobalt, nickel, palladium, platinum, zinc, iron, tin and copper. The one or more supports are selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and mixtures thereof, wherein the catalyst is substantially free of alkali metals and alkaline earth metals.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: February 24, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Patent number: 8961817
    Abstract: A getter device containing a combination of getter materials is described. The device has a mixture of cerium oxide, copper oxide and metallic palladium for the removal of hydrogen and carbon monoxide in vacuum applications, particularly suitable to be used in vacuum insulation applications. This combination of getter materials is preferably added to powders of other getter materials such as alkali metals hydroxides and desiccant materials that are effective for maintaining the vacuum in thermal insulation systems.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 24, 2015
    Assignee: SAES Getters S.p.A.
    Inventors: Luca Toia, Marco Visconti
  • Patent number: 8962508
    Abstract: The present invention provides a process for treating shaped catalyst bodies which has the following steps: a) providing finished shaped catalyst bodies, b) impregnating the finished shaped catalyst bodies with a peptizing auxiliary in an amount of liquid which does not exceed the theoretical water absorption of the shaped catalyst bodies, c) thermal treating the impregnated shaped catalyst bodies at from 50° C. to 250° C. and d) calcinating the thermally treated shaped catalyst bodies at from 250° C. to 600° C. A shaped catalyst body which has increased mechanical strength and can be produced by the process of the invention is also provided. The present invention relates to the use of the shaped catalyst bodies of the invention for preparing amines and also in fixed-bed reactors or fluidized-bed reactors and to a chemical synthesis process in the presence of shaped catalyst bodies according to the present invention.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: February 24, 2015
    Assignee: BASF SE
    Inventors: Thomas Heidemann, Claudia Özkozanoglu
  • Patent number: 8946114
    Abstract: A method of producing stable ferrous nitrate solution by dissolving iron in nitric acid to form a ferrous nitrate solution and maintaining the solution at a first temperature for a first time period, whereby the Fe(II) content of the ferrous nitrate solution changes by less than about 2% over a second time period. A method of producing stable Fe(II)/Fe(III) nitrate solution comprising ferrous nitrate and ferric nitrate and having a desired ratio of ferrous iron to ferric iron, including obtaining a stable ferrous nitrate solution; dissolving iron in nitric acid to form a ferric nitrate solution; maintaining the ferric nitrate solution at a second temperature for a third time period; and combining amounts of stable ferrous nitrate solution and ferric nitrate solution to produce the stable Fe(II)/Fe(III) nitrate solution. A method of preparing an iron catalyst is also described.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: February 3, 2015
    Assignee: Res USA, LLC.
    Inventors: Pandurang V. Nikrad, Jesse W. Taylor, Richard A. Bley, Danny M. Dubuisson, Sara L. Rolfe, Belma Demirel, Dawid J. Duvenhage, Harold A. Wright
  • Patent number: 8946108
    Abstract: A structurally promoted, precipitated, Fischer-Tropsch catalyst that exhibits an RCAI-10 of 0-2.8 and/or produces less than 6 wt % fines after 5 hours ASTM Air Jet Attrition testing, due to formation via: preparing a nitrate solution by forming at least one metal slurry and combining the at least one metal slurry with a nitric acid solution; combining the nitrate solution with a basic solution to form a precipitate; structurally promoting the precipitate with at least one source of silicon to form a promoted mixture, wherein promoting comprises combining the precipitate with (a) silicic acid and one or more component selected from the group consisting of non-crystalline silicas, crystalline silicas, and sources of kaolin or (b) a component selected from the group consisting of non-crystalline silicas and sources of kaolin, in the absence of silicic acid; and spray drying the promoted mixture to produce catalyst having a desired particle size.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: February 3, 2015
    Assignee: RES USA, LLC.
    Inventors: Dawid J. Duvenhage, Belma Demirel
  • Patent number: 8937203
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Patent number: 8932977
    Abstract: A catalyst for the electrolysis of water molecules and hydrocarbons, the catalyst including catalytic groups comprising A1-xB2-yB?yO4 spinels having a cubical M4O4 core, wherein A is Li or Na, B and B? are independently any transition metal or main group metal, M is B, B?, or both, x is a number from 0 to 1, and y is a number from 0 to 2. In photo-electrolytic applications, a plurality of catalytic groups are supported on a conductive support substrate capable of incorporating water molecules. At least some of the catalytic groups, supported by the support substrate, are able to catalytically interact with water molecules incorporated into the support substrate. The catalyst can also be used as part of a photo-electrochemical cell for the generation of electrical energy.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: January 13, 2015
    Assignee: Rutgers, The State University of New Jersey
    Inventors: G. Charles Dismukes, Martha Greenblatt
  • Publication number: 20150011655
    Abstract: The invention relates to a method of synthesis of substantially pure nanoparticles in a continuous-flow system, in which a precursor substance solution undergoes reduction reaction using a reducing agent solution and nanoparticles are produced, wherein the reduction reaction is terminated by adding an agent neutralizing the reducing agent and a stable nanoparticle colloid is produced. In the method of the invention a need for using surfactants or other organic molecules for nanoparticle stabilization has been eliminated.
    Type: Application
    Filed: September 12, 2014
    Publication date: January 8, 2015
    Inventors: Rafal JURCZAKOWSKI, Adam LEWERA, Pawel KULBOKA
  • Publication number: 20140356761
    Abstract: An electrocatalyst suitable for use in a fuel cell, the electrocatalyst comprising: palladium, iridium and an anionic polymer.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 4, 2014
    Applicant: AMALYST LIMITED
    Inventors: Chris Gibbs, Liu Fang, Dimitrios Papageorgopoulos
  • Patent number: 8901027
    Abstract: A method of forming a Fischer-Tropsch catalyst by providing at least one metal nitrate solution, combining each of the at least one metal nitrate solutions with a precipitating agent whereby at least one catalyst precipitate is formed, and incorporating a strong base during precipitation, subsequent precipitation, or both during and subsequent precipitation. Catalysts produced via the disclosed method are also provided.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: December 2, 2014
    Assignee: Res USA, LLC
    Inventors: Deena Ferdous, Belma Demirel
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Publication number: 20140336036
    Abstract: The electrocatalyst for the electrochemical conversion of carbon dioxide includes a copper material supported on titania nanotubes. The copper material may be pure copper, copper and ruthenium, or copper and iron supported on the titania nanotubes. The electrocatalyst is prepared by first dissolving copper nitrate trihydrate in deionized water to form a salt solution. Titania nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the volume of deionized water, either iron nitrate monohydrate or ruthenium chloride may also be dissolved in the deionized water to form the salt solution.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: SALEEM UR RAHMAN, SYED MOHAMMED JAVAID ZAIDI, SHAKEEL AHMED, SK SAFDAR HOSSAIN
  • Publication number: 20140322114
    Abstract: A three-way catalyst including a mixture of nickel and copper is provided for reducing carbon monoxide, hydrocarbon emissions, and nitrogen oxides from vehicle engine exhausts. The catalyst is impregnated onto a carrier substrate which is non-reactive with nickel and copper. When used in a vehicle exhaust gas treatment system, the nickel-copper catalyst provides improved efficiency in reducing CO, HC, and NOx emissions over the use of conventional three-way-catalysts and provides enhanced oxygen storage capacity (OSC) and water-gas-shift (WGS) functions.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 30, 2014
    Applicant: Ford Global Technologies, Inc.
    Inventors: Hungwen Jen, Eva Thanasiu, Jeffrey Scott Hepburn
  • Patent number: 8871672
    Abstract: In one example embodiment, a core-shell type platinum-containing catalyst is allowed to reduce the amount of used platinum and has high catalytic activity and stability. In one example embodiment, the core-shell type platinum-containing catalyst includes a core particle (with an average particle diameter R1) made of a non-platinum element and a platinum shell layer (with an average thickness ts) satisfying 1.4 nm?R1?3.5 nm and 0.25 nm?ts?0.9 nm. The core particle includes an element satisfying Eout?3.0 eV, where average binding energy relative to the Fermi level of 5d orbital electrons of platinum present on an outermost surface of the shell layer is Eout. In a fuel cell including a platinum-containing catalyst which contains a Ru particle as a core particle, the output density at a current density of 300 mA/cm2 is 70 mW/cm2 or over, and an output retention ratio is approximately 90% or over.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: October 28, 2014
    Assignee: Sony Corporation
    Inventors: Shuji Goto, Shizuka Hosoi, Yuli Li, Yoshihiro Kudo, Akihiro Maesaka
  • Patent number: 8865614
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 21, 2014
    Assignee: BASF SE
    Inventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
  • Patent number: 8859458
    Abstract: Provided are a method of preparing an electrocatalyst for fuel cells in a core-shell structure, an electrocatalyst for fuel cells having a core-shell structure, and a fuel cell including the electrocatalyst for fuel cells. The method may be useful in forming a core and a shell layer without performing a subsequent process such as chemical treatment or heat treatment and forming a core support in which core particles having a nanosize diameter are homogeneously supported, followed by selectively forming shell layers on surfaces of the core particles in the support. Also, the electrocatalyst for fuel cells has a high catalyst-supporting amount and excellent catalyst activity and electrochemical property.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: October 14, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Seung Jun Hwang, Sung Jong Yoo, Soo Kil Kim, Eun Ae Cho, Jong Hyun Jang, Hyoung Juhn Kim, Suk Woo Nam, Tae Hoon Lim
  • Publication number: 20140303266
    Abstract: The invention relates to a method of preparing a supported catalyst, which method comprises the steps of; (i) providing a porous catalyst support comprising a framework having an internal pore structure comprising one or more pores which internal pore structure comprises a precipitant; (ii) contacting the catalyst support with a solution or colloidal suspension comprising a catalytically active metal such that, on contact with the precipitant, particles comprising the catalytically active metal are precipitated within the internal pore structure of the framework of the catalyst support. The invention also relates to supported catalysts made according to the above method, and to use of the catalysts in catalysing chemical reactions, for example in the Fischer Tropsch synthesis of hydrocarbons.
    Type: Application
    Filed: October 22, 2012
    Publication date: October 9, 2014
    Inventor: Richard Hyman
  • Patent number: 8845998
    Abstract: A catalyst has a long life span and efficiently separates hydrogen from water. A first metal element (Ni, Pd, Pt) for cutting the combination of hydrogen and oxygen and a second metal element (Cr, Mo, W, Fe) for helping the function of the first metal element are melted in alkaline metal hydroxide or alkaline earth metal hydroxide to make a mixture heated at a temperature above the melting point of the hydroxide to eject fine particles from the liquid surface, bringing steam into contact with the fine particles. Instead of this, a mixture of alkaline metal hydroxide and metal oxide is heated at a temperature above the melting point of the alkaline metal hydroxide to make metal compound in which at least two kinds of metal elements are melted, and fine particles are ejected from the surface of the metal compound to be brought into contact with steam.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: September 30, 2014
    Inventor: Yasuo Ishikawa
  • Publication number: 20140275584
    Abstract: Methods, catalysts, and reactor systems for producing in high yield aromatic chemicals and liquid fuels from a mixture of oxygenates comprising di- and polyoxygenates are disclosed. Also disclosed are methods, catalysts, and reactor systems for producing aromatic chemicals and liquid fuels from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like; and methods, catalysts, and reactor systems for producing the mixture of oxygenates from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like. The disclosed catalysts for preparing the mixture of oxygenates comprise a NinSnm alloy and a crystalline alumina support.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Virent, Inc.
    Inventors: Taylor Beck, Brian Blank, Casey Jones, Elizabeth Woods, Randy Cortright
  • Patent number: 8822372
    Abstract: A process for producing an olefin oxide which comprises reacting an olefin with oxygen in the presence of a catalyst comprising a copper oxide and a ruthenium oxide on a porous support.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: September 2, 2014
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Selim Senkan, Anusom Seubsai
  • Patent number: 8809225
    Abstract: An iron-based Fischer-Tropsch catalyst comprising magnetite and characterized by integrable X-ray diffraction reflections corresponding to (311), (511), (440), and (400), such that the relative intensity of the (400) reflection to the (300) reflection is less than about 39%. A method of preparing an activated iron-based Fischer-Tropsch catalyst by providing a precipitated catalyst comprising oxides including at least iron oxide; and activating the precipitated catalyst to provide the activated iron-based Fischer-Tropsch catalyst, wherein activating the precipitated catalyst comprises exposing the precipitated catalyst to an activation gas and increasing the temperature from a first temperature to a second temperature at a ramp rate, whereby the ratio of the intensity of the (400) reflection of the activated iron-based Fischer-Tropsch catalyst to the intensity of the (311) reflection thereof is less than 38%.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: August 19, 2014
    Assignee: Rentech, Inc
    Inventor: Karl C. Kharas
  • Patent number: 8802044
    Abstract: The invention relates to a filtration structure, for filtering a gas coming from a diesel engine, which is laden with gaseous pollutants of the nitrogen oxide NOx type and with solid particles, of the particulate filter type, said filtration structure being characterized in that it includes a catalytic system comprising at least one noble metal or transition metal suitable for reducing the NOx and a support material, in which said support material comprises or is made of a zirconium oxide partially substituted with a trivalent cation M3+ or with a divalent cation M?2+, said zirconium oxide being in a reduced, oxygen-sub-stoichiometric, state.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: August 12, 2014
    Assignees: Saint-Gobain Centre de Recherches et d'Etudes Europeen, Centre National de la Recherche Scientifique
    Inventors: Philippe Vernoux, Abdelkader Hadjar, Agnes Princivalle, Christian Guizard
  • Patent number: 8791041
    Abstract: A method of producing a Fischer-Tropsch catalyst by preparing a nitrate solution, wherein preparing comprises forming at least one metal slurry and combining the at least one metal slurry with a nitric acid solution; combining the nitrate solution with a basic solution to form a precipitate; promoting the precipitate to form a promoted mixture, wherein promoting comprises combining the precipitate with (a) silicic acid and one or more selected from the group consisting of non-crystalline silicas, crystalline silicas, and sources of kaolin or (b) at least one selected from non-crystalline silicas and sources of kaolin, in the absence of silicic acid; and spray drying the promoted mixture to produce catalyst having a desired particle size. Catalyst produced by the disclosed method is also described.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 29, 2014
    Assignee: RENTECH, Inc.
    Inventors: Dawid J. Duvenhage, Belma Demirel
  • Publication number: 20140205928
    Abstract: A platinum alloy catalyst PtXY, wherein X is nickel, cobalt, chromium, copper, titanium or manganese and Y is tantalum or niobium, characterised in that in the alloy the atomic percentage of platinum is 46-75 at %, of X is 1-49 at % and of Y is 1-35 at %; provided that the alloy is not 66 at % Pt 20 at % Cr14 at % Ta or 50 at % Pt, 25 at % Co, 25 at % Ta is disclosed. The catalyst has particular use as an oxygen reduction catalyst in fuel cells, and in particular in phosphoric acid fuel cells.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 24, 2014
    Applicant: JOHNSON MATTHEY FUEL CELLS LIMITED
    Inventors: Sarah BALL, Thomas Robertson RALPH, Brian Ronald THEOBALD, David THOMPSETT
  • Patent number: 8785061
    Abstract: To provide a CO conversion catalyst for use in a fuel cell in a DSS operation, which includes a Cu—Al-Ox catalyst, in which the Cu—Al-Ox catalyst has a boehmite phase formed in at least a part of the Cu—Al-Ox catalyst. The CO conversion catalyst has an improved degree of dispersion of Cu metal by the boehmite phase formed therein, and hence can be prevented from sintering of copper caused due to steam, thereby achieving improved durability with respect to the function as the CO conversion catalyst.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: July 22, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masanao Yonemura, Toshinobu Yasutake, Tetsuya Shishido
  • Patent number: 8778832
    Abstract: The present invention is directed to a catalyst suitable for catalyzing a Fischer-Tropsch reaction, said catalyst comprising cobalt metal supported on zinc-oxide and having the following particle size distribution by volume: <10% having a particle size below 1 micron, 70-99% having a particle size between 1 and 5 micron, and <20% having a particle size above 5 micron.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: July 15, 2014
    Assignee: BASF Corporation
    Inventors: Tjalling Rekker, Cornelis Roeland Baijense
  • Publication number: 20140186747
    Abstract: A method of fabricating composite filaments is provided. An initial composite filament including a core and a cladding (such as a Pt-group metal) is cut into smaller pieces (or is first mechanically reduced and then cut into smaller pieces). The smaller pieces of the filaments are inserted into a metal matrix, and the entire structure is then further reduced mechanically in a series of reduction steps. The process can be repeated until the desired cross sectional dimension of the filaments is achieved. The matrix can then be chemically removed to isolate the final composite filaments with the cladding thickness down to the nanometer range. The process allows the organization and integration of filaments of different sizes, compositions, and functionalities into arrays suitable for various applications.
    Type: Application
    Filed: February 24, 2014
    Publication date: July 3, 2014
    Applicant: The Trustees of Columbia University in the city of New York
    Inventor: Jose Bevk
  • Patent number: 8765625
    Abstract: An emission control catalyst includes copper-ceria to boost low temperature CO oxidation performance, generate exothermic heat during the process, and reduce HC and NOx emissions. As a result, system performance is boosted at equal catalyst cost or maintained at a reduced catalyst cost. In one embodiment, an engine exhaust catalyst includes a first washcoat layer having at least one of a platinum-based catalyst, a palladium-based catalyst, and combinations thereof; and a second washcoat layer having copper-ceria.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: July 1, 2014
    Assignee: Shubin, Inc.
    Inventors: Xianghong Hao, Juan Cai
  • Patent number: 8765981
    Abstract: A process for producing an olefin oxide which comprises reacting an olefin with oxygen in the presence of a catalyst comprising a copper oxide and a tellurium oxide.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: July 1, 2014
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yoshihiko Ohishi, Anusorn Seubsai, Selim Senkan
  • Patent number: 8759249
    Abstract: A method for the production of nanocrystalline nickel oxides as well as the nickel oxides produced by the method according to the invention and the use thereof as catalyst following reduction to nickel metal, in particular for hydrogenation reactions.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: June 24, 2014
    Assignee: SUED-Chemie IP GmbH & Co. KG
    Inventors: Hans-Jörg Wölk, Alfred Hagemeyer, Frank Groβmann, Silvia Neumann