Of Palladium Patents (Class 502/333)
-
Patent number: 12123333Abstract: An exhaust treatment system includes an engine, an exhaust line in fluid communication with the engine, a three-way catalyst downstream of the engine on the exhaust line, a particulate filter downstream of and proximate to the three-way catalyst on the exhaust line, and a sorbent unit comprising a first sorbent and a second sorbent downstream of the three-way catalyst and the particulate filter on the exhaust line. The first sorbent and the second sorbent are proximate to a tailpipe of the exhaust line. A method of treating an exhaust emission from an internal combustion engine during an engine cold-start is also described.Type: GrantFiled: November 21, 2022Date of Patent: October 22, 2024Assignee: SAUDI ARABIAN OIL COMPANYInventors: Emmanuel Laigle, Christophe Chaillou, Caroline Norsic, André Nicolle
-
Patent number: 11794174Abstract: The present invention relates to a catalyst, preferably for the selective catalytic reduction of NOx, for the oxidation of ammonia, for the oxidation of NO and for the oxidation of a hydrocarbon, the catalyst comprising a washcoat comprising one or more layers, the washcoat being disposed on a substrate, wherein the washcoat comprises a platinum group metal supported on a metal oxide support material, and one or more of an oxidic compound of V, an oxidic compound of W and a zeolitic material comprising one or more of Cu and Fe.Type: GrantFiled: December 5, 2017Date of Patent: October 24, 2023Assignee: BASF CorporationInventors: Robert Dorner, Martin Kalwei, Ansgar Wille, Kevin David Beard, Edgar Viktor Huennekes
-
Patent number: 11788450Abstract: A three-way catalyst article, and its use in an exhaust system for internal combustion engines, is disclosed. The catalyst article for treating exhaust gas comprising: a substrate comprising an inlet end and an outlet end with an axial length L; a first catalytic region comprising a first platinum group metal (PGM) component supported on a first PGM support material, wherein the first PGM component comprises rhodium (Rh) and platinum (Pt); and wherein Pt and Rh has a weight ratio of at least 1:10.Type: GrantFiled: October 19, 2021Date of Patent: October 17, 2023Assignee: Johnson Matthey Public Limited CompanyInventors: Paul Millington, Maria C. Vlachou
-
Patent number: 11648535Abstract: The present invention relates to a three-way catalyst (TWC) for treatment of exhaust gases from internal combustion engines operated with a predominantly stoichiometric air/fuel ratio, so called spark ignited engines.Type: GrantFiled: December 8, 2021Date of Patent: May 16, 2023Assignee: UMICORE AG & CO. KGInventors: Masashi Nakashima, John G. Nunan, Ryan J. Andersen
-
Patent number: 11534736Abstract: Emissions treatment systems of combustion engines are provided, which comprise a platinum-containing catalyst that is degreened during production, which is before exposure to operating conditions of a vehicle having a diesel engine. The platinum-containing catalyst, in the form of a platinum component on a high surface area refractory metal oxide support, exhibits a vibration frequency of about 2085 to about 2105 cm?1 as measured by CO-DRIFTS. Such catalytic material is essentially-free of platinum oxide species found at greater than about 2110 cm?1 as measured by CO-DRIFTS. Such catalysts can provide excellent and consistent conversion of nitrogen oxide (NO) to nitrogen dioxide (NO2).Type: GrantFiled: February 14, 2020Date of Patent: December 27, 2022Assignee: BASF CORPORATIONInventors: Xinyi Wei, Stanley A. Roth, Haiyang Zhu
-
Patent number: 11512046Abstract: A process for preparing an aromatic isocyanate by direct carbonylation of a nitro aromatic compound by reacting the nitro aromatic compound with carbon monoxide in the presence of a catalyst, characterized in that the catalyst contains a multi metallic material comprising one or more binary intermetallic phases of the general formula AxBy wherein: A is one or more element selected from Ni, Ru, Rh, Pd, Ir, Pt and Ag, B is one or more element selected from Sn, Sb, Pb, Zn, Ga, In, Ge and As, x is in the range 0.1-10, y in is in the range 0.1-10.Type: GrantFiled: April 4, 2018Date of Patent: November 29, 2022Inventors: Sven Titlbach, Andreas Kuschel, Carlos Lizandara, Stephan A Schunk, Joerg Rother, Juergen Bechtel, Nedko Stefanov Drebov, Stefan Maixner, Matthias Hinrichs, Mohamed Halabi, Imke Britta Mueller, Michaela Fenyn
-
Patent number: 11260372Abstract: A lean gasoline exhaust treatment catalyst article is provided, the article comprising a catalytic material applied on a substrate, wherein the catalytic material comprises a first composition and a second composition, wherein the first and second compositions are present in a layered or zoned configuration, the first composition comprising palladium impregnated onto a porous refractory metal oxide material and rhodium impregnated onto a porous refractory metal oxide material; and the second composition comprising platinum impregnated onto a porous refractory metal oxide material. Methods of making and using such catalyst articles and the associated compositions and systems employing such catalyst articles are also described.Type: GrantFiled: December 15, 2016Date of Patent: March 1, 2022Assignee: BASF CorporationInventors: Wen-mei Xue, Attilio Siani, John K. Hochmuth
-
Patent number: 11167269Abstract: A three-way catalyst device (TWC) includes a first catalytic brick (FCB) and a second catalytic brick (SCB) downstream from the FCB. The FCB has a first washcoat applied to a first support body including ceramic and/or metal oxide particles, Pd particles, and Rh particles, and has at most 35 g/ft3 Pd and at most 7.5 g/ft3 Rh. The SCB has a second washcoat applied to a second support body including ceramic and/or metal oxide particles, Pt particles, and Rh particles, and has a Pt loading of at most 35 g/ft3 Pt and a Rh loading of at most 7.0 g/ft3 Rh. The FCB can have 25 g/ft3 to 35 g/ft3 Pd and 5.5 g/ft3 to 7.5 g/ft3 Rh and the SCB can have 25 g/ft3 to 35 g/ft3 Pt and 5.0 g/ft3 to 7.0 g/ft3 Rh. The TWC can receive exhaust gas from an internal combustion engine powering a vehicle.Type: GrantFiled: July 14, 2020Date of Patent: November 9, 2021Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Gongshin Qi, Wei Li
-
Patent number: 10632458Abstract: A compound honeycomb body comprising a first honeycomb section having a volume V1 and a second honeycomb section fluidly connected to the first honeycomb having a volume V2 is provided. The first honeycomb section comprises a low mass high porosity porous ceramic substrate. The second honeycomb section comprises a standard porous ceramic substrate. Wherein V1/V2 comprises a ratio in a range from about 50/50 to about 10/90.Type: GrantFiled: November 29, 2016Date of Patent: April 28, 2020Assignee: Corning IncorporatedInventors: Thorsten Rolf Boger, Willard Ashton Cutler, Ameya Joshi, Kunal Upendra Sakekar
-
Patent number: 10596552Abstract: Provided is a catalyst for preparing cumene and use thereof. The catalyst provided includes a carrier and an active ingredient. The active ingredient includes: ingredient (1), which is palladium element; and ingredient (2), which is one or more selected from a group consisting of alkali metal elements, alkaline earth metals and molybdenum element. When the catalyst is used for preparing cumene by ?-methyl styrene hydrogenation, AMS conversion rate is high, and a product cumene has high selectivity.Type: GrantFiled: June 20, 2018Date of Patent: March 24, 2020Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, SHANGHAI RESEARCH INSTITUTE OF PETROCHEMICAL TECHNOLOGY, SINOPECInventors: Zhongneng Liu, Xinghua Jiang, Guoyao Gu, Zejun Li, Dongping Yuan
-
Patent number: 9757712Abstract: The present invention relates to a catalyst for the removal of carbon monoxide and hydrocarbon from the exhaust gas of lean-operated internal combustion engines on a supporting body, which bears platinum and/or palladium on one or more refractory carrier materials and also contains cerium oxide and which, after reductive treatment at 250° C. and after CO adsorption, is characterized by certain peaks in Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), and also relates to the use thereof for removing carbon monoxide and hydrocarbon from the exhaust gas of lean-operated internal combustion engines.Type: GrantFiled: October 22, 2014Date of Patent: September 12, 2017Assignee: UMICORE AG & CO. KGInventors: Ruediger Hoyer, Fei Wen, Elena Mueller
-
Patent number: 9687811Abstract: The present disclosure relates to a substrate containing passive NOx adsorption (PNA) materials for treatment of gases, and washcoats for use in preparing such a substrate. Also provided are methods of preparation of the PNA materials, as well as methods of preparation of the substrate containing the PNA materials. More specifically, the present disclosure relates to a coated substrate containing PNA materials for PNA systems, useful in the treatment of exhaust gases. Also disclosed are exhaust treatment systems, and vehicles, such as diesel or gasoline vehicles, particularly light-duty diesel or gasoline vehicles, using catalytic converters and exhaust treatment systems using the coated substrates.Type: GrantFiled: March 19, 2015Date of Patent: June 27, 2017Assignee: SDCmaterials, Inc.Inventors: Maximilian A. Biberger, Bryant Kearl, Qinghua Yin, Xiwang Qi
-
Patent number: 9446395Abstract: A low-temperature catalyst is provided for reducing cold-start hydrocarbon emissions. The catalyst comprises a platinum group metal impregnated onto an oxygen storage material. The catalyst may be used alone or may be included in a hydrocarbon trap containing a hydrocarbon adsorption material therein. The catalyst/hydrocarbon trap is positioned in the exhaust system of a vehicle downstream from a close-coupled catalyst such that the exhaust temperature at the catalyst location does not exceed 850° C. during normal vehicle operation and when combined with a hydrocarbon adsorption material in a trap, the exhaust temperature does not exceed 700° C.Type: GrantFiled: February 19, 2014Date of Patent: September 20, 2016Assignee: Ford Global Technologies, LLCInventors: Lifeng Xu, Robert Walter McCabe, Jason Aaron Lupescu
-
Patent number: 9180310Abstract: Methods of forming a low-dose-rate (LDR) brachytherapy device include depositing a solution comprising a soluble form of a radioactive material on a substrate. A water-insoluble form of the radioactive material is formed on the substrate by chemical precipitation and/or thermal decomposition.Type: GrantFiled: December 3, 2012Date of Patent: November 10, 2015Assignee: Civatech OncologyInventors: Robert D. Black, David Wagner, Claudia Black
-
Patent number: 9120084Abstract: A heat-resistant protective layer having heat resistance than a catalyst layer and permeability which allows an exhaust gas to be supplied to the catalyst layer is formed on a surface of the catalyst layer.Type: GrantFiled: January 6, 2014Date of Patent: September 1, 2015Assignee: HONDA MOTOR CO., LTD.Inventors: Toshiaki Kimura, Hiroyuki Horimura, Takeshi Endo
-
Patent number: 9040449Abstract: Nanoparticle catalyst compositions and methods for preparation of same are described. The nanoparticle catalysts are platinum-free and are useful in effecting selective ring-opening reactions, for example in upgrading heavy oil. The catalyst may be of monometallic composition, or may comprise an alloyed or core-shell bimetallic composition. The nanoparticles are of controlled size and shape.Type: GrantFiled: January 23, 2013Date of Patent: May 26, 2015Assignee: Governors of the University of AlbertaInventors: Natalia Semagina, Xing Yin, Jing Shen, Kavithaa Loganathan
-
Patent number: 9034286Abstract: An exhaust system for a compression ignition engine comprising an oxidation catalyst for treating carbon monoxide (CO) and hydrocarbons (HCs) in exhaust gas from the compression ignition engine, wherein the oxidation catalyst comprises: a platinum group metal (PGM) component selected from the group consisting of a platinum (Pt) component, a palladium (Pd) component and a combination thereof; an alkaline earth metal component; a support material comprising a modified alumina incorporating a heteroatom component; and a substrate, wherein the platinum group metal (PGM) component, the alkaline earth metal component and the support material are disposed on the substrate.Type: GrantFiled: November 21, 2013Date of Patent: May 19, 2015Assignee: Johnson Matthey Public Limited CompanyInventors: David Bergeal, Andrew Francis Chiffey, John Benjamin Goodwin, Daniel Hatcher, Francois Moreau, Agnes Raj, Raj Rao Rajaram, Paul Richard Phillips, Cathal Prendergast
-
Patent number: 9034269Abstract: The present invention relates to a diesel oxidation catalyst comprising a carrier substrate, and a first washcoat layer disposed on the substrate, the first washcoat layer comprising palladium supported on a support material comprising a metal oxide, gold supported on a support material comprising a metal oxide, and a ceria comprising compound, as well as a process for the preparation of such catalyst.Type: GrantFiled: November 27, 2013Date of Patent: May 19, 2015Assignee: BASF SEInventors: Marcus Hilgendorff, Alfred H. Punke, Torsten W. Müller-Stach, Gerd Grubert, Torsten Neubauer, Jeffrey B. Hoke
-
Patent number: 9029288Abstract: A catalyst can be manufactured using a method which can include preparing a first aqueous solution including zirconium, filling the pores of the porous alumina with the aqueous solution by a pore-filling method using the capillary phenomenon, forming a zirconia layer in the pores of the porous alumina, preparing a second aqueous solution including noble metals, filling the pores of the porous alumina with the second aqueous solution by a pore-filling method using the capillary phenomenon, and drying and baking the porous alumina to carry the noble metals in the pores of the porous alumina formed with a zirconia layer.Type: GrantFiled: September 9, 2013Date of Patent: May 12, 2015Assignee: Kabushiki Kaisha F.C.C.Inventors: Ryou Suzuki, Shintaro Yagi, Yusuke Ogata, Sho Taniguchi
-
Patent number: 9029286Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.Type: GrantFiled: April 29, 2013Date of Patent: May 12, 2015Assignee: Massachusettes Institute of TechnologyInventors: Brian Neltner, Angela M. Belcher
-
Patent number: 9024090Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.Type: GrantFiled: December 19, 2012Date of Patent: May 5, 2015Assignee: Celanese International CorporationInventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
-
Patent number: 9018129Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also disclosed is a production process for producing an exhaust gas purifying catalyst. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.Type: GrantFiled: December 12, 2013Date of Patent: April 28, 2015Assignee: Toyota Jidosha Kabushiki KaishaInventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
-
CATALYST COMPOSITION FOR EXHAUST GAS PURIFICATION AND EXHAUST GAS PURIFYING CATALYST FOR AUTOMOBILES
Publication number: 20150111727Abstract: The present invention is to provide a catalyst composition for exhaust gas purification, which is superior in purification performance for nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons (HC) in exhaust gas to be discharged from an internal combustion engine of a gasoline vehicle or the like; and an catalyst for exhaust gas purification for automobiles. The present invention is a catalyst composition for exhaust gas purification for purifying nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas, which includes a catalyst composition wherein rhodium is supported, together with an ?-alumina particle, on a zirconia-type base material, characterized in that average particle size of the ?-alumina particle is 10 nm to 1 ?m, and also is smaller than average particle size of the zirconia (ZrO2)-type base material.Type: ApplicationFiled: May 28, 2013Publication date: April 23, 2015Applicant: N.E. CHEMCAT CORPORATIONInventor: Ken Nagashima -
Patent number: 9011809Abstract: An ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O or NOx. The ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal on an inorganic base material including any of a composite oxide (A) having at least titania and silica as main components, alumina, and a composite oxide (B) consisting of alumina and silica; and a catalyst layer (upper layer) including a composite oxide (C) consisting of at least silica, tungsten oxide, ceria and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is silica: 20% by weight or less, tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.Type: GrantFiled: February 24, 2012Date of Patent: April 21, 2015Assignee: N.E. Chemcat CorporationInventors: Tomoaki Ito, Toshinori Okajima, Takashi Hihara, Makoto Nagata
-
Patent number: 9012352Abstract: The present invention relates to a catalyst for Fischer-Tropsch synthesis which has excellent heat transfer capability. This catalyst contains (1) central core particle or particles made of a heat transfer material (HTM) selected from the group consisting of a metal, a metal oxide, a ceramic, and a mixture thereof; and (2) outer particle layer which surrounds the central core particles and is attached to the surfaces of the central core particles by a binder material layer. The outer particle layer has a support and catalyst particles in a powder form containing metal particles disposed on the support. The catalyst having such a dual particle structure shows excellent heat transfer capability and, thus, exhibits high selectivity to a target hydrocarbon. Therefore, the catalyst of the present invention is useful in a fixed-bed reactor for Fischer-Tropsch synthesis for producing hydrocarbons from synthetic gas.Type: GrantFiled: April 25, 2012Date of Patent: April 21, 2015Assignee: Korea Research Institute of Chemical TechnologyInventors: Kyoung Su Ha, Joo Young Cheon, Yun Jo Lee, Seung-Chan Baek, Geun Jae Kwak, Seon Ju Park, Ki Won Jun
-
Patent number: 9012353Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.Type: GrantFiled: August 8, 2012Date of Patent: April 21, 2015Assignee: Clean Diesel Technologies, Inc.Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
-
Patent number: 9012350Abstract: The herein disclosed exhaust gas purification catalyst is an exhaust gas purification catalyst that is provided with a porous carrier 40 and palladium 50 supported on this porous carrier 40. The porous carrier 40 is provided with an alumina carrier 42 formed of alumina and with a CZ carrier 44 formed of a ceria-zirconia complex oxide. Barium is added to both the alumina carrier 42 and the CZ carrier 44. Here, an amount of barium added to the alumina carrier 42 is an amount that corresponds to 10 mass % to 15 mass % relative to a total mass of the alumina carrier 42 excluding the barium, and an amount of barium added to the CZ carrier 44 is an amount that corresponds to 5 mass % to 10 mass % relative to a total mass of the CZ carrier 44 excluding the barium.Type: GrantFiled: October 22, 2012Date of Patent: April 21, 2015Assignee: Toyota Jidosha Kabushiki KaishaInventor: Yuki Aoki
-
Patent number: 9012348Abstract: A composition comprising a supported hydrogenation catalyst comprising palladium and an organophosphorous compound, the supported hydrogenation catalyst being capable of selectively hydrogenating highly unsaturated hydrocarbons to unsaturated hydrocarbons. A method of making a selective hydrogenation catalyst comprising contacting a support with a palladium-containing compound to form a palladium supported composition, contacting the palladium supported composition with an organophosphorus compound to form a catalyst precursor, and reducing the catalyst precursor to form the catalyst.Type: GrantFiled: December 19, 2013Date of Patent: April 21, 2015Assignee: Chevron Phillips Chemical Company LPInventors: Tin-Tack Peter Cheung, Zongxuan Hong
-
Patent number: 8986637Abstract: An emission control catalyst composition comprising a supported bimetallic catalyst consisting of gold and a metal selected from the group consisting of platinum, rhodium, ruthenium, copper and nickel is disclosed. Also disclosed is a catalytic convertor comprising a substrate monolith coated with the emission control catalyst composition and a lean burn internal combustion engine exhaust gas emission treatment system comprising the catalytic convertor. A variety of processes for preparing the catalyst composition are claimed.Type: GrantFiled: November 6, 2013Date of Patent: March 24, 2015Assignee: Johnson Matthey Public Limited CompanyInventors: Janet Mary Fisher, David Thompsett
-
Patent number: 8969231Abstract: A method of producing an alumina-supported cobalt catalyst for use in a Fischer-Tropsch synthesis reaction, which comprises: calcining an initial ?-alumina support material at a temperature to produce a modified alumina support material; impregnating the modified alumina support material with a source of cobalt; calcining the impregnated support material, activating the catalyst with a reducing gas, steam treating the activated catalyst, and activating the steam treated catalyst with a reducing gas.Type: GrantFiled: August 31, 2010Date of Patent: March 3, 2015Assignee: GTL.FI AGInventors: Erling Rytter, Sigrid Eri, Rune Myrstad, Odd Asbjørn Lindvåg
-
Patent number: 8968690Abstract: Disclosed herein is a layered three-way catalytic system being separated in a front and a rear portion having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides. Provided is a catalyst composite comprising a single front catalytic layer and two rear catalytic layers in conjunction with a substrate, where the single font layer and the rear bottom layer comprise a Pd component, the rear top layer comprises a Rh component, and the rear bottom layer is substantially free of an oxygen storage component (OSC).Type: GrantFiled: November 21, 2011Date of Patent: March 3, 2015Assignee: Umicore AG & Co. KGInventors: John G. Nunan, Raoul Klingmann, Ryan J. Andersen, Davion Onuga Clark, David Henry Moser
-
Patent number: 8962897Abstract: In one embodiment, the invention is to a catalyst composition for converting ethanol to higher alcohols, such as butanol. The catalyst composition comprises one or more metals and one or more supports. The one or more metals selected from the group consisting of cobalt, nickel, palladium, platinum, zinc, iron, tin and copper. The one or more supports are selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and mixtures thereof, wherein the catalyst is substantially free of alkali metals and alkaline earth metals.Type: GrantFiled: December 19, 2012Date of Patent: February 24, 2015Assignee: Celanese International CorporationInventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
-
Patent number: 8961817Abstract: A getter device containing a combination of getter materials is described. The device has a mixture of cerium oxide, copper oxide and metallic palladium for the removal of hydrogen and carbon monoxide in vacuum applications, particularly suitable to be used in vacuum insulation applications. This combination of getter materials is preferably added to powders of other getter materials such as alkali metals hydroxides and desiccant materials that are effective for maintaining the vacuum in thermal insulation systems.Type: GrantFiled: December 21, 2012Date of Patent: February 24, 2015Assignee: SAES Getters S.p.A.Inventors: Luca Toia, Marco Visconti
-
Publication number: 20150033715Abstract: An oxidation catalyst is described for treating an exhaust gas from a diesel engine, which oxidation catalyst comprises: a substrate; a first washcoat region disposed on the substrate, wherein the first washcoat region comprises a first platinum group metal (PGM) and a first support material; a second washcoat region adjacent to the first washcoat region, wherein the second washcoat region comprises a second platinum group metal (PGM) and a second support material; a third washcoat region disposed on the substrate, wherein the third washcoat region comprises a third platinum group metal (PGM) and a third support material; and wherein either: (i) the third washcoat region is adjacent to the second washcoat region; or (ii) the second washcoat region is disposed or supported on the third washcoat region. Also described are uses and methods involving the oxidation catalyst.Type: ApplicationFiled: July 29, 2014Publication date: February 5, 2015Inventors: PENELOPE MARKATOU, YARITZA M. LOPEZ-DE JESUS, WASSIM KLINK, KIERAN JOHN COLE, COLIN RUSSELL NEWMAN, ROBERT HANLEY, YOSHIHITO HASHIMOTO, MASAHITO SHIBATA
-
Patent number: 8945497Abstract: The invention concerns a process for the oxidation of organic compounds contained in a gas stream and comprises the step of introducing the gas stream containing the organic compounds together with sufficient oxygen to effect the desired amount of oxidation into an oxidation reactor containing an oxidation catalyst and maintaining the temperature of said gas stream at a temperature sufficient to effect oxidation, characterised in that the oxidation catalyst contains at least 0.01% by weight of ruthenium, cobalt or manganese.Type: GrantFiled: September 17, 2009Date of Patent: February 3, 2015Assignee: Johnson Matthey PLCInventors: Gareth Headdock, Kenneth George Griffin, Peter Johnston, Martin John Hayes
-
Publication number: 20150031835Abstract: Disclosed is a method for selectively hydrogenating a copolymer, including contacting a heterogeneous catalyst with a copolymer to process hydrogenation The copolymer includes aromatic rings and double bonds, and the double bonds are hydrogenated, and the aromatic rings are substantially not hydrogenated. The heterogeneous catalyst includes a metal catalyst such as platinum, palladium, platinum -iridium alloy, or platinum-rhenium alloy formed on a porous support. The hydrogenation is processed at a temperature of 40° C. to 150° C. under a hydrogen pressure of 10 kg/cm2 to 50 kg/cm2.Type: ApplicationFiled: April 29, 2014Publication date: January 29, 2015Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Man-Yin LO, Ying-Chieh CHEN
-
Patent number: 8940659Abstract: Disclosed is a gas purifying catalyst for an internal combustion engine comprising: a carrier and a catalyst layer formed on the carrier, the catalyst layer including a first catalyst, a second catalyst and a third catalyst. The first catalyst comprises Pd supported in a first support, the first support comprising alumina. The second catalyst comprises Rh supported in a second support, the second support comprising a complex oxide of ceria-zirconia. The third catalyst comprising Pd supported in a third support, the third support comprising a complex oxide of ceria-zirconia.Type: GrantFiled: June 12, 2013Date of Patent: January 27, 2015Assignee: Hyundai Motor CompanyInventors: Cheol Beom Lim, Yoon Sang Nam, Jin Woo Choung, Youngil Song
-
Patent number: 8937203Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.Type: GrantFiled: August 27, 2012Date of Patent: January 20, 2015Assignee: Celanese International CorporationInventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
-
Patent number: 8932546Abstract: A catalytically active particulate filter is proposed which is suitable for use in an exhaust gas cleaning system for diesel engines. The particulate filter removes diesel soot particles from the exhaust gas and is also effective to oxidize carbon monoxide and hydrocarbons and to convert nitrogen monoxide at least proportionally into nitrogen dioxide. The particulate filter comprises a filter body (3) and two catalytically active coatings (1) and (2) which contain platinum and palladium, or platinum or palladium respectively, wherein the platinum content of the second catalytically active coating (2) is higher than the platinum content of the first catalytically active coating (1).Type: GrantFiled: January 29, 2013Date of Patent: January 13, 2015Assignee: Umicore AG & Co. KGInventors: Stephanie Frantz, Ulrich Goebel, Franz Dornhaus, Michael Schiffer
-
Patent number: 8927454Abstract: An exhaust gas-purifying catalyst includes a support provided with one or more through-holes through which exhaust gas flows, and a catalytic layer supported by the support and containing an oxygen storage material. The exhaust gas-purifying catalyst includes a first section to which the exhaust gas is supplied, and a second section to which the exhaust gas having passed through the first section is supplied. The catalytic layer includes a layered structure of a first catalytic layer containing platinum and/or palladium and a second catalytic layer containing rhodium in the first catalytic section and further includes a third layer containing rhodium in the second section. The second section is smaller in oxygen storage material content per unit volumetric capacity than the first section.Type: GrantFiled: October 27, 2011Date of Patent: January 6, 2015Assignee: Cataler CorporationInventors: Minoru Itou, Michihiko Takeuchi, Tetsuya Shinozaki, Takaaki Kanazawa, Masaya Kamada, Tadashi Suzuki, Satoru Katoh, Naoki Takahashi
-
Patent number: 8921258Abstract: Disclosed is a catalyst which can convert ammonia contained in exhaust gas from an engine of a vehicle equipped with a Urea-SCR (Urea-Selective Catalytic Reduction) system, to nitrogen, and a method for preparating the same. The catalyst can convert ammonia which is failed to participate in a conversion reaction of NOx to N2 and slipped out of the SCR catalyst, to nitrogen via a SCO (Selective Catalytic Oxidation) reaction, before the ammonia is released to the air.Type: GrantFiled: November 19, 2010Date of Patent: December 30, 2014Assignee: SK Innovation Co., Ltd.Inventors: Seong Ho Lee, Woo Jin Lee, Young Eun Cheon, Seung Hoon Oh, Sung Hwan Kim, Hong Seok Jung, Yong Woo Kim, Gi Ho Goh
-
Patent number: 8920759Abstract: One embodiment includes an oxidation catalyst assembly formed by applying a washcoat of platinum and a NOx storage material to a portion of a substrate material.Type: GrantFiled: March 2, 2009Date of Patent: December 30, 2014Assignee: GM Global Technology Operations LLCInventors: Jong H. Lee, David B. Brown, Michael J. Paratore, Jr., Yongsheng He
-
Patent number: 8912110Abstract: One embodiment is a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, an alkali or alkaline-earth metal, a lanthanide-series metal, and a support. Generally, an average bulk density of the catalyst is about 0.300 to about 1.00 gram per cubic centimeter. The catalyst has a platinum content of less than about 0.375 wt %, a tin content of about 0.1 to about 2 wt %, a potassium content of about 100 to about 600 wppm, and a cerium content of about 0.1 to about 1 wt %. The lanthanide-series metal can be distributed at a concentration of the lanthanide-series metal in a 100 micron surface layer of the catalyst less than two times a concentration of the lanthanide-series metal at a central core of the catalyst.Type: GrantFiled: July 12, 2012Date of Patent: December 16, 2014Assignee: UOP LLCInventors: Manuela Serban, Mark P. Lapinski
-
Publication number: 20140364303Abstract: Stabilized palladium (+1) compounds to mimic rhodium's electronic configuration and catalytic properties are disclosed. Palladium (+1) compounds may be stabilized in perovskite or delafossite structures and may be employed in Three-Way Catalysts (TWC) for at least the conversion of HC, CO and NOx, in exhaust gases. The TWC may include a substrate, a wash-coat and, a first impregnation layer, a second impregnation layer and an over-coat. The second impregnation layer and the over-coat may include palladium (+1) based compounds as catalyst.Type: ApplicationFiled: June 6, 2013Publication date: December 11, 2014Applicant: CDTIInventor: Randal L. Hatfield
-
Patent number: 8906330Abstract: The present invention relates to a catalyst composition comprising a carrier substrate, a layer (i) coated on said carrier substrate comprising at least one precious group metal, a layer (ii) comprising Rh, and a layer (iii) comprising Pd and/or Pt and being substantially free of Ce, Ba and Rh, wherein the layer (iii) has a lower weight than the layer (i) or the layer (ii). Furthermore, the present invention relates to a method for treating an exhaust gas stream using said catalyst composition.Type: GrantFiled: May 4, 2010Date of Patent: December 9, 2014Assignee: BASF CorporationInventors: Marcus Hilgendorff, Wen Mei Xue, Cesar Tolentino
-
Publication number: 20140357480Abstract: An exhaust gas purification catalyst is provided with a substrate and a catalyst coating layer formed on the surface of the substrate. The catalyst coating layer is formed into a layered structure having upper and lower layers, with a lower layer being closer to the surface of the substrate and an upper layer being relatively farther therefrom. The catalyst coating layer is provided with Rh and Pd as precious metal catalysts and is provided with an OSC material having an oxygen storage capacity as a support. The Rh is disposed in the upper layer of the catalyst coating layer, and the Pd is disposed in both the upper layer and the lower layer of the catalyst coating layer. At least a portion of the Pd in the upper layer and in the lower layer is supported on the OSC material. The mass ratio of the Pd disposed in the upper layer to the Pd disposed in the lower layer is not more than 0.4.Type: ApplicationFiled: December 26, 2012Publication date: December 4, 2014Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHAInventor: Yuki Aoki
-
Patent number: 8895737Abstract: This disclosure is directed to: (a) processes for preparing a compound and salts thereof that, inter alia, are useful for inhibiting hepatitis C virus (HCV); (b) intermediates useful for the preparation of the compound and salts; (c) pharmaceutical compositions comprising the compound or salts; and (d) methods of use of such compositions.Type: GrantFiled: July 15, 2011Date of Patent: November 25, 2014Inventors: Shashank Shekhar, Thaddeus S. Franczyk, David M. Barnes, Travis B. Dunn, Anthony R. Haight, Vincent S. Chan
-
Patent number: 8889078Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.Type: GrantFiled: March 15, 2011Date of Patent: November 18, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
-
Patent number: 8883100Abstract: The present invention relates to a particle filter comprising a porous carrier body, an SCR active component and an oxidation catalyst, wherein the SCR active component is present as coating on the exhaust-gas entry surface and the inner surface of the porous carrier body and the oxidation catalyst as coating on the exhaust-gas exit surface of the porous carrier body. According to the invention the oxidation catalyst changes its function depending on operating conditions. In normal operation it serves as NH3 slip catalyst for oxidizing excess NH3 and during filter regeneration it operates according to the 3-way principle for converting NOx and CO. The invention also relates to a method for producing the particle filter, the use of the particle filter for treating exhaust gases from the combustion of fossil, synthetic or biofuels as well as an exhaust-gas cleaning system which contains the particle filter according to the invention.Type: GrantFiled: November 4, 2009Date of Patent: November 11, 2014Assignee: Sued-Chemie IP GmbH & Co. KGInventors: Martin Paulus, Klaus Wanninger
-
Patent number: 8871669Abstract: A catalyst composition is provided comprising a homogeneous solid mixture having ordered directionally aligned tubular meso-channel pores having an average diameter in a range of about 1 nanometer to about 15 nanometers, wherein the homogeneous solid mixture is prepared from a gel formed in the presence of a solvent, modifier, an inorganic salt precursor of a catalytic metal, an inorganic precursor of a metal inorganic network, and a templating agent. The templating agent comprises an octylphenol ethoxylate having a structure [I]: wherein “n” is an integer having a value of about 8 to 20.Type: GrantFiled: May 28, 2010Date of Patent: October 28, 2014Assignee: General Electric CompanyInventors: Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Ashish Balkrishna Mhadeshwar, Ming Yin