Of Platinum Patents (Class 502/334)
  • Patent number: 8173100
    Abstract: Catalytic system comprising at least two components: a catalyst for the hydrolysis reaction of metal borohydrides to hydrogen; and a material in solid form, the dissolution reaction of which in water is exothermic.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: May 8, 2012
    Assignee: Commisariat a l'Energie Atomique
    Inventors: Philippe Capron, Jérôme Delmas, Nathalie Giacometti, Isabelle Rougeaux
  • Patent number: 8168562
    Abstract: A new method for preparing supported palladium-gold catalysts is disclosed. The method comprises sulfating a titanium dioxide support, calcining the sulfated support, impregnating the calcined support with a palladium salt, a gold salt, and an alkali metal or ammonium compound, calcining the impregnated support, and reducing the calcined support. The resultant supported palladium-gold catalysts have increased activity and stability in the acetoxylation.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: May 1, 2012
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: Steven M. Augustine
  • Patent number: 8168561
    Abstract: A core-shell catalyst material can include a core and a shell material. Each of the core material and the shell material can have crystal structures and lattice parameters which allow for a substantially coherent core-shell interface. The shell material can include a catalytically active metal. The circumferential stress of the shell material, ???, at the core-shell interface and at the shell surface, is greater than 0 (tensile) or can be compressive of a lower magnitude than a catalyst made of the shell material alone. The crystal structures of the core material can often be the same as the shell material, although this is not always required.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: May 1, 2012
    Assignee: University of Utah Research Foundation
    Inventor: Anil V. Virkar
  • Patent number: 8163669
    Abstract: Materials that are useful for absorption enhanced reforming (AER) of a fuel, including absorbent materials and catalyst materials and methods for using the materials. The materials can be fabricated by spray processing. The use of the materials in AER can produce a H2 product gas having a high H2 content and a low level of carbon oxides.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: April 24, 2012
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Paolina Atanassova, Jian-Ping Shen, Paul Napolitano, James Brewster
  • Patent number: 8158554
    Abstract: A high heat-resistant catalyst includes: noble metal particles; first compounds which contact the noble metal particles and suppress movement of the noble metal particles; and second compounds which envelop the noble metal particles and the first compounds, suppress the movement of the noble metal particles, and suppress coagulation of the first compounds following mutual contact of the first compounds. The first compounds support the noble metal particles, and single piece or aggregate of the first compounds supporting the noble metal particles are included in a section partitioned by the second compounds. A coefficient of linear thermal expansion of the second compounds is 1.2×10?5 [K?1] or less.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: April 17, 2012
    Assignees: Nissan Motor Co., Ltd., RENAULT s.a.s.
    Inventors: Hironori Wakamatsu, Masanori Nakamura, Masahiro Takaya, Katsuo Suga, Hiroto Kikuchi, Jun Ikezawa
  • Patent number: 8158257
    Abstract: The present invention is directed to an improved catalyst support and to the resultant catalyst suitable for treating exhaust products from internal combustion engines, especially diesel engines. The support of the present invention is a structure comprising alumina core particulate having high porosity and surface area, wherein the structure has from about 1 to about 8 weight percent silica in the form of cladding on the surface area of said alumina core. The resultant support has a sulfur tolerance efficiency (?) of at least 1000 ?g/m2.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: April 17, 2012
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Manoj Mukund Koranne, James Neil Pryor
  • Patent number: 8153549
    Abstract: A catalyst for treating an exhaust gas has at least a carrier and plural layers formed on the carrier, wherein at least one layer of the above plural layers has an interstice in the layer, and at least one layer of the above plural layers contains a catalyst component. The above catalyst for treating an exhaust gas allows the enhancement of the diffusion of an exhaust gas in a catalyst layer, which results in the improvement of catalyst efficiency.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: April 10, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Jin Cho, Kenji Tanikawa
  • Patent number: 8148293
    Abstract: Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: April 3, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Stefan Vajda, Michael J. Pellin, Jeffrey W. Elam, Christopher L. Marshall, Randall A. Winans, Karl-Heinz Meiwes-Broer
  • Patent number: 8143189
    Abstract: Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: March 27, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Stefan Vajda, Michael J. Pellin, Jeffrey W. Elam, Christopher L. Marshall, Randall A. Winans, Karl-Heinz Meiwes-Broer
  • Patent number: 8143187
    Abstract: A process for preparing supported catalyst in pellet or coated monolith form is disclosed the method includes the steps of: forming a mixed metal carbonate complex having at least two metals by subjecting a first metal carbonate containing compound to ion exchange with desired metal cations; heat treating the resulting mixed metal carbonate complex to form a mixed oxide which consists of active metal oxides supported on a catalyst support; forming the resulting supported catalysts into pellets or coating the resulting supported catalyst onto a monolithic support. The catalysts may be used for treating effluents containing organic material in the presence of an oxidising agent.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: March 27, 2012
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Manh Hoang, Kingsley Opoku-Gyamfi
  • Patent number: 8133837
    Abstract: Decreasing HC emission is made possible. An exhaust gas-purifying catalyst includes a substrate, a hydrocarbon-adsorbing layer covering the substrate, and a catalytic layer covering the hydrocarbon-adsorbing layer. The catalytic layer includes a layered structure of a first catalytic layer including a precious metal and a carrier supporting it, and a second catalytic layer including the same precious metal as the precious metal of the first catalytic layer and a carrier supporting it and having a concentration of the precious metal higher than that in the first catalytic layer.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: March 13, 2012
    Assignee: Cataler Corporation
    Inventors: Yuji Yabuzaki, Akimasa Hirai, Kenichi Taki
  • Publication number: 20120058036
    Abstract: A CO shift catalyst according to the present invention reforms carbon monoxide (CO) and is prepared from one or a mixture of platinum (Pt), ruthenium (Ru), iridium (Ir), and rhodium (Rh) as an active ingredient and at least one of titanium (Ti), aluminum (Al), zirconium (Zr), and cerium (Ce) as a carrier for supporting the active ingredient. The CO shift catalyst can be used in a halogen-resistant CO shift reactor (15) that converts CO contained in gasified gas (12) generated in a gasifier (11) into CO2.
    Type: Application
    Filed: May 15, 2009
    Publication date: March 8, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Toshinobu Yasutake, Tetsuya Imai, Masanao Yonemura, Susumu Okino, Keiji Fujikawa, Shinya Tachibana
  • Publication number: 20120040823
    Abstract: The present invention provides a method for producing a catalyst for use in preferential carbon monoxide oxidation, which catalyst has a high preferential carbon monoxide oxidation activity and a high methanation activity with respect to the carbon monoxide contained in hydrogen gas, can thus stably reduce the carbon monoxide concentration to an extremely lower level and comprises porous inorganic oxide support particles and, on the basis of the mass thereof, 0.01 to 10 percent by mass of ruthenium and 0.01 to 1 percent by mass of platinum, loaded on the support. The method comprises (1) a step of loading 30 to 70 percent of the total amount of ruthenium to be loaded, on the support particles by a competitive adsorption method and (2) a step of loading the rest of the total amount of ruthenium to be loaded and the total amount of platinum to be loaded, on the ruthenium-loaded support particles produced in step (1) without using a competitive adsorption agent.
    Type: Application
    Filed: February 12, 2010
    Publication date: February 16, 2012
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yasuyuki Iwasa, Takaya Matsumoto
  • Patent number: 8114354
    Abstract: Catalyzed soot filters comprising a wall flow monolith having microcracks and pores and a catalyst comprising support particles with particle sizes greater than about the size of the microcracks and less than about the size of the pores are disclosed. Methods of manufacturing catalyzed soot filters and diesel engine exhaust emission treatment systems are also disclosed.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: February 14, 2012
    Assignee: BASF Corporation
    Inventor: Yuejin Li
  • Patent number: 8105561
    Abstract: A catalyst for purification of exhaust gas in which a noble metal is supported on a metal-oxide support wherein, in a oxidation atmosphere, the noble metal exists on the surface of the support in high oxidation state, and the noble metal binds with a cation of the support via an oxygen atom on the surface of the support to form a surface oxide layer and, in a reduction atmosphere, the noble metal exists on the surface of the support in a metal state, and an amount of noble metal exposed at the surface of the support, measured by CO chemisorption, is 10% or more in atomic ratio to a whole amount of the noble metal supported on the support.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: January 31, 2012
    Assignees: Kabushiki Kaisha Toyota Chuo Kenkyusho, Toyota Jidosha Kabushiki Kaisha
    Inventors: Miho Hatanaka, Toshitaka Tanabe, Yasutaka Nagai, Toshio Yamamoto, Kazuhiko Dohmae, Nobuyuki Takagi, Masahide Miura, Yasuo Ikeda
  • Publication number: 20120020843
    Abstract: The invention relates to a method for producing a catalytic composition, wherein the catalytic composition has a high activity and selectivity with regard to the oxidation of CO and a reduced activity with regard to the oxidation of NO. The invention also relates to the catalyst produced using the method according to the invention. Finally, the invention is directed towards an exhaust-gas cleaning system which comprises the catalyst according to the invention.
    Type: Application
    Filed: January 27, 2010
    Publication date: January 26, 2012
    Applicant: Sud-Chemie AG
    Inventors: Andreas Bentele, Klaus Wanninger, Gerd Maletz, Martin Schneider
  • Publication number: 20120004098
    Abstract: A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.
    Type: Application
    Filed: July 2, 2010
    Publication date: January 5, 2012
    Inventors: Xin Xiao, William L. West, William D. Rhodes
  • Patent number: 8084389
    Abstract: A noble metal is supported on an upstream-side catalytic portion 20 at least, and an SOx storage material, such as Mg and K that lower the noble metal's activities, is supported on a downstream-side catalytic portion 21. The noble metal being supported on the upstream-side catalytic portion 20 oxidizes SO2 efficiently to turn it into SOx, because the lowering of oxidizing activities is suppressed. These SOx are retained by means of storage in the SOx storage material being loaded on the downstream-side catalytic portion 21. Therefore, the SOx storing performance improves, and it is good in terms of durability as well.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: December 27, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshitsugu Ogura, Takayuki Endo
  • Publication number: 20110311422
    Abstract: The invention relates to a method for producing a catalyst, wherein the catalyst has a high activity and selectivity with regard to the oxidation of CO and NO. The invention also relates to the catalyst produced using the method according to the invention, the use of the catalyst as oxidation catalyst as well as a catalyst component which contains the catalyst according to the invention. Finally, the invention is directed towards an exhaust-gas cleaning system which comprises the catalyst component containing the catalyst according to the invention.
    Type: Application
    Filed: January 27, 2010
    Publication date: December 22, 2011
    Applicant: SUED-CHEMIE AG
    Inventors: Andreas Bentele, Klaus Wanninger, Gerd Maletz, Martin Schneider
  • Publication number: 20110312487
    Abstract: A catalyst system for generating at least one polyol from a feedstock comprising saccharide is performed in a continuous or batch manner. Generating the polyol involves, contacting, hydrogen, water, and a feedstock comprising saccharide, with a catalyst system to generate an effluent stream comprising at least one polyol and recovering the polyol from the effluent stream. The catalyst system comprises at least one unsupported component and at least one supported component.
    Type: Application
    Filed: July 28, 2011
    Publication date: December 22, 2011
    Applicant: UOP LLC
    Inventors: John Q. Chen, Tom N. Kalnes, Joseph A. Kocal
  • Patent number: 8080495
    Abstract: A catalyst composition comprises a particulate support and catalyst nanoparticles on the particulate support. The catalyst nanoparticles comprise an alloy of platinum and palladium in an atomic ratio of from about 25:75 to about 75:25 and are present in a concentration of between about 3 and about 10 wt % weight percent of the catalyst composition. The catalyst composition has an X-ray diffraction pattern that is substantially free of the (311) diffraction peak assignable to PtxPd1-x, where 0.25?x?0.75.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: December 20, 2011
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Ranko P Bontchev, Paolina Atanassova, Berislav Blizanac, Yipeng Sun, Matthew Ezenyilimba, George Fotou, Kenneth Koehlert
  • Patent number: 8080494
    Abstract: A catalyst 1 has a heat-resistant support 2 selected from among Al2O3, SiO2, ZrO2, and TiO2, and a first metal 4 supported on an outer surface of the support 2, and included by an inclusion material 3 containing a component of the support 2.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: December 20, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hirofumi Yasuda, Katsuo Suga, Makoto Aoyama, Toshiharu Miyamura
  • Patent number: 8075859
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 13, 2011
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 8076263
    Abstract: The present invention is directed to an improved catalyst support and to the resultant catalyst suitable for treating exhaust products from internal combustion engines, especially diesel engines. The support of the present invention is a structure comprising alumina core particulate having high porosity and surface area, wherein the structure has from about 1 to about 40 weight percent silica in the form of cladding on the surface area of said alumina core. The resultant support has a normalized sulfur uptake (NSU) of up to 15 ?g/m2.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: December 13, 2011
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Manoj Mukund Koranne, James Neil Pryor, David Monroe Chapman, Rasto Brezny
  • Patent number: 8071498
    Abstract: An exhaust gas purifying catalyst wherein the catalytic activity can be recovered over a wide temperature range is provided. Also provided are a method for recovering an exhaust gas purifying catalyst, and a catalyst system for exhaust gas purification. The exhaust gas purifying catalyst is characterized by containing an oxide A containing an oxide (A-1) containing an alkaline earth metal and/or a rare earth metal and an inorganic oxide (A-2), and a noble metal B supported by the oxide A. This exhaust gas purifying catalyst is also characterized in that the weight ratio of the oxide (A-1) containing an alkaline earth metal and/or a rare earth metal to the noble metal B is from 1:10 to 1:500.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: December 6, 2011
    Assignee: Cataler Corporation
    Inventors: Norihiko Aono, Yoshinori Yamashita
  • Patent number: 8067332
    Abstract: A methanation catalyst, a carbon monoxide removing system, a fuel processor, and a fuel cell including the same, and more particularly a non-supported methanation catalyst including the catalytically active non-precious metal particles and the metal oxide particles, and a carbon monoxide removing system, a fuel processor, and a fuel cell including the same. The methanation catalyst has high selectivity for the methanation of carbon monoxide instead of the methanation of carbon dioxide and the reverse water gas shift reaction of carbon dioxide, which are side reactions of the methanation of carbon monoxide, maintains high concentration of generated hydrogen as small amounts of hydrogen and carbon dioxide are consumed, and effectively removes carbon monoxide at low operating temperatures of 200° C. or less.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: November 29, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyun-chul Lee, Soon-ho Kim, Kang-hee Lee, Doo-hwan Lee, Eun-duck Park, Eun-yong Ko
  • Patent number: 8067334
    Abstract: A catalyst on an oxidic support and processes for selectively hydrogenating unsaturated compounds in hydrocarbon streams comprising them using these catalysts are described.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: November 29, 2011
    Assignee: BASF SE
    Inventors: Thomas Hill, Hermann Petersen, Germain Kons, Henrik Junicke
  • Patent number: 8058205
    Abstract: An NOx purification system having NOx occlusion reduction-type catalysts including an occlusion material and a metal catalyst, which occludes NOx in a lean state in terms of a fuel-air ratio of an exhaust gas and releases the occluded NOx in a rich state. A high-temperature type catalyst is placed on the upstream side, and a low-temperature type catalyst is disposed on the downstream side in series with the high-temperature type catalyst. The molar ratio of platinum to rhodium supported on the high-temperature type catalyst is within a range of 2:1 to 1:2. This NOx purification system is capable of a wide NOx activation temperature window.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: November 15, 2011
    Assignee: Isuzu Motors Limited
    Inventors: Daiji Nagaoka, Masashi Gabe
  • Patent number: 8052936
    Abstract: In a particulate filter, a catalyst layer containing Pt-carried activated alumina particles, CeZr-based mixed oxide particles and ZrNd-based mixed oxide particles is formed, the proportion of the total amount of the CeZr-based mixed oxide particles and the ZrNd-based mixed oxide particles in the total amount of the Pt-carried activated alumina particles, the CeZr-based mixed oxide particles and the ZrNd-based mixed oxide particles is 10% to 60% by mass, both inclusive, and the mass ratio of the CeZr-based mixed oxide particles to the ZrNd-based mixed oxide particles is 20/80 to 80/20, both inclusive. This configuration enhances the particulate burning property and the low-temperature exhaust gas conversion efficiency.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: November 8, 2011
    Assignee: Mazda Motor Corporation
    Inventors: Koichiro Harada, Kenji Suzuki, Kenji Okamoto, Hiroshi Yamada, Akihide Tamani
  • Publication number: 20110268242
    Abstract: A recombination apparatus is provided to an off-gas system of a boiling water nuclear plant. An off-gas system pipe connected to a condenser is connected to the recombination apparatus. A catalyst layer filled with a catalyst for recombining hydrogen and oxygen is disposed in the recombination apparatus. The recombination catalyst has a percentage of the number of Pt particles whose diameters are in a range from more than 1 nm to not more than 3 nm to the numbers of Pt particles whose diameters are in a range from more than 0 nm to not more than 20 nm, falling within a range from 20 to 100%. The condenser discharges gas containing an organosilicon compound (ex. D5), hydrogen, and oxygen, which is introduced to the recombination apparatus. Use of the above recombination catalyst can improve the performance of recombining hydrogen and oxygen more than conventional catalysts and the initial performance of the catalyst can be maintained for a longer period of time.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 3, 2011
    Applicants: Nikki-Universal Co., Ltd., Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Hidehiro IIZUKA, Motohiro AIZAWA, Toru KAWASAKI, Hirofumi MATSUBARA, Takashi NISHI, Shuichi KANNO, Yasuo YOSHII, Yoshinori EBINA, Takanobu SAKURAI, Tsukasa TAMAI, Michihito ARIOKA
  • Patent number: 8038954
    Abstract: An emission treatment system including a catalyzed soot filter comprising a wall flow monolith and a catalyst comprising at least two types of support particles is described. The first support particle contains at least a platinum component, the second support particles contains at least a palladium component. The wall flow monolith may be washcoated with a slurry comprising at least two types of particles without applying a passivation layer to the wall flow monolith.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: October 18, 2011
    Assignee: BASF Corporation
    Inventor: Yuejin Li
  • Patent number: 8038956
    Abstract: Catalyzed soot filters comprising a wall flow monolith having microcracks and pores and a catalyst comprising support particles with particle sizes greater than about the size of the microcracks and less than about the size of the pores are disclosed. Methods of manufacturing catalyzed soot filters and diesel engine exhaust emission treatment systems are also disclosed.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: October 18, 2011
    Assignee: BASF CORPORATION
    Inventor: Yuejin Li
  • Patent number: 8034311
    Abstract: An oxidation catalyst that efficiently promotes oxidation of NO to NO2 even in a low temperature range, and an exhaust-gas purification system and method that efficiently removes exhaust-gas components even in a low temperature range are provided. This invention provides an oxidation catalyst comprising platinum and palladium as catalytically active components, which promotes oxidation of nitrogen monoxide to nitrogen dioxide, wherein the oxidation catalyst comprises 1 to 55 parts by weight of the palladium relative to 100 parts by weight of the platinum.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: October 11, 2011
    Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.
    Inventors: Masanori Ikeda, Naohiro Kato
  • Patent number: 8030242
    Abstract: The invention concerns a process for preparing metallic nanoparticles with an anisotropic nature by using two different reducing agents, preferably with different reducing powers, on a source of a metal selected from columns 8, 9 or 10 of the periodic table of the elements.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: October 4, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Denis Uzio, Catherine Verdon, Cecile Thomazeau, Bogdan Harbuzaru, Gilles Berhault
  • Publication number: 20110237429
    Abstract: A catalytic metal 5 is supported on oxide particles 4, 6 in a first catalyst layer 2, and first binder particles 7 which are fine, and have oxygen ion conductivity are interposed among the oxide particles. A catalytic metal 11 is supported on oxide particles 8, 9, 12 in a second catalyst layer 3 provided on or above the first catalyst layer 2, and second binder particles 13 which are fine, and are capable of storing and releasing oxygen are interposed among the oxide particles.
    Type: Application
    Filed: February 9, 2011
    Publication date: September 29, 2011
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Masaaki AKAMINE, Masahiko SHIGETSU
  • Publication number: 20110229396
    Abstract: The invention concerns a process for the oxidation of organic compounds contained in a gas stream and comprises the step of introducing the gas stream containing the organic compounds together with sufficient oxygen to effect the desired amount of oxidation into an oxidation reactor containing an oxidation catalyst and maintaining the temperature of said gas stream at a temperature sufficient to effect oxidation, characterised in that the oxidation catalyst contains at least 0.01% by weight of ruthenium, cobalt or manganese.
    Type: Application
    Filed: September 17, 2009
    Publication date: September 22, 2011
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Gareth Headdock, Kenneth George Griffin, Peter Johnston, Martin John Hayes
  • Patent number: 8022010
    Abstract: Nitrogen oxide storage materials and methods of manufacturing nitrogen oxide storage materials are disclosed. The nitrogen oxide storage materials can be used to manufacture catalytic trap disposed in an exhaust passage of an internal combustion engine which is operated periodically between lean and stoichiometric or rich conditions, for abatement of NOx in an exhaust gas stream which is generated by the engine. In one embodiment, the nitrogen oxide storage material comprises alkaline earth material supported on ceria particles having a crystallite size of between about 10 and 20 nm and the alkaline earth oxide having a crystallite size of between about 20-40 nm.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: September 20, 2011
    Assignee: BASF Corporation
    Inventors: Marcus Hilgendorff, Stanley A. Roth, Susanne Stiebels
  • Patent number: 8017548
    Abstract: The present invention provides a method for manufacture of supported noble metal based alloy catalysts with a high degree of alloying and a small crystallite size. The method is based on the use of polyol solvents as reaction medium and comprises of a two-step reduction process in the presence of a support material. In the first step, the first metal (M1=transition metal; e.g. Co, Cr, Ru) is activated by increasing the reaction temperature to 80 to 160° C. In the second step, the second metal (M2=noble metal; e.g. Pt, Pd, Au and mixtures thereof) is added and the slurry is heated to the boiling point of the polyol solvent in a range of 160 to 300° C. Due to this two-step method, an uniform reduction occurs, resulting in noble metal based catalysts with a high degree of alloying and a small crystallite size of less than 3 nm. Due to the high degree of alloying, the lattice constants are lowered.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: September 13, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Dan V. Goia, Marco Lopez, Tapan Kumar Sau, Mihaela-Ortansa Jitianu
  • Patent number: 8007750
    Abstract: A layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. Methods of making and using the same are also provided. In one or more embodiments, the catalyst comprises three layers of catalytic material in conjunction with a carrier. A first layer comprises a platinum component on a first support; a second layer comprises a rhodium component on a second support; and a third layer comprises a palladium component and a third support. The palladium, rhodium, and/or platinum can independently be deposited on a support of high surface area refractory metal oxide, or of an oxygen storage component, or both.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 30, 2011
    Assignee: BASF Corporation
    Inventors: Shau-Lin Franklin Chen, Jin Sakakibara, Tian Luo, Harold Rabinowitz
  • Patent number: 8003565
    Abstract: A method and catalysts for producing a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas contacts a water gas shift (WGS) catalyst, optionally in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) Pt, its oxides or mixtures thereof; b) Ru, its oxides or mixtures thereof; and c) at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Co, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu. Another disclosed catalyst formulation comprises Pt, its oxides or mixtures thereof; Ru, its oxides or mixtures thereof; Co, its oxides or mixtures thereof; and at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu, their oxides and mixtures thereof.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 23, 2011
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Freeslate, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Peter Strasser, Robert K. Grasselli, Christopher James Brooks, Cory Bernard Phillips
  • Patent number: 7998896
    Abstract: An exhaust gas purifying catalyst having a good ignition performance is provided. The exhaust gas purifying catalyst 1 includes a catalyst substrate 3 and a catalyst coating layer 5 which contains a noble metal and a refractory inorganic oxide and is formed on the catalyst substrate. The exhaust gas purifying catalyst is characterized in that the catalyst coating layer 5 includes an upstream portion 11 located upstream and a downstream portion 13 located downstream in a flow direction of an exhaust gas. The upstream portion 11 has a layered structure including an upstream portion inside layer 17 and an upstream portion outside layer 15. The upstream portion inside layer contains a cerium-zirconium composite oxide in which a relative proportion of CeO2 is 50 to 95 wt %, as the refractory inorganic oxide, and the upstream portion outside layer 15 and the downstream portion 13 contain a cerium-zirconium composite oxide in which a relative proportion of ZrO2 is 50 to 95 wt %, as the refractory inorganic oxide.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: August 16, 2011
    Assignee: Cataler Corporation
    Inventors: Ichiro Kitamura, Kenichi Taki, Akimasa Hirai
  • Patent number: 7994089
    Abstract: A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: August 9, 2011
    Assignee: University of Houston System
    Inventors: Peter Strasser, Shirlaine Koh, Prasanna Mani, Srivastava Ratndeep
  • Patent number: 7985395
    Abstract: Catalyst for oxidation reactions which comprises at least one constituent active in the catalysis of hydrogen chloride oxidation and support therefor, which support is based on uranium oxide. The catalyst is notable for a high stability and activity.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: July 26, 2011
    Assignee: Bayer Technology Services GmbH
    Inventors: Aurel Wolf, Leslaw Mleczko, Oliver Felix-Karl Schlüter, Stephan Schubert
  • Patent number: 7985830
    Abstract: Methods for synthesizing dimeric or polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst comprises a first metal substrate having a second reduced metal coated on the substrate.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: July 26, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden
  • Patent number: 7981274
    Abstract: A catalytic element useful for promoting catalytic gas phase reactions is provided, comprising a porous ceramic body comprising a multiplicity of open pores having a coating comprising a basic oxide material and a catalyst material selected from transition metal and noble metal compounds.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: July 19, 2011
    Assignee: Pall Corporation
    Inventors: Manfred Nacken, Steffen Heidenreich
  • Publication number: 20110143915
    Abstract: A nanoparticle comprises a nano-active material and a nano-support. In some embodiments, the nano-active material is platinum and the nano-support is alumina. Pinning and affixing the nano-active material to the nano-support is achieved by using a high temperature condensation technology. In some embodiments, the high temperature condensation technology is plasma. Typically, a quantity of platinum and a quantity of alumina are loaded into a plasma gun. When the nano-active material bonds with the nano-support, an interface between the nano-active material and the nano-support forms. The interface is a platinum alumina metallic compound, which dramatically changes an ability for the nano-active material to move around on the surface of the nano-support, providing a better bond than that of a wet catalyst. Alternatively, a quantity of carbon is also loaded into the plasma gun.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 16, 2011
    Applicant: SDCMATERIALS, INC.
    Inventors: Qinghua Yin, Xiwang Qi, Eliseo Ruiz
  • Publication number: 20110144400
    Abstract: The invention relates to a material which is suited as a carrier for catalysts in the dehydrogenation of alkanes and in the oxidative dehydrogenation of alkanes and which is made of an oxide ceramic foam and may contain combinations of the substances aluminium oxide, calcium oxide, silicon dioxide, tin oxide, zirconium dioxide, calcium aluminate, zinc aluminate, silicon carbide, and which is impregnated with one or several suitable catalytically active materials, by which the flow resistance of the catalyst decreases to a considerable degree and the accessibility of the catalytically active material improves significantly and the thermal and mechanical stability of the material increases. The invention also relates to a process for the manufacture of the material and a process for the dehydrogenation of alkanes by using the material according to the invention.
    Type: Application
    Filed: July 28, 2009
    Publication date: June 16, 2011
    Applicant: UHDE GMBH
    Inventors: Muhammad Iqbal Mian, Max Heinritz-Adrian, Oliver Noll, Domenico Pavone, Sascha Wenzel
  • Publication number: 20110144382
    Abstract: A catalyst comprising a plurality of support nanoparticles and a plurality of catalytic nanoparticles. At least one catalytic nanoparticle is bonded to each support nanoparticle. The catalytic particles have a size and a concentration, wherein a first configuration of the size and the concentration of the catalytic nanoparticles enables a first catalysis result and a second configuration of the size and the concentration of the catalytic nanoparticles enables a second catalysis result, with the first and second configurations having a different size or concentration, and the first and second catalysis results being different. In some embodiments, the first catalysis result is a selective reduction of a first selected functional group without reducing one or more other functional groups, and the second catalysis result is a selective reduction of a second selected functional group without reducing one or more other functional groups.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 16, 2011
    Applicant: SDCMATERIALS, INC.
    Inventors: Qinghua Yin, Xiwang Qi
  • Publication number: 20110119990
    Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 26, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANHY
    Inventors: Pallassana S. Venkataraman, Gordon F. Stuntz, Jonathan M. McConnachie, Faiz Pourarian
  • Publication number: 20110124492
    Abstract: The present invention provides a multifunctional nanocomposite with at least two components, at least one component of which is a nanoparticle that includes a polymer.
    Type: Application
    Filed: September 17, 2010
    Publication date: May 26, 2011
    Inventors: Nikolai Loukine, Anjan Das, Danielle Norton, Darren Anderson