Of Nickel Patents (Class 502/335)
-
Patent number: 11406967Abstract: Disclosed are a heterogeneous catalyst, a production method thereof, and a method for producing a lignin-derived high-substituted aromatic monomer from a woody biomass material using the heterogeneous catalyst. The heterogeneous catalyst includes a carrier; and a Ni—Al nano-particle supported on the carrier.Type: GrantFiled: March 27, 2020Date of Patent: August 9, 2022Assignee: Research & Business Foundation Sungkyunkwan UniversityInventors: Jaehoon Kim, Jae Yong Park
-
Patent number: 11332367Abstract: To provide an apparatus and a system suitable for continuously and stably producing hydrogen by taking advantage of a direction composition reaction of hydrocarbons as well as a method for separating a solid product. Provided are a hydrogen producing apparatus using a nickel-based metal structure for the direct decomposition reaction of hydrocarbons and a discharging and recovering system comprising: a depressurization chamber communicating with a lower opening of the reaction chamber of hydrogen producing apparatus 1 via a ventilation hole; a first valve capable of opening and closing said ventilation hole; a collection box communicating with the depressurization chamber via a channel; a second valve capable of opening and closing said depressurization chamber; and a depressurization pump communicating with the collection box.Type: GrantFiled: September 11, 2019Date of Patent: May 17, 2022Assignee: IHARA CO., LTD.Inventors: Ryoseki Ihara, Hiroyuki Amano, Yuji Suzuta
-
Patent number: 11260375Abstract: The present invention relates to a process for preparing 1,4-butanediol (BDO) by hydrogenating 2-butyne-1,4-diol (BYD) or 4-hydroxybutanal (4-HBA) in the presence of a catalyst of the Raney type having a porous foam structure, wherein the macroscopic pores have sizes in the range of 100 to 5000 ?m, and a bulk density of up to 0.8 kg/L.Type: GrantFiled: September 27, 2017Date of Patent: March 1, 2022Assignee: Evonik Operations GmbHInventors: Monika Berweiler, Markus Göttlinger, Meike Roos, Matthias Schwarz, René Poss
-
Patent number: 10668451Abstract: A supported catalyst, its method of preparation and use in hydrogenation methods, which catalyst contains an oxide substrate that is for the most part calcined aluminum and an active phase that contains nickel, with the nickel content between 5 and 65% by weight in relation to the total mass of the catalyst, with the active phase not containing a metal from group VIB, the nickel particles having a diameter that is less than or equal to 20 nm, the catalyst having a median mesopore diameter of between 14 nm and 30 nm, a median macropore diameter of between 50 and 200 nm, a mesopore volume that is measured by mercury porosimetry that is greater than or equal to 0.40 mL/g, and a total pore volume that is measured by mercury porosimetry that is greater than or equal to 0.42 mL/g.Type: GrantFiled: June 9, 2015Date of Patent: June 2, 2020Assignee: IFP Energies NouvellesInventors: Malika Boualleg, Anne Claire Dubreuil, Emily Maille, Cecile Thomazeau
-
Patent number: 10618036Abstract: The invention concerns a catalyst containing an active cobalt phase deposited on a support comprising alumina, silica or silica-alumina, said support containing a mixed oxide phase containing cobalt and/or nickel, said catalyst being prepared by introducing at least one dicarboxylic acid comprising at least three carbon atoms. The invention also concerns its use in the field of Fischer-Tropsch synthesis processes.Type: GrantFiled: March 20, 2017Date of Patent: April 14, 2020Assignee: IFP Energies NouvellesInventors: Dominique Decottignies, Antoine Fecant
-
Patent number: 10618035Abstract: The invention concerns a catalyst containing an active cobalt phase deposited on a support comprising alumina, silica or silica-alumina, said support containing a mixed oxide phase containing cobalt and/or nickel, said catalyst being prepared by introducing at least one organic compound comprising at least one ester function. The invention also concerns its use in the field of Fischer-Tropsch synthesis processes.Type: GrantFiled: March 20, 2017Date of Patent: April 14, 2020Assignee: IFP Energies NouvellesInventors: Dominique Decottignies, Antoine Fecant
-
Patent number: 9878961Abstract: A nickel-M-alumina hybrid xerogel catalyst for preparing methane, wherein the metal M is at least one element selected from the group consisting of Fe, Co, Ni, Ce, La, Mo, Cs, Y, and Mg, a method for preparing the catalyst and a method for preparing methane using the catalyst are provided. The catalyst has strong resistance against a high-temperature sintering reaction and deposition of carbon species, and can effectively improve a conversion ratio of carbon monoxide and selectivity to methane.Type: GrantFiled: December 28, 2011Date of Patent: January 30, 2018Assignee: POSCOInventors: Hyo Jun Lim, Chang Dae Byun, In Kyu Song, Dong Jun Koh, Sun Hwan Hwang, Jeong Gil Seo
-
Patent number: 9689296Abstract: A particulate filter arranged in an engine exhaust passage is provided with alternately arranged exhaust gas inflow and outflow passages and porous partition walls separating these passages from each other. In each partition wall, a coated zone where a coated layer with an average pore size smaller than that of a partition wall substrate is used to cover the substrate surface and a non-coated zone downstream of the coated zone where the substrate surface is not covered by the coated layer are defined, and the ash in the exhaust gas can pass through the partition wall in the non-coated zone. The quantity of particulate matter trapped at the non-coated zones is calculated, and PM removal control for removing particulate matter from the particulate filter is performed when it is judged that the quantity of trapped particulate matter is greater than an allowable upper limit amount.Type: GrantFiled: November 13, 2012Date of Patent: June 27, 2017Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Hiromasa Nishioka, Kazuhiro Itoh, Daichi Imai, Ryota Koutake
-
Patent number: 9339797Abstract: The present application describes a catalyst that is suitable for the CO2 reforming of methane-rich gases, such as biogas, that is resistant to poisoning by sulfur. The catalyst comprises from about 5 wt % to about 20 wt % Ni and 0 wt % to about 10 wt % Co supported on a support having a formula selected from: (a) Al2O3; (b) M1aOb—Al2O3; and (c) M1aOb—ZrO2—Al2O3, where M1aOb is either CaO or MgO.Type: GrantFiled: May 29, 2012Date of Patent: May 17, 2016Inventors: Raphael Idem, Ataullah Khan Mohammed, Bappy Saha
-
Patent number: 9334454Abstract: A method for producing synthesis natural gas using a straw gas, includes the steps of: pressurizing and heating a conventional straw gas, conveying the straw gas to a converter containing carbon monoxide and hydrogen to react therewith in the presence of nickel-based catalyst, so as to result in conversion gas mixture with main components of methane, carbon dioxide, water and impurity; and cooling, gas-liquid separating and purifying to obtain a synthesis natural gas with methane content of over 90%. The synthesis natural gas obtained according to the method of present invention has high energy utilization efficiency, and can not only be used for civilian by a conventional natural gas infrastructure, but also serve as an energy supply for a combustion engine or a small gas turbine.Type: GrantFiled: April 15, 2011Date of Patent: May 10, 2016Assignee: SICHUAN YALIAN TECHNOLOGY CO., TDLInventors: Yaling Zhong, Yuming Zhong, Qiming Zeng, Yueming Cai, Tianhong Chen
-
Patent number: 9321033Abstract: The present invention relates to an improvement in a process for the thermal fixation of a catalytically active component onto an alumina support and, more specifically, to an improvement in a process for the thermal fixation of a catalytically active component onto an alumina support for preparing a thermally stable catalyst for treating exhaust gas from an internal combustion engine, by means of thermally stable dispersion and fixation of the catalytically active component(s) for treating exhaust gas from an internal combustion engine, onto a surface or an internal space of the alumina support.Type: GrantFiled: February 4, 2013Date of Patent: April 26, 2016Assignee: Heesung Catalysts CorporationInventors: Hyun-sik Han, Seung Chul Na, Sang Yun Han
-
Patent number: 9040449Abstract: Nanoparticle catalyst compositions and methods for preparation of same are described. The nanoparticle catalysts are platinum-free and are useful in effecting selective ring-opening reactions, for example in upgrading heavy oil. The catalyst may be of monometallic composition, or may comprise an alloyed or core-shell bimetallic composition. The nanoparticles are of controlled size and shape.Type: GrantFiled: January 23, 2013Date of Patent: May 26, 2015Assignee: Governors of the University of AlbertaInventors: Natalia Semagina, Xing Yin, Jing Shen, Kavithaa Loganathan
-
Patent number: 9034786Abstract: A catalyst which comprises nickel and/or cobalt supported on a support that includes a mixed oxide containing metals, such as aluminum, zirconium, lanthanum, magnesium, cerium, calcium, and yttrium. Such catalysts are useful for converting carbon dioxide to carbon monoxide, and for converting methane to hydrogen.Type: GrantFiled: March 14, 2014Date of Patent: May 19, 2015Assignee: Enerkem, Inc.Inventors: Prashant Kumar, David Lynch
-
Patent number: 9029286Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.Type: GrantFiled: April 29, 2013Date of Patent: May 12, 2015Assignee: Massachusettes Institute of TechnologyInventors: Brian Neltner, Angela M. Belcher
-
Patent number: 9024090Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.Type: GrantFiled: December 19, 2012Date of Patent: May 5, 2015Assignee: Celanese International CorporationInventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
-
Patent number: 9023754Abstract: A method of producing a catalyst material with nano-scale structure, the method comprising: introducing a starting powder into a nano-powder production reactor, the starting powder comprising a catalyst material; the nano-powder production reactor nano-sizing the starting powder, thereby producing a nano-powder from the starting powder, the nano-powder comprising a plurality of nano-particles, each nano-particle comprising the catalyst material; and forming a catalyst precursor material from the nano-powder, wherein the catalyst precursor material is a densified bulk porous structure comprising the catalyst material, the catalyst material having a nano-scale structure.Type: GrantFiled: July 30, 2013Date of Patent: May 5, 2015Assignee: SDCmaterials, Inc.Inventor: Maximilian A. Biberger
-
Patent number: 9017576Abstract: Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.Type: GrantFiled: October 7, 2013Date of Patent: April 28, 2015Assignee: King Abdullah University of Science and TechnologyInventors: Gregory Biausque, Paco Laveille, Dalaver H. Anjum, Valerie Caps, Jean-Marie Basset
-
Patent number: 9012352Abstract: The present invention relates to a catalyst for Fischer-Tropsch synthesis which has excellent heat transfer capability. This catalyst contains (1) central core particle or particles made of a heat transfer material (HTM) selected from the group consisting of a metal, a metal oxide, a ceramic, and a mixture thereof; and (2) outer particle layer which surrounds the central core particles and is attached to the surfaces of the central core particles by a binder material layer. The outer particle layer has a support and catalyst particles in a powder form containing metal particles disposed on the support. The catalyst having such a dual particle structure shows excellent heat transfer capability and, thus, exhibits high selectivity to a target hydrocarbon. Therefore, the catalyst of the present invention is useful in a fixed-bed reactor for Fischer-Tropsch synthesis for producing hydrocarbons from synthetic gas.Type: GrantFiled: April 25, 2012Date of Patent: April 21, 2015Assignee: Korea Research Institute of Chemical TechnologyInventors: Kyoung Su Ha, Joo Young Cheon, Yun Jo Lee, Seung-Chan Baek, Geun Jae Kwak, Seon Ju Park, Ki Won Jun
-
Patent number: 9012353Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.Type: GrantFiled: August 8, 2012Date of Patent: April 21, 2015Assignee: Clean Diesel Technologies, Inc.Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
-
Patent number: 8993477Abstract: The present invention relates to a catalyst composition and a catalyst material produced therefrom for the steam reforming of methane in fuel cells, in particular for the direct internal reforming of methane in molten carbonate fuel cells. The invention further relates to a process for producing such catalyst compositions.Type: GrantFiled: November 7, 2012Date of Patent: March 31, 2015Assignee: BASF SEInventors: Andrian Milanov, Ekkehard Schwab, Alexander Schäfer
-
Patent number: 8986637Abstract: An emission control catalyst composition comprising a supported bimetallic catalyst consisting of gold and a metal selected from the group consisting of platinum, rhodium, ruthenium, copper and nickel is disclosed. Also disclosed is a catalytic convertor comprising a substrate monolith coated with the emission control catalyst composition and a lean burn internal combustion engine exhaust gas emission treatment system comprising the catalytic convertor. A variety of processes for preparing the catalyst composition are claimed.Type: GrantFiled: November 6, 2013Date of Patent: March 24, 2015Assignee: Johnson Matthey Public Limited CompanyInventors: Janet Mary Fisher, David Thompsett
-
Patent number: 8968601Abstract: Disclosed is a catalyst used for steam carbon dioxide reforming of natural gas, wherein an alkaline earth metal alone or an alkaline earth metal and a group 8B metal are supported on a hydrotalcite-like catalyst containing nickel, magnesium and aluminum. The disclosed catalyst is useful as a steam carbon dioxide reforming (SCR) catalyst of natural gas at high temperature and high pressure, while minimizing deactivation of the catalyst due to sintering of the active component nickel and deactivation of the catalyst due to coke generation at the same time. A synthesis gas prepared using the catalyst has a H2/CO molar ratio maintained at 1-2.2. A synthesis gas having a H2/CO molar ratio of 1.8-2.2 may be used as a raw material for Fischer-Tropsch synthesis or methanol synthesis and a synthesis gas having a H2/CO molar ratio of may be used as a raw material for dimethyl ether synthesis.Type: GrantFiled: August 20, 2013Date of Patent: March 3, 2015Assignee: Korea Institute of Science and TechnologyInventors: Dong Ju Moon, Yun Ju Lee, Jae Sun Jung, Jin Hee Lee, Seung Hwan Lee, Bang Hee Kim, Hyun Jin Kim, Eun Hyeok Yang
-
Patent number: 8969231Abstract: A method of producing an alumina-supported cobalt catalyst for use in a Fischer-Tropsch synthesis reaction, which comprises: calcining an initial ?-alumina support material at a temperature to produce a modified alumina support material; impregnating the modified alumina support material with a source of cobalt; calcining the impregnated support material, activating the catalyst with a reducing gas, steam treating the activated catalyst, and activating the steam treated catalyst with a reducing gas.Type: GrantFiled: August 31, 2010Date of Patent: March 3, 2015Assignee: GTL.FI AGInventors: Erling Rytter, Sigrid Eri, Rune Myrstad, Odd Asbjørn Lindvåg
-
Patent number: 8940660Abstract: The present invention involves both separated beds (or physical mixture) and a process for treating a fuel gas comprising sending the fuel gas to a separated bed (or physical mixture), in which the separated beds comprise a first bed of a sulfur sorbent and a second bed of a water gas shift catalyst (a physical mixture of a sulfur sorbent and a water gas shift catalyst). The process comprises first sending the fuel gas to the first bed to remove sulfur compounds from said fuel gas and then the fuel gas goes to the second bed to undergo a water gas shift reaction in which carbon monoxide is converted to carbon dioxide and water is converted to hydrogen. (or sending the fuel gas simultaneously to the physical mixture to remove simultaneously the sulfur compounds and to react CO with water to CO2 and hydrogen).Type: GrantFiled: December 4, 2008Date of Patent: January 27, 2015Assignee: UOP LLCInventors: Manuela Serban, Kurt M. Vanden Bussche, Alakananda Bhattacharyya
-
Patent number: 8937203Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.Type: GrantFiled: August 27, 2012Date of Patent: January 20, 2015Assignee: Celanese International CorporationInventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
-
Patent number: 8932979Abstract: A catalyst composition comprising a support having a surface area of at least 500 m2/kg, and deposited on the support: silver metal, a metal or component comprising rhenium, tungsten, molybdenum or a nitrate- or nitrite-forming compound, and a Group IA metal or component comprising a Group IA metal having an atomic number of at least 37, and in addition potassium, wherein the value of the expression (QK/R)+QHIA is in the range of from 1.5 to 30 mmole/kg, wherein QHIA and QK represent the quantities in mmole/kg of the Group IA metal having an atomic number of at least 37 and potassium, respectively, present in the catalyst composition, the ratio of QHIA to QK is at least 1:1, the value of QK is at least 0.01 mmole/kg, and R is a dimensionless number in the range of from 1.5 to 5, the units mmole/kg being relative to the weight of the catalyst composition.Type: GrantFiled: August 14, 2008Date of Patent: January 13, 2015Assignee: Shell Oil CompanyInventors: Marek Matusz, Michael Alan Richard, Martin Lysle Hess
-
Patent number: 8921258Abstract: Disclosed is a catalyst which can convert ammonia contained in exhaust gas from an engine of a vehicle equipped with a Urea-SCR (Urea-Selective Catalytic Reduction) system, to nitrogen, and a method for preparating the same. The catalyst can convert ammonia which is failed to participate in a conversion reaction of NOx to N2 and slipped out of the SCR catalyst, to nitrogen via a SCO (Selective Catalytic Oxidation) reaction, before the ammonia is released to the air.Type: GrantFiled: November 19, 2010Date of Patent: December 30, 2014Assignee: SK Innovation Co., Ltd.Inventors: Seong Ho Lee, Woo Jin Lee, Young Eun Cheon, Seung Hoon Oh, Sung Hwan Kim, Hong Seok Jung, Yong Woo Kim, Gi Ho Goh
-
Publication number: 20140363363Abstract: A rectangular substrate 12 composed of c-plane sapphire is prepared. Nickel serving as a catalytic metal is deposited on the entirety of an upper surface of the substrate 12 to form a catalytic metal film 14 (see (a)). The catalytic metal film 14 is patterned by a lithography method into a catalytic metal film 16 having a predetermined shape (see (b)). The temperature of the catalytic metal film 16 is raised to 1000° C. and maintained at 1000° C. for 20 minutes. The temperature of the catalytic metal film 16 is lowered from 1000° C. to 800° C. at a rate of 5° C./min. The temperature of the catalytic metal film 16 is maintained at 800° C. for 15 hours. Thereby, a catalytic metal layer 17 having large grains is provided (see (c)).Type: ApplicationFiled: August 26, 2014Publication date: December 11, 2014Inventors: Shigeya NARITSUKA, Takahiro MARUYAMA
-
Patent number: 8889078Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.Type: GrantFiled: March 15, 2011Date of Patent: November 18, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
-
Patent number: 8889588Abstract: Disclosed is a catalyst support for steam carbon dioxide reforming reaction utilizing the advantages of superior thermal conductivity and thermal dispersion of a metal foam support and a large specific surface area of a carrier material, which allows selective control of coating amount and the thickness of a support layer and prevents cracking on the support surface, using both the sol-gel method and the slurry method that have been used for coating of a metal foam support.Type: GrantFiled: June 4, 2013Date of Patent: November 18, 2014Assignee: Korea Institute of Science and TechnologyInventors: Dong Ju Moon, Tae Gyu Kim, Dae Il Park
-
Patent number: 8883118Abstract: A process for producing the porous catalyst body for decomposing hydrocarbons, the body containing at least magnesium, aluminum and nickel, and has a pore volume of 0.01 to 0.5 cm3/g, an average pore diameter of not more than 3006 ? and an average crushing strength of not less than 3 kgf. The process includes molding hydrotalcite containing at least magnesium, aluminum and nickel, and calcining the resulting molded product at a temperature of 700 to 1500° C.Type: GrantFiled: June 25, 2013Date of Patent: November 11, 2014Assignee: Toda Kogyo CorporationInventors: Shinji Takahashi, Naoya Kobayashi
-
Patent number: 8871669Abstract: A catalyst composition is provided comprising a homogeneous solid mixture having ordered directionally aligned tubular meso-channel pores having an average diameter in a range of about 1 nanometer to about 15 nanometers, wherein the homogeneous solid mixture is prepared from a gel formed in the presence of a solvent, modifier, an inorganic salt precursor of a catalytic metal, an inorganic precursor of a metal inorganic network, and a templating agent. The templating agent comprises an octylphenol ethoxylate having a structure [I]: wherein “n” is an integer having a value of about 8 to 20.Type: GrantFiled: May 28, 2010Date of Patent: October 28, 2014Assignee: General Electric CompanyInventors: Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Ashish Balkrishna Mhadeshwar, Ming Yin
-
Patent number: 8859453Abstract: A metal oxide-supported nickel catalyst includes a matrix containing a metal oxide and catalytic sites distributed throughout the matrix and having an intricate interface with the matrix, in which the catalytic sites are selected from the group consisting of nano-nickel(0) domains and nano-nickel(0)-A(0) alloy domains. Also disclosed are a method for preparing this catalyst and a method for using it to produce carbon monoxide and hydrogen by partial oxidation of a C1-C5 hydrocarbon.Type: GrantFiled: November 20, 2013Date of Patent: October 14, 2014Assignee: National University of SingaporeInventors: Liang Hong, Xiong Yin
-
Patent number: 8859458Abstract: Provided are a method of preparing an electrocatalyst for fuel cells in a core-shell structure, an electrocatalyst for fuel cells having a core-shell structure, and a fuel cell including the electrocatalyst for fuel cells. The method may be useful in forming a core and a shell layer without performing a subsequent process such as chemical treatment or heat treatment and forming a core support in which core particles having a nanosize diameter are homogeneously supported, followed by selectively forming shell layers on surfaces of the core particles in the support. Also, the electrocatalyst for fuel cells has a high catalyst-supporting amount and excellent catalyst activity and electrochemical property.Type: GrantFiled: September 21, 2011Date of Patent: October 14, 2014Assignee: Korea Institute of Science and TechnologyInventors: Seung Jun Hwang, Sung Jong Yoo, Soo Kil Kim, Eun Ae Cho, Jong Hyun Jang, Hyoung Juhn Kim, Suk Woo Nam, Tae Hoon Lim
-
Publication number: 20140284524Abstract: A catalyst for reforming hydrocarbons may include a nickel nanoparticle having a controlled crystal facet, the controlled crystal facet being a surface of the nickel nanoparticle and including a {100} face, a {111} face, or a combination thereof. The present disclosure also relates to a production method thereof and a method of reforming hydrocarbons using the same.Type: ApplicationFiled: March 24, 2014Publication date: September 25, 2014Applicants: Yonsei University, University - Industry Foundation (UIF), Samsung Electronics Co., Ltd.Inventors: Seung Jae LEE, In Hyuk SON, Hyunjoo LEE, Chanyeon KIM
-
Patent number: 8841229Abstract: A process for preparing a catalyst precursor includes, in a first preparation step, impregnating a particulate catalyst support with an organic metal compound in a carrier liquid. The metal of the organic metal compound is an active catalyst component. An impregnated intermediate is formed, and is calcined to obtain a calcined intermediate. Thereafter, in a second preparation step, the calcined intermediate from the first preparation step is impregnated with an inorganic metal salt in a carrier liquid. The metal of the inorganic metal salt is an active catalyst component. An impregnated support is obtained, and is calcined, to obtain the catalyst precursor. The metal is in particular cobalt. The precursor is reduced, in particular with hydrogen, to obtain the active catalyst. Also claimed is a process for the hydrogenation of CO, as well as a process for the hydrogenation of an organic compound using the so-prepared catalyst.Type: GrantFiled: February 23, 2010Date of Patent: September 23, 2014Assignee: Sasol Technology (Proprietary) LimitedInventors: Robert Johan Andreas Maria Terorde, Luuk Laurentius Kramer
-
Publication number: 20140262956Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise precipitated alumina prepared by a low temperature pH swing process. A large portion of the pore volume of the catalyst supports has pores with a diameter in the range of about 200 ? to about 500 ?. Catalysts prepared from the supports of the invention exhibit improved catalytic activity and stability to remove metals from heavy hydrocarbon feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion during the hydroconversion process.Type: ApplicationFiled: March 14, 2014Publication date: September 18, 2014Applicant: ADVANCED REFINING TECHNOLOGIES LLCInventors: Viorel D. Duma, Matthew P. Woods, Stanislaw Plecha
-
Patent number: 8828339Abstract: A CO shift catalyst according to the present invention is one that reforms carbon monoxide (CO) in gas. The CO shift catalyst includes: active ingredients including one of molybdenum (Mo) and iron (Fe) as a main ingredient and one of nickel (Ni) and ruthenium (Ru) as an accessory ingredient; and one or at least two oxides of titanium (Ti), zirconium (Zr), and cerium (Ce) as a carrier supporting the active ingredients. The CO shift catalyst can be used for a CO shift reactor 20 that converts CO in gasified gas 12 produced in a gasifier 11 into CO2.Type: GrantFiled: February 24, 2011Date of Patent: September 9, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Toshinobu Yasutake, Masanao Yonemura, Tetsuya Imai
-
Patent number: 8822368Abstract: The present invention relates to supported Ni-catalysts optionally comprising Zn as a promoter, methods for the production of said catalysts and uses of said catalysts for the hydrogenation of a hydrocarbon feed.Type: GrantFiled: May 7, 2010Date of Patent: September 2, 2014Assignee: Shell Oil CompanyInventors: Reinhard Geyer, Klaus Hoheisel, Patrick Vander Hoogerstraete, Jürgen Hunold, Michael Keck, Dirk Lose, Rainer Schödel
-
Publication number: 20140243193Abstract: A cermet catalyst material, including a spinel matrix defining a spinel grain and a plurality metal particles embedded in and on the surface of the spinel grain. When the spinel grain is in a first oxidizing atmosphere and at a temperature above about 800 degrees Celsius the metal particles are absorbed into the spinel matrix in the form of metal cations. When the grain is in an second, less oxidizing atmosphere and at a temperature below about 1100 degrees Celsius the metal cations emerge from the spinel matrix to yield a plurality of metal particles adhering to the spinel grain or residing in intragranular pores.Type: ApplicationFiled: May 5, 2014Publication date: August 28, 2014Inventor: Michelene Hall
-
Patent number: 8802044Abstract: The invention relates to a filtration structure, for filtering a gas coming from a diesel engine, which is laden with gaseous pollutants of the nitrogen oxide NOx type and with solid particles, of the particulate filter type, said filtration structure being characterized in that it includes a catalytic system comprising at least one noble metal or transition metal suitable for reducing the NOx and a support material, in which said support material comprises or is made of a zirconium oxide partially substituted with a trivalent cation M3+ or with a divalent cation M?2+, said zirconium oxide being in a reduced, oxygen-sub-stoichiometric, state.Type: GrantFiled: December 16, 2009Date of Patent: August 12, 2014Assignees: Saint-Gobain Centre de Recherches et d'Etudes Europeen, Centre National de la Recherche ScientifiqueInventors: Philippe Vernoux, Abdelkader Hadjar, Agnes Princivalle, Christian Guizard
-
Publication number: 20140193730Abstract: Electrooxidative materials and various method for preparing electrooxidative materials formed from an alloy of oxophilic and electrooxidative metals. The alloy may be formed using methods such as spray pyrolysis or mechanosynthesis and may or may not include a supporting material which may or may not be sacrificial as well as the materials.Type: ApplicationFiled: January 8, 2014Publication date: July 10, 2014Applicant: STC.UNMInventors: Ulises A. Martinez, Plamen B. Atanassov, Alexey Serov, Monica Padilla
-
Patent number: 8759249Abstract: A method for the production of nanocrystalline nickel oxides as well as the nickel oxides produced by the method according to the invention and the use thereof as catalyst following reduction to nickel metal, in particular for hydrogenation reactions.Type: GrantFiled: May 29, 2009Date of Patent: June 24, 2014Assignee: SUED-Chemie IP GmbH & Co. KGInventors: Hans-Jörg Wölk, Alfred Hagemeyer, Frank Groβmann, Silvia Neumann
-
Publication number: 20140171299Abstract: A hydroprocessing co-catalyst composition may comprise in an embodiment a first component comprising co-catalyst particles and a liquid carrier, and a second component comprising a dispersant and a dispersant diluent. The co-catalyst particles may be in the micron size range, and the dispersant may promote dispersion of the co-catalyst particles in materials such as the liquid carrier, the dispersant diluent, and combinations thereof. Methods of introducing a hydroprocessing co-catalyst composition into a hydroprocessing system are also disclosed.Type: ApplicationFiled: December 14, 2012Publication date: June 19, 2014Inventors: Julie Chabot, Bo Kou, Alexander Kuperman
-
Publication number: 20140171298Abstract: A hydroprocessing co-catalyst composition may comprise in an embodiment a first component comprising co-catalyst particles and a liquid carrier, and a second component comprising a dispersant and a dispersant diluent. The co-catalyst particles may be in the micron size range, and the dispersant may promote dispersion of the co-catalyst particles in materials such as the liquid carrier, the dispersant diluent, and combinations thereof. Methods of introducing a hydroprocessing co-catalyst composition into a hydroprocessing system are also disclosed.Type: ApplicationFiled: December 14, 2012Publication date: June 19, 2014Inventors: Julie Chabot, Bo Kou, Alexander Kuperman
-
Patent number: 8734743Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.Type: GrantFiled: June 9, 2011Date of Patent: May 27, 2014Assignee: BASF SEInventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
-
Publication number: 20140138585Abstract: Disclosed is a catalyst support for steam carbon dioxide reforming reaction utilizing the advantages of superior thermal conductivity and thermal dispersion of a metal foam support and a large specific surface area of a carrier material, which allows selective control of coating amount and the thickness of a support layer and prevents cracking on the support surface, using both the sol-gel method and the slurry method that have been used for coating of a metal foam support.Type: ApplicationFiled: June 4, 2013Publication date: May 22, 2014Inventors: Dong Ju MOON, Tae Gyu KIM, Dae Il PARK
-
Publication number: 20140134098Abstract: A method of steam reforming where a reaction occurs in which an oxygenated feed contacts a catalyst to produce hydrogen. The catalyst of the reaction comprises a metal/metal promoter on a nickel/transition metal blend catalyst supported on a high-energy lattice metal oxide.Type: ApplicationFiled: November 4, 2013Publication date: May 15, 2014Applicant: Phillips 66 CompanyInventors: Jimmy A. Faria, Jon M. Nelson, Uchenna P. Paul, Danielle K. Smith
-
Publication number: 20140134101Abstract: The present application describes a catalyst that is suitable for the CO2 reforming of methane-rich gases, such as biogas, that is resistant to poisoning by sulfur. The catalyst comprises from about 5 wt % to about 20 wt % Ni and 0 wt % to about 10 wt % Co supported on a support having a formula selected from: (a) Al2O3; (b) M1aOb-AI2O3; and (c) M1aOb—ZrO2-AI2O3, where M1aOb is either CaO or MgO.Type: ApplicationFiled: May 29, 2012Publication date: May 15, 2014Inventors: Raphael Idem, Ataullah Khan Mohammed, Bappy Saha
-
Patent number: 8716165Abstract: A method for providing a catalyst on a substrate is disclosed comprising providing a first washcoat comprising a soluble washcoat salt species, a polar organic solvent, and an insoluble particulate material, contacting the first washcoat with a substrate to form a coated substrate, and then contacting the coated substrate with a second washcoat comprising an oxide or an oxide-supported catalyst to physisorb, chemisorb, bond, or otherwise adhere the oxide or the oxide-supported catalyst to the coated substrate. Also disclosed is a catalyst on a substrate comprising: a substrate; an anchor layer comprising a soluble washcoat salt species, a polar organic solvent, and an insoluble particulate material; and a second layer comprises an oxide or an oxide-supported catalyst. The catalyst on a substrate can be in either green or fired form.Type: GrantFiled: April 30, 2008Date of Patent: May 6, 2014Assignee: Corning IncorporatedInventor: William Peter Addiego