And Group I Metal Containing (i.e., Alkali, Ag, Au Or Cu) Patents (Class 502/330)
  • Publication number: 20120129959
    Abstract: Disclosed is a method of forming a hybrid Fischer-Tropsch catalyst extrudate for use in synthesis gas conversion reactions. The method includes extruding a mixture of ruthenium loaded metal oxide support particles, particles of an acidic component and a binder sol to form an extrudate. The resulting extrudate contains from about 0.1 to about 15 weight percent ruthenium based on the weight of the extrudate. In a synthesis gas conversion reaction, the extrudate is contacted with a synthesis gas having a H2 to CO molar ratio of 0.5 to 3.0 at a reaction temperature of 160° C. to 300° C., a total pressure of 3 to 35 atmospheres, and an hourly space velocity of 5 to 10,000 v/v/hour, resulting in hydrocarbon products containing 1-15 weight % CH4; 1-15 weight % C2-C4; 70-95 weight % C5+; 0-5 weight % C21+ normal paraffins; and 0-10 weight % aromatic hydrocarbons.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 24, 2012
    Inventors: Kandaswamy Jothimurugesan, Tapan Das, Charles L. Kibby, Robert J. Saxton
  • Publication number: 20120122660
    Abstract: An oxidation catalyst comprises an extruded solid body comprising: 10-95% by weight of at least one binder/matrix component; 5-90% by weight of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof; and 0-80% by weight optionally stabilised ceria, which catalyst comprising at least one precious metal and optionally at least one non-precious metal, wherein: (i) a majority of the at least one precious metal is located at a surface of the extruded solid body; (ii) the at least one precious metal is carried in one or more coating layer(s) on a surface; (iii) at least one metal is present throughout the extruded solid body and in a higher concentration at a surface; (iv) at least one metal is present throughout the extruded solid body and in a coating layer(s) on a surface; or (v) a combination of (ii) and (iii).
    Type: Application
    Filed: February 1, 2011
    Publication date: May 17, 2012
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Paul Joseph Andersen, Todd Ballinger, David Bergeal, Hsiao-Lan Chang, Hai-Ying Chen, Julian Cox, Ralf Dotzel, Rainer Leppelt, Jörg Werner Münch, Hubert Schedel, Duncan John William Winterborn
  • Patent number: 8178735
    Abstract: A process for the treatment of an olefinic fraction, using a catalyst prepared by a process comprising: a) The preparation of a colloidal oxide suspension of a first metal M1 by the neutralization of a basic solution by an acidic mineral solution that contains the precursor of the metal M1, b) Bringing into contact the precursor of the promoter M2, either directly in its crystallized form or after dissolution in aqueous phase, with the colloidal suspension that is obtained in stage a), c) Bringing into contact the colloidal suspension that is obtained in stage b) with the substrate, d) Drying at a temperature of between 30° C. and 200° C., under a flow of air.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: May 15, 2012
    Assignee: IFP Energies nouvelles
    Inventors: Vincent Coupard, Denis Uzio, Carine Petit-Clair, Lars Fischer, Frederic Portejole
  • Patent number: 8173100
    Abstract: Catalytic system comprising at least two components: a catalyst for the hydrolysis reaction of metal borohydrides to hydrogen; and a material in solid form, the dissolution reaction of which in water is exothermic.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: May 8, 2012
    Assignee: Commisariat a l'Energie Atomique
    Inventors: Philippe Capron, Jérôme Delmas, Nathalie Giacometti, Isabelle Rougeaux
  • Patent number: 8168562
    Abstract: A new method for preparing supported palladium-gold catalysts is disclosed. The method comprises sulfating a titanium dioxide support, calcining the sulfated support, impregnating the calcined support with a palladium salt, a gold salt, and an alkali metal or ammonium compound, calcining the impregnated support, and reducing the calcined support. The resultant supported palladium-gold catalysts have increased activity and stability in the acetoxylation.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: May 1, 2012
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: Steven M. Augustine
  • Patent number: 8163265
    Abstract: An oxidation process employing a mechanically stable catalyst of an active metal or combination of active metals supported on aluminum oxide, which is predominantly alpha-aluminum oxide, is provided. The active metal or metals is optionally one or a mixture of ruthenium, copper, gold, an alkaline earth metal, an alkali metal, palladium, platinum, osmium, iridium, silver, and rhenium. The process is applicable to the oxidation of hydrogen chloride to chlorine in a Deacon process.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: April 24, 2012
    Assignee: BASF Aktiengesellschaft
    Inventors: Olga Schubert, Martin Sesing, Lothar Seidemann, Martin Karches, Thomas Grassler, Martin Sohn
  • Publication number: 20120094826
    Abstract: An exhaust gas purifying catalyst includes: a support that contains at least one element that is selected from the first group that consists of Al, Zr and Ce, at least one element that is selected from the second group that consists of Ag, Mn, Co, Cu and Fe, and Ti; and particles that are composed of a metal or oxide of at least one element that is selected from the third group that consists of Ag, Mn, Co, Cu and Fe and that are deposited on the support. Seventy percent or more of any plurality of measurement points with a diameter of 2 nm on a surface of the support are composed of a composite part that has the at least one element selected from the second group content of 0.5 to 10 mol % and has a Ti content of 0.3 mol % or greater.
    Type: Application
    Filed: June 16, 2010
    Publication date: April 19, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshiyuki Tanaka, Tsuyoshi Hamaguchi, Takanori Murasaki, Masao Watanabe, Daichi Imai
  • Patent number: 8158548
    Abstract: The invention describes the preparation of electrocatalysts, both anodic (aimed at the oxidation of the fuel) and cathodic (aimed at the reduction of the oxygen), based on mono- and plurimetallic carbon nitrides to be used in PEFC (Polymer electrolyte membrane fuel cells), DMFC (Direct methanol fuel cells) and H2 electrogenerators. The target of the invention is to obtain materials featuring a controlled metal composition based on carbon nitride clusters or on carbon nitride clusters supported on oxide-based ceramic materials. The preparation protocol consists of three steps. In the first the precursor is obtained through reactions of the type: a) sol-gel; b) gel-plastic; c) coagulation-flocculation-precipitation. The second step consists of the thermal treatments to decompose the precursors in an inert atmosphere leading to the production of the carbon nitrides. In the last step the chemical and electro-chemical activation of the electrocatalysts is performed.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: April 17, 2012
    Assignee: Breton S.p.A.
    Inventors: Vito Di Noto, Enrico Negro, Sandra Lavina, Giuseppe Pace
  • Patent number: 8158549
    Abstract: A support of metal oxyfluoride or metal halide for a metal-based hydrogenation catalyst useful in hydrogenating fluoroolefins is provided.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: April 17, 2012
    Assignee: Honeywell International Inc.
    Inventors: Haiyou Wang, Hsueh Sung Tung
  • Patent number: 8158550
    Abstract: The invention relates to a multilayer catalyst for the partial oxidation of hydrocarbons in gaseous phase, comprising a monolithic ceramic or metallic substrate having a solid macroporous structure consisting of one or more structures, on which a first active layer with a crystal-line perovskitic structure is deposited, having general formula AxA? 1-xByB? 1-YO3±? wherein: A is a cation of at least one of the rare earth elements, A? is a cation of at least one element selected from groups Ia, IIa and VIa of the periodic table of elements, B is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb, or VIII of the periodic table of elements, B? is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb or VIII of the periodic table of elements Mg2+ or Al3+, x is a number which is such that 0?x?1, y is a number which is such that 0?y?1, and ? is a number which is such that 0???0, 5, a second more external active layer consisting of a dispersion of a noble metal and a possible s
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: April 17, 2012
    Assignee: Consiglio Nazionale Delle Ricerche
    Inventors: Stefano Cimino, Francesco Donsi, Raffaele Pirone, Gennaro Russo
  • Patent number: 8153548
    Abstract: The isomerization catalyst is a solid acid catalyst formed with a base of tungstated zirconium mixed oxides loaded with at least one hydrogenation/dehydrogenation metal catalyst from Groups 8-10 (IUPAC, 2006) and impregnated with at least one alkali metal from Group 1 (IUPAC, 2006). The metal from Groups 8-10 is preferably selected from platinum, palladium, ruthenium, rhodium, iridium, osmium and mixtures thereof, and most preferably is platinum. The Group I alkali metal is selected from lithium, sodium, potassium rubidium and cesium and mixtures thereof, and is preferably lithium, sodium, or potassium. Preferable, the catalyst forms, by weight, a base having between about 80-90% zirconium mixed oxides and between about 10-20% tungstate; between about 0.1-3.00% Group 8-10 metal; and between about 0.01-1.00% Group 1 alkali metal.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: April 10, 2012
    Assignee: King Fahd University of Petroleum & Minerals
    Inventors: Muneeb Khurshid, Hideshi Hattori, Sulaiman Al-Khattaf
  • Patent number: 8143188
    Abstract: A dehydrogenation catalyst is described that comprises an iron oxide, an alkali metal or compound thereof, and rhenium or a compound thereof. A process for preparing a dehydrogenation catalyst comprising preparing a mixture of iron oxide, an alkali metal or compound thereof, and rhenium or a compound thereof is also described. Additionally, a dehydrogenation process using the catalyst and a process for preparing polymers are described.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: March 27, 2012
    Assignee: BASF Corporation
    Inventor: Ruth Mary Kowaleski
  • Publication number: 20120071571
    Abstract: A catalyst suitable for the Fischer-Tropsch synthesis of hydrocarbons is described comprising cobalt nanocrystallites containing a precious metal promoter, dispersed over the surface of a porous transition alumina powder wherein the cobalt content of the catalyst is ?25% by weight, the precious metal promoter metal promoter content of the catalyst is in the range 0.05 to 0.25% by weight, and the cobalt crystallites have a average size, as determined by hydrogen chemisorption, of ?15 nm. A method for making the catalyst is also described.
    Type: Application
    Filed: October 1, 2009
    Publication date: March 22, 2012
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Hamera Abbas, Sharon Bale, Gordon James Kelly, John West
  • Publication number: 20120063989
    Abstract: The present invention relates to a highly active water gas shift catalyst and a process for producing it, and also a process for converting a gas mixture comprising at least carbon monoxide and water into hydrogen and carbon dioxide in a wide temperature range using this catalyst.
    Type: Application
    Filed: August 26, 2011
    Publication date: March 15, 2012
    Applicant: BASF SE
    Inventors: Stephan Hatscher, Markus Hölzle, Thorsten von Fehren, Alexander Schäfer
  • Publication number: 20120060418
    Abstract: A catalyst system including at least one metal and an oxide support, said oxide support including at least one of Al2O3, MnxOy, MgO, ZrO2, and La2O3, or any mixtures thereof; said catalyst being suitable for catalyzing at least one reaction under supercritical water conditions is disclosed. Additionally, a system for producing a high-pressure product gas under super-critical water conditions is provided. The system includes a pressure reactor accommodating a feed mixture of water and organic matter; a solar radiation concentrating system heating the pressure reactor and elevating the temperature and the pressure of the mixture to about the water critical temperature point and pressure point or higher. The reactor is configured and operable to enable a supercritical water process of the mixture to occur therein for conversion of the organic matter and producing a high-pressure product fuel gas.
    Type: Application
    Filed: May 20, 2010
    Publication date: March 15, 2012
    Applicants: Ramot At Tel-Aviv University Ltd., Yeda Research and Development Co. Ltd.
    Inventors: Michael Epstein, Abraham Kribus, Alexander Berman
  • Publication number: 20120055141
    Abstract: Described is a catalyst comprising a substrate and a catalyst coating of two or more layers: (a) a first layer comprising Pt and/or Pd on the substrate; and (b) a second layer comprising Pt on the first layer; these layers each further comprising: one or more particulate support materials; one or more oxygen storage component (OSC) materials; and one or more nitrogen oxide storage materials comprising one or more elements selected from the group of alkali and/or alkaline earth metals, wherein the total amount of alkali and alkaline earth metals ranges from 0.18 to 2.5 g/in3 calculated as the respective alkali metal oxides M2O and alkaline earth metal oxides MO. Also described is a method for the production of a catalyst, as well as a process for the treatment of a gas stream comprising nitrogen oxide, in particular of an exhaust gas stream resulting from an internal combustion engine.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 8, 2012
    Applicant: BASF SE
    Inventor: Marcus Hilgendorff
  • Publication number: 20120055142
    Abstract: Described is a catalyst comprising a substrate and a catalyst coating of two or more layers: (a) a first layer comprising Pd and Rh on the substrate; and (b) a second layer comprising Pt and/or Pd on the first layer; these layers each further comprising: one or more particulate support materials; one or more oxygen storage component (OSC) materials; and one or more nitrogen oxide storage materials comprising one or more elements selected from the group of alkali and/or alkaline earth metals, wherein the total amount of alkali and alkaline earth metals ranges from 0.18 to 2.0 g/in3 calculated as the respective alkali metal oxides M2O and alkaline earth metal oxides MO. Also described is a method for the production of a catalyst, as well as a process for the treatment of a gas stream, in particular of an exhaust gas stream resulting from an internal combustion engine.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 8, 2012
    Applicant: BASF SE
    Inventor: Marcus Hilgendorff
  • Patent number: 8129306
    Abstract: A polymetallic nanoparticle alloy having enhanced catalytic properties including at least one noble metal and at least one base metal, where the noble metal is preferentially dispersed near the surface of the nanoparticle and the base metal modifies the electronic properties of the surface disposed noble metal. The polymetallic nanoparticles having application as a catalyst when dispersed on a carbon substrate and in particular applications in a fuel cell. In various embodiments a bimetallic noble metal-base metal nanoparticle alloy may be used as an electrocatalyst offering enhanced ORR activity compared to the monometallic electrocatalyst of noble metal.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: March 6, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Deborah J. Myers, Xiaoping Wang, Nancy N. Kariuki
  • Patent number: 8119559
    Abstract: A dehydrogenation catalyst is described comprising an iron oxide, an alkali metal or compound thereof, and silver or a compound thereof. Further a process is described for preparing a dehydrogenation catalyst that comprises preparing a mixture of iron oxide, an alkali metal or compound thereof, and silver or a compound thereof and calcining the mixture. A process for dehydrogenating a dehydrogenatable hydrocarbon and a process for polymerizing the dehydrogenated hydrocarbon are also described.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: February 21, 2012
    Assignee: BASF Corporation
    Inventor: Ruth Mary Kowaleski
  • Publication number: 20120027665
    Abstract: Catalyst comprising ruthenium on a support for the catalytic oxidation of hydrogen chloride by means of oxygen to form chlorine, wherein the catalyst comprises from 0.01 to 10% by weight of silver and/or calcium as dopant. The support preferably consists essentially of alpha-aluminum oxide. The catalyst preferably comprises a) from 0.1 to 10% by weight of ruthenium, b) from 0.01 to 5% by weight of silver and/or from 0.01 to 5% by weight of calcium, c) from 0 to 5% by weight of one or more alkaline earth metals, d) from 0 to 5% by weight of one or more alkali metals, e) from 0 to 5% by weight of one or more rare earth metals, f) from 0 to 5% by weight of one or more further metals selected from the group consisting of nickel, palladium, platinum, iridium and rhenium, in each case based on the total weight of the catalyst.
    Type: Application
    Filed: February 25, 2010
    Publication date: February 2, 2012
    Applicant: BASF SE
    Inventors: Guido Henze, Heiko Urtel, Martin Sesing, Martin Karches
  • Publication number: 20120029096
    Abstract: The present invention relates to a hydrocarbon synthesis catalyst comprising in its unreduced form a) Fe as catalytically active metal, b) an alkali metal and/or alkaline-earth metal in an alkali metal- and/or alkaline-earth metal-containing promoter, the alkali metal, c) and a further promoter comprising, or consisting of, one or more element(s) selected from the group of boron, germanium, nitrogen, phosphorus, arsenic, antimony, sulphur, selenium and tellurium, to a process for the synthesis of a hydrocarbon synthesis catalyst, to a hydrocarbon synthesis process which is operated in the present of such a catalyst and to the use of such a catalyst in a hydrocarbon synthesis process.
    Type: Application
    Filed: December 4, 2009
    Publication date: February 2, 2012
    Applicants: SASOL WAX GMBH, SASOL TECHNOLOGY (PTY.) LIMITED
    Inventors: Reinier Crous, Tracy Carolyn Bromfield, Sharon Booyens
  • Patent number: 8105561
    Abstract: A catalyst for purification of exhaust gas in which a noble metal is supported on a metal-oxide support wherein, in a oxidation atmosphere, the noble metal exists on the surface of the support in high oxidation state, and the noble metal binds with a cation of the support via an oxygen atom on the surface of the support to form a surface oxide layer and, in a reduction atmosphere, the noble metal exists on the surface of the support in a metal state, and an amount of noble metal exposed at the surface of the support, measured by CO chemisorption, is 10% or more in atomic ratio to a whole amount of the noble metal supported on the support.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: January 31, 2012
    Assignees: Kabushiki Kaisha Toyota Chuo Kenkyusho, Toyota Jidosha Kabushiki Kaisha
    Inventors: Miho Hatanaka, Toshitaka Tanabe, Yasutaka Nagai, Toshio Yamamoto, Kazuhiko Dohmae, Nobuyuki Takagi, Masahide Miura, Yasuo Ikeda
  • Publication number: 20120015802
    Abstract: Disclosed is a catalyst which can be used in the process for producing hydrogen by decomposing ammonia, can generate heat efficiently in the interior of a reactor without requiring excessive heating the reactor externally, and can decompose ammonia efficiently and steadily by utilizing the heat to produce hydrogen. Also disclosed is a technique for producing hydrogen by decomposing ammonia efficiently utilizing the catalyst. Specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising an ammonia-combusting catalytic component and an ammonia-decomposing catalytic component. Also specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising at least one metal element selected from the group consisting of cobalt, iron, nickel and molybdenum.
    Type: Application
    Filed: March 17, 2010
    Publication date: January 19, 2012
    Inventors: Junji Okamura, Masanori Yoshimune, Masaru Kirishiki, Hideaki Tsuneki, Shinya Kitaguchi
  • Publication number: 20120016143
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 19, 2012
    Applicant: SHELL OIL COMPANY
    Inventor: Marek MATUSZ
  • Patent number: 8093178
    Abstract: Disclosed in a catalyst which enables to reduce the carbon monoxide concentration in a product gas to 5 ppm by volume or less when carbon monoxide in a raw material gas containing hydrogen and carbon monoxide is selectively oxidized. The catalyst comprises a support of an inorganic oxide and ruthenium loaded thereon, and the relative loading depth X(Ru) of ruthenium in the radial direction in a redial cross-section of the catalyst satisfies the requirement defined by the following formula (1) X(Ru)?15??(1).
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: January 10, 2012
    Assignee: Nippon Oil Corporation
    Inventors: Yasuyuki Iwasa, Takaya Matsumoto
  • Patent number: 8084389
    Abstract: A noble metal is supported on an upstream-side catalytic portion 20 at least, and an SOx storage material, such as Mg and K that lower the noble metal's activities, is supported on a downstream-side catalytic portion 21. The noble metal being supported on the upstream-side catalytic portion 20 oxidizes SO2 efficiently to turn it into SOx, because the lowering of oxidizing activities is suppressed. These SOx are retained by means of storage in the SOx storage material being loaded on the downstream-side catalytic portion 21. Therefore, the SOx storing performance improves, and it is good in terms of durability as well.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: December 27, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshitsugu Ogura, Takayuki Endo
  • Publication number: 20110306790
    Abstract: Disclosed are catalysts comprised of platinum and gold. The catalysts are generally useful for the selective oxidation of compositions comprised of a primary alcohol group and at least one secondary alcohol group wherein at least the primary alcohol group is converted to a carboxyl group. More particularly, the catalysts are supported catalysts including particles comprising gold and particles comprising platinum, wherein the molar ratio of platinum to gold is in the range of about 100:1 to about 1:4, the platinum is essentially present as Pt(0) and the platinum-containing particles are of a size in the range of about 2 to about 50 nm. Also disclosed are methods for the oxidative chemocatalytic conversion of carbohydrates to carboxylic acids or derivatives thereof. Additionally, methods are disclosed for the selective oxidation of glucose to glucaric acid or derivatives thereof using catalysts comprising platinum and gold. Further, methods are disclosed for the production of such catalysts.
    Type: Application
    Filed: December 13, 2010
    Publication date: December 15, 2011
    Applicant: RENNOVIA, INC.
    Inventors: Vincent J. Murphy, James Shoemaker, Guang Zhu, Raymond Archer, George Frederick Salem, Eric L. Dias
  • Patent number: 8075859
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 13, 2011
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 8071504
    Abstract: A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: December 6, 2011
    Assignee: Caterpillar Inc.
    Inventors: Christie Susan Ragle, Ronald G. Silver, Svetlana Mikhailovna Zemskova, Colleen J. Eckstein
  • Patent number: 8071655
    Abstract: A catalyst applicable to the synthesis gas conversions especially E-T slurry processes, said catalyst comprising: a) a support containing at least a first aluminate element of mixed spinel structure of formula MxM?(1?x)Al2O4/Al2O3.SiO2, x ranging between and excluding 0 and 1, or of simple spinel structure of formula MAl2O4/Al2O3.SiO2, said support being calcined in an at least partly oxidizing atmosphere, at a temperature ranging between 850° C. and 900° C., and b) an active phase deposited on said support, which contains one or more group VIII metals, selected from among cobalt, nickel, ruthenium or iron. Said catalyst is used in a fixed bed or suspended in a three-phase reactor for hydrocarbon synthesis from a CO, H2 mixture.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: December 6, 2011
    Assignees: IFP Energies Nouvelles, ENI S.p.A.
    Inventors: Fabrice Diehl, François Hugues, Marie-Claire Marion, Denis Uzio
  • Patent number: 8067334
    Abstract: A catalyst on an oxidic support and processes for selectively hydrogenating unsaturated compounds in hydrocarbon streams comprising them using these catalysts are described.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: November 29, 2011
    Assignee: BASF SE
    Inventors: Thomas Hill, Hermann Petersen, Germain Kons, Henrik Junicke
  • Publication number: 20110288353
    Abstract: A metal loaded catalyst comprises a support and main active metal components and optional auxiliary active metal components, wherein the main active metal components are elementary substances and obtained by ionizing radiation reducing precursors of main active metal components. The catalyst can be widely used in the catalytic reactions of petrochemistry industry with high activity and selectivity. The catalyst can be used directly without being reduced preliminarily by hydrogen.
    Type: Application
    Filed: November 26, 2009
    Publication date: November 24, 2011
    Inventors: Wei Dai, Jing Peng, Haibo Yu, Hui Peng, Genshuan Wei, Maolin Zhai, Zuwang Mao, Yi Le, Wei Mu, Haijiang Liu, Yunxian Zhu
  • Patent number: 8058205
    Abstract: An NOx purification system having NOx occlusion reduction-type catalysts including an occlusion material and a metal catalyst, which occludes NOx in a lean state in terms of a fuel-air ratio of an exhaust gas and releases the occluded NOx in a rich state. A high-temperature type catalyst is placed on the upstream side, and a low-temperature type catalyst is disposed on the downstream side in series with the high-temperature type catalyst. The molar ratio of platinum to rhodium supported on the high-temperature type catalyst is within a range of 2:1 to 1:2. This NOx purification system is capable of a wide NOx activation temperature window.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: November 15, 2011
    Assignee: Isuzu Motors Limited
    Inventors: Daiji Nagaoka, Masashi Gabe
  • Publication number: 20110275512
    Abstract: This invention relates to the field of Fischer-Tropsch catalysis, in particular to activation of a Fischer-Tropsch catalyst. More particularly the invention relates to a method of activating an iron based Fischer-Tropsch catalyst which includes iron in a positive oxidation state by contacting in a reactor said iron based catalyst with a reducing gas selected from the group consisting of CO and a combination of H2 and CO; at a temperature of at least 245° C. and below 280° C.; at a reducing gas pressure of above 0.5 MPa and not more than 2.2 MPa; and at a GHSV of total gas fed to the reactor of at least 6000 ml(N)/g cat/h, thereby reducing the iron that is in a positive oxidation step in the catalyst.
    Type: Application
    Filed: August 5, 2008
    Publication date: November 10, 2011
    Inventors: Johannes Jacobus Huyser, Matthys Josephus Janse Van Vuuren, Ryno Kotze
  • Publication number: 20110274989
    Abstract: Methods and devices for catalyzing reactions, e.g., in a metal-air electrochemical cell, are disclosed. In some instances, a porous positive electrode of the metal-air electrochemical cell includes a metal to catalyze a reaction at the electrode (e.g., oxidation of one or more metal-oxide species). The metal can be disposed as nanoparticles, and/or be combined with a second metal. Other aspects are directed to devices and methods that can generally promote a chemical reaction (e.g., an oxidation/reduction reaction) such as the formation of platinum containing nanoparticles that can be used to catalyze electrochemical reactions.
    Type: Application
    Filed: May 2, 2011
    Publication date: November 10, 2011
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Yi-Chun Lu, Hubert A. Gasteiger, Yang Shao-Horn
  • Publication number: 20110274615
    Abstract: A catalyst has a long life span and efficiently separates hydrogen from water. A first metal element (Ni, Pd, Pt) for cutting the combination of hydrogen and oxygen and a second metal element (Cr, Mo, W, Fe) for helping the function of the first metal element are melted in alkaline metal hydroxide or alkaline earth metal hydroxide to make a mixture heated at a temperature above the melting point of the hydroxide to eject fine particles from the liquid surface, bringing steam into contact with the fine particles. Instead of this, a mixture of alkaline metal hydroxide and metal oxide is heated at a temperature above the melting point of the alkaline metal hydroxide to make metal compound in which at least two kinds of metal elements are melted, and fine particles are ejected from the surface of the metal compound to be brought into contact with steam.
    Type: Application
    Filed: January 6, 2010
    Publication date: November 10, 2011
    Inventor: Yasuo Ishikawa
  • Publication number: 20110270006
    Abstract: A method is disclosed of preparing a catalyst, including contacting a substrate with at least one solution including a first promoter being Cs and at least one solution including a second promoter. The contact subjects the substrate to the addition of the first and second promoters, thereby forming the catalyst comprising the first and second promoters. In the method disclosed, the second promoter is capable of undergoing a redox reaction.
    Type: Application
    Filed: May 22, 2011
    Publication date: November 3, 2011
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Joseph E. Pelati, Sivadinarayana Chinta
  • Publication number: 20110245068
    Abstract: A multimetallic nanoscale catalyst having a sore portion enveloped by a shell portion and exhibiting high catalytic activity and improved catalytic durability. In various embodiments, the core/shell nanoparticles comprise a gold particle coated with a catalytically active platinum bimetallic material. The shape of the nanoparticles is substantially defined by the particle shape of the core portion. The nanoparticles may be dispersed on a high surface area substrate for use as a catalyst and is characterized by no significant loss in surface area and specific activity following extended potential cycling.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 6, 2011
    Inventors: Vojislav Stamenkovic, Nenad M. Markovic, Chao Wang, Hideo Daimon, Shouheng Sun
  • Patent number: 8030242
    Abstract: The invention concerns a process for preparing metallic nanoparticles with an anisotropic nature by using two different reducing agents, preferably with different reducing powers, on a source of a metal selected from columns 8, 9 or 10 of the periodic table of the elements.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: October 4, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Denis Uzio, Catherine Verdon, Cecile Thomazeau, Bogdan Harbuzaru, Gilles Berhault
  • Patent number: 8017548
    Abstract: The present invention provides a method for manufacture of supported noble metal based alloy catalysts with a high degree of alloying and a small crystallite size. The method is based on the use of polyol solvents as reaction medium and comprises of a two-step reduction process in the presence of a support material. In the first step, the first metal (M1=transition metal; e.g. Co, Cr, Ru) is activated by increasing the reaction temperature to 80 to 160° C. In the second step, the second metal (M2=noble metal; e.g. Pt, Pd, Au and mixtures thereof) is added and the slurry is heated to the boiling point of the polyol solvent in a range of 160 to 300° C. Due to this two-step method, an uniform reduction occurs, resulting in noble metal based catalysts with a high degree of alloying and a small crystallite size of less than 3 nm. Due to the high degree of alloying, the lattice constants are lowered.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: September 13, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Dan V. Goia, Marco Lopez, Tapan Kumar Sau, Mihaela-Ortansa Jitianu
  • Publication number: 20110217781
    Abstract: A composition and method for preparation of a catalyst for the liquid phase selective hydrogenation of alkynes to alkenes with high selectivity to alkenes relative to alkanes, high alkyne conversion, and sustained catalytic activity comprising a Group VIII metal and a Group IB, Group IIB, Group IIIA, and/or Group VIIB promoter on a particulate support.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 8, 2011
    Applicant: SYNFUELS INTERNATIONAL, INC.
    Inventors: Marvin M. JOHNSON, Edward R. Peterson, Sean C. Gattis
  • Publication number: 20110213042
    Abstract: This invention relates to a method for the preparation of a hydrocarbon synthesis catalyst, preferably, a Fischer Tropsch synthesis catalyst. The invention also extends to the use of a catalyst prepared by the method according to the invention in a hydrocarbon synthesis process, preferably, a Fischer Tropsch synthesis process.
    Type: Application
    Filed: July 28, 2008
    Publication date: September 1, 2011
    Inventor: Johan Labuschagne
  • Publication number: 20110204293
    Abstract: Methods of making supported monolithic gold (Au) catalysts that can be used for generating a hydrogen-rich gas from gas mixtures containing carbon monoxide, hydrogen and water via a water gas shift reaction, and for the removal of carbon monoxide from air at a low reaction temperature via its oxidation reaction are described. Methods of making highly dispersed gold catalysts on washcoated monoliths and the stabilization of monolithic catalyst supports by the addition of a third metal oxide, such as zirconia (ZrO2), lanthanum oxide (La2O3), or manganese oxide (MnxOy). The catalyst supports and/or washcoats may include a variety of transition metal oxides such as alpha iron oxide (?-Fe2O3), cerium oxide (CeO2), ZrO2, gamma alumina (?-Al2O3), or their combinations.
    Type: Application
    Filed: February 24, 2010
    Publication date: August 25, 2011
    Inventors: William Peter Addiego, Siew Pheng Teh, Jaclyn Seok Kuan Teo, Ziyi Zhong
  • Publication number: 20110207972
    Abstract: Catalysts for replacing rhenium-containing multimetallic catalysts for the hydrogenolysis of organic compounds to desired polyols, including the conversion of glycerol to propylene glycol, are described. The catalysts are carried on carbon supports, as well as carbon supports impregnated with Zirconium Scandium (ZrSc), Zirconium Yttrium (ZrY), Titanium Scandium (TiSc), or Titanium Yttrium (TiY) to texture the carbon support and to create oxygen-ion vacancies that can be used during the desired reactions. Processes for the hydrogenolysis of organic compounds to desired polyols using the disclosed catalysts, including the conversion of glycerol to propylene glycol, are also described.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 25, 2011
    Inventors: Heather M. Brown, John G. Frye, Jonathan L. Male, Daniel M. Santosa, Alan H. Zacher
  • Patent number: 8003566
    Abstract: A method of preparing a catalyst support is described comprising washing a precipitated metal oxide material with water and/or an aqueous solution of acid and/or base such that contaminant levels in said precipitated metal oxide are reduced. The method may be applied to precipitated alumina materials to reduce contaminants selected from sulphur, chlorine, Group 1 A and Group 2A metals. The catalyst supports may be used to prepare catalysts for the Fischer-Tropsch synthesis of hydrocarbons.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: August 23, 2011
    Assignee: Johnson Matthey PLC
    Inventors: John Leonello Casci, Elizabeth Margaret Holt, Adel Fay Neale
  • Patent number: 8003565
    Abstract: A method and catalysts for producing a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas contacts a water gas shift (WGS) catalyst, optionally in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) Pt, its oxides or mixtures thereof; b) Ru, its oxides or mixtures thereof; and c) at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Co, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu. Another disclosed catalyst formulation comprises Pt, its oxides or mixtures thereof; Ru, its oxides or mixtures thereof; Co, its oxides or mixtures thereof; and at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu, their oxides and mixtures thereof.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 23, 2011
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Freeslate, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Peter Strasser, Robert K. Grasselli, Christopher James Brooks, Cory Bernard Phillips
  • Publication number: 20110201702
    Abstract: A ferrihydrite catalyst composition can comprise a ferrihydrite of a structural promoter metal, a chemical promoter metal and potassium to form an amorphous nanoparticulate. The ferrihydrite catalyst can be formed by dissolving an iron salt, a structural promoter metal salt and a chemical promoter metal salt in water to form an aqueous iron solution. A ferrihydrite solid can be precipitated from the aqueous iron solution by addition of a precipitating agent under conditions such that the ferrihydrite solid is a nanoparticulate. A potassium can be incorporated into the ferrihydrite solid to form a ferrihydrite catalyst precursor. The ferrihydrite catalyst precursor can be calcined to form the ferrihydrite catalyst. A synthesis gas can be readily converted to a fuel product by contacting the ferrihydrite catalyst with the synthesis gas under reaction conditions sufficient to form a fuel product mixture.
    Type: Application
    Filed: August 16, 2010
    Publication date: August 18, 2011
    Inventors: Sumit Bali, Garima Bali, Edward M. Eyring, Richard D. Ernst, Ronald J. Pugmire
  • Publication number: 20110195007
    Abstract: The present invention relates to a catalyst for removing NOx contained in exhaust gas, more specifically to a catalyst for removing NOx using metal titanate as a support. The catalyst for removing NOx according to the present invention allows metal titanate to act as a support as well as an adsorption and storage agent (hereafter an adsorption/storage agent) of NOx in lean-burn conditions. Supported noble metals or transition metal components provide a catalyst function which helps adsorption/storage by oxidizing NOx into NO2 in lean-burn conditions and participates in the reaction of reducing the adsorbed and stored NO2 into N2 in fuel-rich conditions. The catalyst according to the present invention has twice the NOx storage amount of conventional catalysts, for example Ba, and enables effective removal even in operational conditions of a wider range than 150˜700° C.
    Type: Application
    Filed: May 16, 2008
    Publication date: August 11, 2011
    Applicant: Postech Academy-Industry Foundation
    Inventors: Jong Shik Chung, So Ye Park, Wang Qiang, Ji Hyang Sohn
  • Publication number: 20110190533
    Abstract: A method for preparing a palladium-gold catalyst containing a titania extrudate is disclosed. The titania extrudate is produced by using a carboxyalkyl cellulose and a hydroxyalkyl cellulose as extrusion aids. The titania extrudate has improved processibility and/or mechanical properties. After calcination, the extrudate is used as a carrier for the palladium-gold catalyst. The catalyst is useful in producing vinyl acetate by oxidizing ethylene with oxygen in the presence of acetic acid.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 4, 2011
    Inventor: Daniel Travis Shay
  • Publication number: 20110184206
    Abstract: Disclosed is a catalyst for use in production of carboxylic acid ester by reacting (a) aldehyde and alcohol, or (b) one or more types of alcohols, in the presence of oxygen; wherein oxidized nickel and X (wherein X represents at least one element selected from the group consisting of nickel, palladium, platinum, ruthenium, gold, silver and copper) are loaded onto a support within the range of the atomic ratio of Ni/(Ni+X) of from 0.20 to 0.99.
    Type: Application
    Filed: July 31, 2008
    Publication date: July 28, 2011
    Inventors: Ken Suzuki, Tatsuo Yamaguchi