Of Platinum Patents (Class 502/334)
  • Patent number: 9409138
    Abstract: A reactor has a container through which a reactive medium is passed and a plurality of plates in the container defining a plurality of between-plate reaction spaces through which the reactive medium travels. The plates are self-supporting and fixed in the container. Respective self-contained packings each formed by a support independent of the container are each of a flat shape that completely or almost completely fills the between-plate space and are each fittable to a variable depth in and removable from a respective one of the spaces. The supports each hold a catalyst for the reactive medium and are also removable from and insertable with the respective catalyst into the respective spaces such that when the catalyst is exhausted the packings can be replaced with fresh packings.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 9, 2016
    Assignee: DEG ENGINEERING GMBH
    Inventor: Freimut Marold
  • Patent number: 9248430
    Abstract: A method for synthesis of 1-decene oligomer is provided, wherein 1-decene is polymerized at 80-120° C., 0.8-1.4 MPa in the presence of aluminum trichloride catalyst supported on gamma-alumina and n-hexane solvent where the volume ratio of 1-decene to n-hexane is 3:8-4:1. The catalyst is treated as follows: impregnating gamma-alumina carrier in 0.5-2.0 M of hydrochloric acid, sulfuric acid, nitric acid or mixtures thereof, then vacuum drying at 80-100° C. and calcining at 400-800° C.; dissolving 5-10 g of anhydrous aluminum trichloride in 100 ml of tetrachloromethane, trichloromethane or dichloromethane solvent; adding the obtained solution into 10-20 g of activated alumina carrier and obtaining the catalyst after vacuum drying. The conversion of 1-decene is 50 wt % or more. The oligomer has a kinematic viscosity at 40° C. of 6.0-25 mm2/s and a viscosity index of 160-262.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: February 2, 2016
    Assignees: PETROCHINA COMPANY LIMITED, EAST CHINA UNIVERSITY OF SCIENCE
    Inventors: Fuling Huang, Puke Mi, Sihan Wang, Jinhua Qian, Qian Chen, Sheng Xu, Jianzhong Li, Gang Wang, Baojun Zhang, Min Liu, Guizhi Wang, Xuemei Han, Jiabo Qu, Panfeng Lu, Shukun Sun, Xiuhui Wang, Yuxin Gao, Deshun Zhang, Ling Jiang, Buwei Yu, Libo Wang, Yali Wang, Lingting Fan, Peng Wei, Wei Liu, Guiyue Guo
  • Patent number: 9187702
    Abstract: The present invention is directed to a hydroprocessing catalyst containing at least one catalyst support, one or more metals, optionally one or more molecular sieves, optionally one or more promoters, wherein deposition of at least one of the metals is achieved in the presence of a modifying agent.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: November 17, 2015
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Bi-Zeng Zhan, Theodorus Maesen, Janine Lichtenberger, Andrew Rainis, Hye-Kyung Timken
  • Patent number: 9133401
    Abstract: An improved catalyst for hydrodemetallization of heavy crude oils and residua is disclosed. The catalyst is adopted for fixed bed hydroprocessing units. The invention is characterized for having a large pore diameter catalyst principally for hydrodemetallization of heavy oil and residue in a first reactor of a multi-reactor process. The catalyst has high demetallizing activity and high metal deposition capacity which results in good stability with time on stream (TOS). The hydrorefining catalyst is obtained by kneading a porous starting powder principally composed of gamma-alumina and having a pore capacity of 0.3-0.6 ml/g or larger and a mean pore diameter of 10 to 26 nm, extrudating and calcining, and after that supported with active metals component of elements belonging to groups VIIIB and VIB of the periodic table.
    Type: Grant
    Filed: May 26, 2008
    Date of Patent: September 15, 2015
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Mohan Singh Rana, Jorge Ancheyta Juárez, Patricia Rayo Mayoral, Samir Kumar Maity
  • Patent number: 9126192
    Abstract: A sol includes metal oxide nanoparticles and stabilizer ions dispersed in an aqueous liquid. The nanoparticles include a metal selected from the group of platinum, palladium, rhodium, iridium, ruthenium and osmium and the molar ratio of metal: stabilizer ions is at least 0.7. A method of preparing supported catalyst materials includes contacting the sols with support materials.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: September 8, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Janet Mary Fisher, David Thompsett
  • Patent number: 9034269
    Abstract: The present invention relates to a diesel oxidation catalyst comprising a carrier substrate, and a first washcoat layer disposed on the substrate, the first washcoat layer comprising palladium supported on a support material comprising a metal oxide, gold supported on a support material comprising a metal oxide, and a ceria comprising compound, as well as a process for the preparation of such catalyst.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: May 19, 2015
    Assignee: BASF SE
    Inventors: Marcus Hilgendorff, Alfred H. Punke, Torsten W. Müller-Stach, Gerd Grubert, Torsten Neubauer, Jeffrey B. Hoke
  • Patent number: 9034286
    Abstract: An exhaust system for a compression ignition engine comprising an oxidation catalyst for treating carbon monoxide (CO) and hydrocarbons (HCs) in exhaust gas from the compression ignition engine, wherein the oxidation catalyst comprises: a platinum group metal (PGM) component selected from the group consisting of a platinum (Pt) component, a palladium (Pd) component and a combination thereof; an alkaline earth metal component; a support material comprising a modified alumina incorporating a heteroatom component; and a substrate, wherein the platinum group metal (PGM) component, the alkaline earth metal component and the support material are disposed on the substrate.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: May 19, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: David Bergeal, Andrew Francis Chiffey, John Benjamin Goodwin, Daniel Hatcher, Francois Moreau, Agnes Raj, Raj Rao Rajaram, Paul Richard Phillips, Cathal Prendergast
  • Patent number: 9029286
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 12, 2015
    Assignee: Massachusettes Institute of Technology
    Inventors: Brian Neltner, Angela M. Belcher
  • Patent number: 9024090
    Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 5, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Patent number: 9018129
    Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also disclosed is a production process for producing an exhaust gas purifying catalyst. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
  • Patent number: 9017576
    Abstract: Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: April 28, 2015
    Assignee: King Abdullah University of Science and Technology
    Inventors: Gregory Biausque, Paco Laveille, Dalaver H. Anjum, Valerie Caps, Jean-Marie Basset
  • Patent number: 9011809
    Abstract: An ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O or NOx. The ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal on an inorganic base material including any of a composite oxide (A) having at least titania and silica as main components, alumina, and a composite oxide (B) consisting of alumina and silica; and a catalyst layer (upper layer) including a composite oxide (C) consisting of at least silica, tungsten oxide, ceria and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is silica: 20% by weight or less, tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: April 21, 2015
    Assignee: N.E. Chemcat Corporation
    Inventors: Tomoaki Ito, Toshinori Okajima, Takashi Hihara, Makoto Nagata
  • Patent number: 9012353
    Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 21, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Patent number: 9012352
    Abstract: The present invention relates to a catalyst for Fischer-Tropsch synthesis which has excellent heat transfer capability. This catalyst contains (1) central core particle or particles made of a heat transfer material (HTM) selected from the group consisting of a metal, a metal oxide, a ceramic, and a mixture thereof; and (2) outer particle layer which surrounds the central core particles and is attached to the surfaces of the central core particles by a binder material layer. The outer particle layer has a support and catalyst particles in a powder form containing metal particles disposed on the support. The catalyst having such a dual particle structure shows excellent heat transfer capability and, thus, exhibits high selectivity to a target hydrocarbon. Therefore, the catalyst of the present invention is useful in a fixed-bed reactor for Fischer-Tropsch synthesis for producing hydrocarbons from synthetic gas.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: April 21, 2015
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kyoung Su Ha, Joo Young Cheon, Yun Jo Lee, Seung-Chan Baek, Geun Jae Kwak, Seon Ju Park, Ki Won Jun
  • Patent number: 8999880
    Abstract: A method for producing a dehydrogenation catalyst including an immersion step of impregnating an alumina layer of an alumina carrier with a platinum solution containing hexahydroxo platinate (IV) ions with an immersion method, wherein the alumina carrier has the alumina layer formed by anodic oxidation on at least a part of the surface of an aluminum support; and a calcination step of calcining the alumina carrier subjected to the immersion step to provide a dehydrogenation catalyst.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: April 7, 2015
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Nanako Obata, Atsushi Segawa, Yuichiro Hirano
  • Publication number: 20150093686
    Abstract: A method of preparing catalytic materials comprising depositing platinum or non-platinum group metals, or alloys thereof on a porous oxide support.
    Type: Application
    Filed: March 11, 2013
    Publication date: April 2, 2015
    Applicant: STC.UNM
    Inventors: Alexey Serov, Ulises A Martinez, Plamen B Atanassov
  • Patent number: 8993476
    Abstract: A method for producing a dehydrogenation catalyst including an immersion step of impregnating an alumina layer of an alumina carrier with a platinum solution containing hexahydroxo platinate (IV) ions with an immersion method, wherein the alumina carrier has the alumina layer formed by anodic oxidation on at least a part of the surface of an aluminum support; and a calcination step of calcining the alumina carrier subjected to the immersion step to provide a dehydrogenation catalyst.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: March 31, 2015
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Nanako Obata, Atsushi Segawa, Yuichiro Hirano
  • Patent number: 8986637
    Abstract: An emission control catalyst composition comprising a supported bimetallic catalyst consisting of gold and a metal selected from the group consisting of platinum, rhodium, ruthenium, copper and nickel is disclosed. Also disclosed is a catalytic convertor comprising a substrate monolith coated with the emission control catalyst composition and a lean burn internal combustion engine exhaust gas emission treatment system comprising the catalytic convertor. A variety of processes for preparing the catalyst composition are claimed.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: March 24, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Janet Mary Fisher, David Thompsett
  • Patent number: 8969231
    Abstract: A method of producing an alumina-supported cobalt catalyst for use in a Fischer-Tropsch synthesis reaction, which comprises: calcining an initial ?-alumina support material at a temperature to produce a modified alumina support material; impregnating the modified alumina support material with a source of cobalt; calcining the impregnated support material, activating the catalyst with a reducing gas, steam treating the activated catalyst, and activating the steam treated catalyst with a reducing gas.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 3, 2015
    Assignee: GTL.FI AG
    Inventors: Erling Rytter, Sigrid Eri, Rune Myrstad, Odd Asbjørn Lindvåg
  • Patent number: 8952076
    Abstract: A method of producing an alumina-supported catalyst for use in a Fischer-Tropsch synthesis reaction, which comprises: calcining an initial ?-alumina support material at a temperature of at least 550° C. to produce a modified alumina support material; impregnating the modified alumina support material with a source cobalt; calcining the impregnated support material at a temperature of 700° C. to 1200° C., and activating the catalyst.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: February 10, 2015
    Assignee: Statoil ASA
    Inventors: Erling Rytter, Torild Hulsund Skagseth, Hanne Wigum, Nonyameko Sincadu
  • Publication number: 20150038758
    Abstract: The provided is a method for preparing a platinum-tin-metal-alumina catalyst by comprising: as an active ingredient, platinum which has a high activity in a direct dehydrogenation reaction of n-butane, tin which can increase the catalyst stability by preventing carbon deposition; additionally metal for reducing the level of catalyst inactivation over the reaction time; and an alumina carrier for supporting said components. Further, provided is a method for producing a high value product, C4 olefins from low cost n-butane by using the catalyst prepared by the method according to the present invention in a direct dehydrogenation reaction.
    Type: Application
    Filed: July 28, 2014
    Publication date: February 5, 2015
    Inventors: Gle PARK, Yeon Shick YOO, Jin Suk LEE, Ho Sik CHANG, Chang Hyun CHOI, In Kyu SONG, Hyun SEO, Jong Kwon LEE
  • Patent number: 8945309
    Abstract: A catalyst for cellulose hydrolysis and/or the reduction of hydrolysis products, in which a transition metal of group 8 to 11 is supported on a solid support. A method of producing sugar alcohols comprising: hydrolyzing cellulose in the presence of the catalyst in a hydrogen-containing atmosphere with pressurization; and reducing the hydrolysis product of cellulose. Provided are a catalyst for use in the production of sugar alcohols by the hydrolysis and hydrogenation of cellulose that affords easy separation of catalyst and product, and that does not require pH adjustment, acid or alkali neutralization, or activation of the catalyst during reuse, and a method of producing sugar alcohols from cellulose employing this catalyst.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: February 3, 2015
    Assignee: National University Corporation Hokkaido University
    Inventors: Atsushi Fukuoka, Paresh Laxmikant Dhepe
  • Patent number: 8945497
    Abstract: The invention concerns a process for the oxidation of organic compounds contained in a gas stream and comprises the step of introducing the gas stream containing the organic compounds together with sufficient oxygen to effect the desired amount of oxidation into an oxidation reactor containing an oxidation catalyst and maintaining the temperature of said gas stream at a temperature sufficient to effect oxidation, characterised in that the oxidation catalyst contains at least 0.01% by weight of ruthenium, cobalt or manganese.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: February 3, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Gareth Headdock, Kenneth George Griffin, Peter Johnston, Martin John Hayes
  • Patent number: 8940657
    Abstract: An exhaust emission control catalyst disclosed herein is equipped with a rhodium catalytic layer and a platinum catalytic layer, and is characterized in that a relationship between a mole average (X) of a Pauling's electronegativity that is calculated as to elements included in the rhodium catalytic layer except platinum group elements and oxygen and a mole average (Y) of a Pauling's electronegativity that is calculated as to elements included in the platinum catalytic layer except platinum group elements and oxygen is 1.30?X?1.45 and 1.47?Y?2.0. According to this exhaust emission control catalyst, an interlayer transfer of platinum and/or rhodium and the alloying of platinum and/or rhodium are suppressed during use of the catalyst, and high exhaust gas purification performance can be exerted.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: January 27, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshihide Segawa
  • Patent number: 8940659
    Abstract: Disclosed is a gas purifying catalyst for an internal combustion engine comprising: a carrier and a catalyst layer formed on the carrier, the catalyst layer including a first catalyst, a second catalyst and a third catalyst. The first catalyst comprises Pd supported in a first support, the first support comprising alumina. The second catalyst comprises Rh supported in a second support, the second support comprising a complex oxide of ceria-zirconia. The third catalyst comprising Pd supported in a third support, the third support comprising a complex oxide of ceria-zirconia.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: January 27, 2015
    Assignee: Hyundai Motor Company
    Inventors: Cheol Beom Lim, Yoon Sang Nam, Jin Woo Choung, Youngil Song
  • Patent number: 8937203
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Patent number: 8932546
    Abstract: A catalytically active particulate filter is proposed which is suitable for use in an exhaust gas cleaning system for diesel engines. The particulate filter removes diesel soot particles from the exhaust gas and is also effective to oxidize carbon monoxide and hydrocarbons and to convert nitrogen monoxide at least proportionally into nitrogen dioxide. The particulate filter comprises a filter body (3) and two catalytically active coatings (1) and (2) which contain platinum and palladium, or platinum or palladium respectively, wherein the platinum content of the second catalytically active coating (2) is higher than the platinum content of the first catalytically active coating (1).
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: January 13, 2015
    Assignee: Umicore AG & Co. KG
    Inventors: Stephanie Frantz, Ulrich Goebel, Franz Dornhaus, Michael Schiffer
  • Patent number: 8927454
    Abstract: An exhaust gas-purifying catalyst includes a support provided with one or more through-holes through which exhaust gas flows, and a catalytic layer supported by the support and containing an oxygen storage material. The exhaust gas-purifying catalyst includes a first section to which the exhaust gas is supplied, and a second section to which the exhaust gas having passed through the first section is supplied. The catalytic layer includes a layered structure of a first catalytic layer containing platinum and/or palladium and a second catalytic layer containing rhodium in the first catalytic section and further includes a third layer containing rhodium in the second section. The second section is smaller in oxygen storage material content per unit volumetric capacity than the first section.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: January 6, 2015
    Assignee: Cataler Corporation
    Inventors: Minoru Itou, Michihiko Takeuchi, Tetsuya Shinozaki, Takaaki Kanazawa, Masaya Kamada, Tadashi Suzuki, Satoru Katoh, Naoki Takahashi
  • Patent number: 8920985
    Abstract: A method of generating electrical power includes flowing hydrogen across an anode, splitting the hydrogen into protons and electrons using a catalyst attached to the anode, directing the electrons to a circuit to produce electrical power, flowing oxygen across a cathode, splitting the oxygen molecules into oxygen atoms using a cathode catalyst, passing the protons through an electrolyte to the cathode, and combining the protons with oxygen to form water. The cathode catalyst includes a plurality of nanoparticles having terraces formed of platinum, and corner regions and edge regions formed of a second metal.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 30, 2014
    Assignee: Ballard Power Systems Inc.
    Inventors: Minhua Shao, Belabbes Merzougui, Patrick L. Hagans, Susanne M. Opalka
  • Patent number: 8920759
    Abstract: One embodiment includes an oxidation catalyst assembly formed by applying a washcoat of platinum and a NOx storage material to a portion of a substrate material.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jong H. Lee, David B. Brown, Michael J. Paratore, Jr., Yongsheng He
  • Publication number: 20140371501
    Abstract: A process for dehydrogenating alkane or alkylaromatic compounds comprising contacting the given compound and a dehydrogenation catalyst in a fluidized bed. The dehydrogenation catalyst is prepared from an at least partially deactivated platinum/gallium catalyst on an alumina-based support that is reconstituted by impregnating it with a platinum salt solution, then calcining it at a temperature from 400° C. to 1000° C., under conditions such that it has a platinum content ranging from 1 to 500 ppm, based on weight of catalyst; a gallium content ranging from 0.2 to 2.0 wt %; and a platinum to gallium ratio ranging from 1:20,000 to 1:4. It also has a Pt retention that is equal to or greater than that of a fresh catalyst being used in a same or similar catalytic process.
    Type: Application
    Filed: February 6, 2013
    Publication date: December 18, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Lin Luo, Devon C. Rosenfeld, Andrzej M. Malek
  • Patent number: 8912110
    Abstract: One embodiment is a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, an alkali or alkaline-earth metal, a lanthanide-series metal, and a support. Generally, an average bulk density of the catalyst is about 0.300 to about 1.00 gram per cubic centimeter. The catalyst has a platinum content of less than about 0.375 wt %, a tin content of about 0.1 to about 2 wt %, a potassium content of about 100 to about 600 wppm, and a cerium content of about 0.1 to about 1 wt %. The lanthanide-series metal can be distributed at a concentration of the lanthanide-series metal in a 100 micron surface layer of the catalyst less than two times a concentration of the lanthanide-series metal at a central core of the catalyst.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: Manuela Serban, Mark P. Lapinski
  • Patent number: 8906330
    Abstract: The present invention relates to a catalyst composition comprising a carrier substrate, a layer (i) coated on said carrier substrate comprising at least one precious group metal, a layer (ii) comprising Rh, and a layer (iii) comprising Pd and/or Pt and being substantially free of Ce, Ba and Rh, wherein the layer (iii) has a lower weight than the layer (i) or the layer (ii). Furthermore, the present invention relates to a method for treating an exhaust gas stream using said catalyst composition.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: December 9, 2014
    Assignee: BASF Corporation
    Inventors: Marcus Hilgendorff, Wen Mei Xue, Cesar Tolentino
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Patent number: 8883100
    Abstract: The present invention relates to a particle filter comprising a porous carrier body, an SCR active component and an oxidation catalyst, wherein the SCR active component is present as coating on the exhaust-gas entry surface and the inner surface of the porous carrier body and the oxidation catalyst as coating on the exhaust-gas exit surface of the porous carrier body. According to the invention the oxidation catalyst changes its function depending on operating conditions. In normal operation it serves as NH3 slip catalyst for oxidizing excess NH3 and during filter regeneration it operates according to the 3-way principle for converting NOx and CO. The invention also relates to a method for producing the particle filter, the use of the particle filter for treating exhaust gases from the combustion of fossil, synthetic or biofuels as well as an exhaust-gas cleaning system which contains the particle filter according to the invention.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 11, 2014
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Martin Paulus, Klaus Wanninger
  • Patent number: 8871669
    Abstract: A catalyst composition is provided comprising a homogeneous solid mixture having ordered directionally aligned tubular meso-channel pores having an average diameter in a range of about 1 nanometer to about 15 nanometers, wherein the homogeneous solid mixture is prepared from a gel formed in the presence of a solvent, modifier, an inorganic salt precursor of a catalytic metal, an inorganic precursor of a metal inorganic network, and a templating agent. The templating agent comprises an octylphenol ethoxylate having a structure [I]: wherein “n” is an integer having a value of about 8 to 20.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 28, 2014
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Ashish Balkrishna Mhadeshwar, Ming Yin
  • Patent number: 8865615
    Abstract: Ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O and leakage of ammonia. The ammonia oxidation catalyst (AMOX) removes surplus ammonia, in selectively reducing nitrogen oxides by adding urea or ammonia and using a selective catalytic reduction (SCR) catalyst, into exhaust gas, wherein the ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal element on a composite oxide (A) having titania and silica as main components, and a catalyst layer (upper layer) including a composite oxide (C) consisting of tungsten oxide, ceria, and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: October 21, 2014
    Assignee: N.E. Chemcat Corporation
    Inventors: Tomoaki Ito, Toshinori Okajima, Makoto Nagata
  • Patent number: 8865611
    Abstract: A method of forming a catalyst, comprising: providing a plurality of support particles and a plurality of mobility-inhibiting particles, wherein each support particle in the plurality of support particles is bonded with its own catalytic particle; and bonding the plurality of mobility-inhibiting particles to the plurality of support particles, wherein each support particle is separated from every other support particle in the plurality of support particles by at least one of the mobility-inhibiting particles, and wherein the mobility-inhibiting particles are configured to prevent the catalytic particles from moving from one support particle to another support particle.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: October 21, 2014
    Assignee: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger
  • Publication number: 20140309470
    Abstract: The provided is a preparation method of a platinum/tin/alumina catalyst which comprises platinum as an active component having high activity to direct dehydrogenation of n-butane, tin capable of preventing platinum particles from being sintered and maintaining a size of the platinum particles to be small, thereby improving dispersibility and increasing an amount at an active site during the dehydrogenation and also capable of suppressing carbon deposition, thereby increasing stability of the catalyst, and as an support for supporting them, an alumina support which is known as being suitable for direct dehydrogenation of n-butane and is capable of maintaining high dispersibility of the platinum with high thermal and mechanical stability, and a method for producing high value-added C4 olefins through direct dehydrogenation of inexpensive n-butane by using the catalyst prepared by the preparation method.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 16, 2014
    Applicant: SAMSUNG TOTAL PETROCHEMICALS CO., LTD.
    Inventors: Gle PARK, Yeon Shick YOO, Young Jin CHO, Jin Suk LEE, Ho Sik CHANG, Chang Hyun CHOI, In Kyu SONG, Jong Kwon LEE, Hyun SEO
  • Patent number: 8858904
    Abstract: Described is a catalyzed soot filter wherein the inlet coating of the filter comprises an oxidation catalyst comprising platinum (Pt) and optionally palladium (Pd), wherein the outlet coating of the filter comprises an oxidation catalyst comprising Pd and optionally Pt, wherein the Pt concentration in the outlet coating is lower than the Pt concentration in the inlet coating and wherein the weight ratio of Pt:Pd in the outlet coating is in the range of from 0:1 to 2:1; and wherein the inlet coating and the outlet coating are present on the wall flow substrate at a coating loading ratio in the range of from 0.5 to 1.5, calculated as ratio of the loading of the inlet coating (in g/inch3 (g/(2.54 cm)3)):loading of the outlet coating (in g/inch3 (g/(2.54 cm)3)). Systems include such catalyzed soot filters, methods of diesel engine exhaust gas treatment and methods of manufacturing catalyzed soot filters are also described.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: October 14, 2014
    Assignee: BASF Corporation
    Inventors: Alfred Helmut Punke, Gerd Grubert, Yuejin Li, Ruediger Wolff, Stanley Roth, Torsten Müller-Stach, Attilio Siani, Kenneth Voss, Torsten Neubauer
  • Patent number: 8859458
    Abstract: Provided are a method of preparing an electrocatalyst for fuel cells in a core-shell structure, an electrocatalyst for fuel cells having a core-shell structure, and a fuel cell including the electrocatalyst for fuel cells. The method may be useful in forming a core and a shell layer without performing a subsequent process such as chemical treatment or heat treatment and forming a core support in which core particles having a nanosize diameter are homogeneously supported, followed by selectively forming shell layers on surfaces of the core particles in the support. Also, the electrocatalyst for fuel cells has a high catalyst-supporting amount and excellent catalyst activity and electrochemical property.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: October 14, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Seung Jun Hwang, Sung Jong Yoo, Soo Kil Kim, Eun Ae Cho, Jong Hyun Jang, Hyoung Juhn Kim, Suk Woo Nam, Tae Hoon Lim
  • Patent number: 8859454
    Abstract: The invention relates to a method for producing a catalyst, wherein the catalyst has a high activity and selectivity with regard to the oxidation of CO and NO. The invention also relates to the catalyst produced using the method according to the invention, the use of the catalyst as oxidation catalyst as well as a catalyst component which contains the catalyst according to the invention. Finally, the invention is directed towards an exhaust-gas cleaning system which comprises the catalyst component containing the catalyst according to the invention.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: October 14, 2014
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Andreas Bentele, Klaus Wanninger, Gerd Maletz, Martin Schneider
  • Patent number: 8853120
    Abstract: An exhaust gas purification catalyst has a substrate, a lower catalyst layer that is formed on the substrate and contains at least one of Pd and Pt, and an upper catalyst layer that is formed on the lower catalyst layer and contains Rh. A region that does not contain the upper catalyst layer is disposed on the exhaust gas upstream side of this exhaust gas purification catalyst. The lower catalyst layer includes a front-stage lower catalyst layer on the exhaust gas upstream side and a rear-stage lower catalyst layer on the exhaust gas downstream side. The front-stage lower catalyst layer contains an oxygen storage material.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: October 7, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuki Aoki, Takeshi Nobukawa
  • Patent number: 8852519
    Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also, disclosed is a production process of an exhaust gas purifying catalyst, by which the above exhaust gas purifying catalyst can be produced. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: October 7, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
  • Patent number: 8853123
    Abstract: Disclosed is a lean NOx trap (LNT) catalyst with enhanced NOx storage capacity at low temperature. More particularly, an LNT catalyst with enhanced NOx storage capacity at low temperature and significantly inhibited thermal desorption is prepared by coating a washcoat on a honeycomb-type carrier and drying and baking the same. The washcoat contains a first catalyst powder in which barium (Ba) and a precious metal are supported on a ceria support, and a second catalyst powder in which a precious metal is supported on a magnesium (Mg)-substituted alumina support The LNT catalyst of the present invention is useful as a NOx reducing catalyst for a passenger diesel vehicle.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: October 7, 2014
    Assignee: Hyundai Motor Company
    Inventor: Chang Ho Jung
  • Patent number: 8833064
    Abstract: Catalyst articles comprising substantially only a palladium precious metal component in a first catalytic layer and a rhodium component in a second catalytic layer and related methods of preparation and use are disclosed. Also disclosed is a catalyst article comprising a first layer formed on a carrier substrate, wherein the first layer comprises a refractory metal oxide and has a surface that is substantially uniform; a second layer formed on the first layer, wherein the second layer comprises i) an oxygen storage component that is about 50-90% by weight of the second layer and ii) a palladium component in an amount of about 2-5% by weight of the second layer, wherein the palladium component is substantially the only platinum group metal component, and a palladium-free third layer comprising a rhodium component supported on a thermostable oxygen storage component which is about 80-99% by weight of the second layer. One or more improved properties are exhibited by the catalyst article.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: September 16, 2014
    Assignee: BASF Corporation
    Inventors: Michael P. Galligan, Pascaline H. Tran, Keshavaraja Alive, Ye Liu
  • Publication number: 20140256541
    Abstract: A method for producing a dehydrogenation catalyst including an immersion step of impregnating an alumina layer of an alumina carrier with a platinum solution containing hexahydroxo platinate (IV) ions with an immersion method, wherein the alumina carrier has the alumina layer formed by anodic oxidation on at least a part of the surface of an aluminum support; and a calcination step of calcining the alumina carrier subjected to the immersion step to provide a dehydrogenation catalyst.
    Type: Application
    Filed: May 23, 2014
    Publication date: September 11, 2014
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Nanako OBATA, Atsushi SEGAWA, Yuichiro HIRANO
  • Patent number: 8828343
    Abstract: Catalyst articles comprising palladium and related methods of preparation and use are disclosed. Disclosed is a catalyst article comprising a first catalytic layer formed on a substrate, wherein the first catalytic layer comprises palladium impregnated on a ceria-free oxygen storage component and platinum impregnated on a refractory metal oxide, and a second catalytic layer formed on the first catalytic layer comprising platinum and rhodium impregnated on a ceria-containing oxygen storage component. The palladium component of the catalyst article is present in a higher proportion relative to the other platinum group metal components. The catalyst articles provide improved conversion of carbon monoxide in exhaust gases, particularly under rich engine operating conditions.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: September 9, 2014
    Assignee: BASF Corporation
    Inventors: Xinsheng Liu, Ye Liu, Pascaline Harrison Tran, Keshavaraja Alive, Michael P. Galligan
  • Patent number: 8828900
    Abstract: The exhaust gas purification catalyst according to the present invention has a substrate 54, a lower layer 57 disposed on this substrate 54, and an upper layer 58 disposed on this lower layer 57. The upper layer 58 is provided with a first catalyst and a second catalyst, and the lower layer 57 is provided with a first catalyst. This first catalyst has Al2O3 as a carrier and Pt and Pd as noble metals supported on the Al2O3, while the second catalyst typically has an Al2O3—ZrO2—TiO2 complex oxide as a carrier and has Pd as a noble metal supported on the Al2O3—ZrO2—TiO2 complex oxide. Moreover, the upper layer 58 has a hydrocarbon adsorbent 68.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: September 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobuyuki Takagi, Yuichi Sobue, Hanae Ikeda, Masaya Kamada, Ryoichi Inde
  • Patent number: 8802044
    Abstract: The invention relates to a filtration structure, for filtering a gas coming from a diesel engine, which is laden with gaseous pollutants of the nitrogen oxide NOx type and with solid particles, of the particulate filter type, said filtration structure being characterized in that it includes a catalytic system comprising at least one noble metal or transition metal suitable for reducing the NOx and a support material, in which said support material comprises or is made of a zirconium oxide partially substituted with a trivalent cation M3+ or with a divalent cation M?2+, said zirconium oxide being in a reduced, oxygen-sub-stoichiometric, state.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: August 12, 2014
    Assignees: Saint-Gobain Centre de Recherches et d'Etudes Europeen, Centre National de la Recherche Scientifique
    Inventors: Philippe Vernoux, Abdelkader Hadjar, Agnes Princivalle, Christian Guizard