Of Nickel Patents (Class 502/335)
  • Patent number: 7981274
    Abstract: A catalytic element useful for promoting catalytic gas phase reactions is provided, comprising a porous ceramic body comprising a multiplicity of open pores having a coating comprising a basic oxide material and a catalyst material selected from transition metal and noble metal compounds.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: July 19, 2011
    Assignee: Pall Corporation
    Inventors: Manfred Nacken, Steffen Heidenreich
  • Publication number: 20110166398
    Abstract: A process is described for preparing a catalyst comprising at least one porous support and at least one metallic phase containing nickel and tin in a proportion such that the Sn/Ni molar ratio is in the range 0.01 to 0.2, said process comprising at least the following steps in succession: a) depositing nickel on at least said support in order to obtain a supported nickel-based monometallic catalyst; b) reducing said monometallic catalyst in the presence of at least one reducing gas; c) depositing, in the gas phase and in the presence of at least one reducing gas, at least one organometallic tin compound onto said reduced monometallic catalyst; and d) activating the solid derived from said step c) in the presence of at least one reducing gas.
    Type: Application
    Filed: August 16, 2010
    Publication date: July 7, 2011
    Applicant: IFP New Energies
    Inventors: Lars FISCHER, Anne-Claire DUBREUIL, Cecile THOMAZEAU, Layane DEGHEDI, Jean-Pierre CANDY, Jean-Marie BASSET, Fabienne LE PELTIER
  • Publication number: 20110119990
    Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 26, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANHY
    Inventors: Pallassana S. Venkataraman, Gordon F. Stuntz, Jonathan M. McConnachie, Faiz Pourarian
  • Publication number: 20110119992
    Abstract: The present invention relates to novel interstitial metal hydrides and catalyst containing interstitial metal hydrides that are resistant to oxidation and resultant loss of catalytic activity. The processes of the present invention include use of these improved, oxidation resistant interstitial metal hydride compositions for improved overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 26, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Faiz Pourarian, Marc A. Portnoff, David A. Purta, Margaret A. Nasta, Jingfeng Zhang, Gordon F. Stuntz, Jonathan M. McConnachie, Heather A. Elsen, Patricia A. Bielenberg
  • Publication number: 20110105304
    Abstract: Architecture comprising ceramic or metallic foam, characterized in that the foam has a constant axial and radial porosity between 10 to 90% with a pore size between 2 to 60 ppi, and at least one continuous and/or discontinuous, axial and/or radial concentration of catalytic active(s) phase(s) from 0.01 wt % to 100 wt %, preferentially from 0.1 to 20 wt. %, and in that the architecture has a microstructure comprising specific area ranging between 0.1 to 30 m2/g, a grain size between 100 nm and 20 microns and a skeleton densification above 95%.
    Type: Application
    Filed: June 15, 2009
    Publication date: May 5, 2011
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Ex ploitation Des Procedes Georges Claude
    Inventors: Pascal Del-Gallo, Thierry Chartier, Mathieu Cornillac, Raphael Faure, Daniel Gary, Fabrice Rossignol
  • Publication number: 20110105305
    Abstract: An architecture made of a ceramic or a metallic foam has at least one continuous and/or discontinuous, axial and/or radial porosity gradient ranging from 10 to 90% associated to a pore size range from 2 to 60 ppi, at least one continuous and/or discontinuous, axial and/or radial concentration gradient of catalytic active(s) phase(s) from 0.01 wt % to 100 wt % preferentially from 0.1 wt % to 20 wt %, and a microstructure with a specific area ranging between 0.1 to 30 m2/g, a grain size between 100 nm and 20 microns and a skeleton densification above 95%.
    Type: Application
    Filed: June 16, 2009
    Publication date: May 5, 2011
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Pascal Del-Gallo, Daniel Gary, Thierry Chartier, Mathieu Cornillac, Raphael Faure, Fabrice Rossingnol
  • Publication number: 20110092361
    Abstract: Methods for improving the sulfur-tolerance of nickel-based catalyst systems, as well as the improved catalyst systems, are disclosed. The methods can include adding praseodymium alone, or in combination with ruthenium and/or cerium, to a nickel-based catalyst system, thereby inhibiting sulfur poisoning of the catalyst system. Improved catalyst systems can have an added amount of praseodymium alone, or in combination with ruthenium and/or cerium, sufficient to inhibit poisoning of the system by sulfur.
    Type: Application
    Filed: December 20, 2010
    Publication date: April 21, 2011
    Applicant: Battelle Memorial Institute
    Inventors: Vincent L. Sprenkle, Kerry D. Meinhardt, Lawrence A. Chick, Jin Yong Kim
  • Patent number: 7915196
    Abstract: A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: March 29, 2011
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Yves O. Parent, Kim Magrini, Steven M. Landin, Marcus A. Ritland
  • Patent number: 7910518
    Abstract: A geometrically shaped solid carrier is provided that improves the performance and effectiveness of an olefin epoxidation catalyst for epoxidizing an olefin to an olefin oxide. In particular, improved performance and effectiveness of an olefin epoxidation catalyst is achieved by utilizing a geometrically shaped refractory solid carrier in which at least one wall thickness of said carrier is less than 2.5 mm.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: March 22, 2011
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventors: Serguei Pak, Andrzej Rokicki, Howard Sachs
  • Publication number: 20110060174
    Abstract: Provided is a catalyst including a mixture of metal A selected from Fe, Co and Ni, and metal B selected from Zn and Ga, and a support material, where the two metals are present in an intermetallic composition; A method for the manufacture of the catalyst; and the use of the catalyst for the selective hydrogenation of acetylene to ethylene in a gas mixture including acetylenic impurities and hydrogen, and one or more of ethylene and carbon monoxide. The catalyst has a high selectivity and is based an easily available metal compounds.
    Type: Application
    Filed: January 7, 2009
    Publication date: March 10, 2011
    Applicant: DANMARKS TEKNISKE UNIVERSITET - DTU
    Inventors: Felix Studt, Jens Kehlet Nørskov, Claus Hviid Christensen, Rasmus Zink Sørensen, Frank Abild-Pedersen, Thomas Bligaard
  • Patent number: 7902104
    Abstract: This invention relates to a solid divided composition comprising grains whose mean size is greater than 25 ?m and less than 2.5 mm, wherein each grain is provided with a solid porous core and a homogeneous continuous metal layer consisting of at least one type of transition non-oxidised metal and extending along a gangue coating the core in such a way that pores are inaccessible. A method for the production of said composition and for the use thereof in the form of a solid catalyst is also disclosed.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: March 8, 2011
    Assignees: Arkema France, Institut National Polytechnique de Toulouse
    Inventors: Philippe Kalck, Philippe Serp, Massimiliano Corrias
  • Patent number: 7897037
    Abstract: A catalyst is provided comprising nickel in a reduced valence state on a carrier comprising zinc oxide and alumina, wherein the Zn:Ni atomic ratio is at least 12, and the catalyst particles are prepared by: mixing zinc oxide in the form of a powder and alumina or an alumina precursor in the form of a powder; peptizing the powder mixture and forming an extrudable dough by adding acid and water to the powder mixture in such amounts that the dough contains 0.8-1.2 moles acid equivalents per kg powder; extruding the extrudable dough to form extrudates; drying and calcining the extrudates; impregnating the extrudates with an aqueous solution of a nickel compound; drying, calcining and reducing the impregnated extrudates. Further provided is a process for desulphurization of a hydrocarbonaceous feedstock using such catalyst.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: March 1, 2011
    Assignee: Shell Oil Company
    Inventor: Carolus Matthias Anna Maria Mesters
  • Patent number: 7888283
    Abstract: A composition for catalyzing the auto-thermal reformation of ethanol, including a porous refractory substrate with a nickel-iron-aluminum oxide material at least partially filling the pores. The substrate is typically an alumina-based ceramic, such as gamma alumina or mullite. The catalyst composition is typically produced by identifying a refractory substrate having a relatively high surface area, such as through the existence of a pore network, infiltrating the refractory substrate with iron oxide and nickel oxide precursors, and combining the iron oxide and nickel oxide precursors with aluminum oxide to form a hybrid nickel-iron-aluminum oxide material at least partially coating the refractory substrate.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: February 15, 2011
    Inventors: Lihong Huang, Jian Xie
  • Publication number: 20110028770
    Abstract: An alpha-alumina support for a hydrogenation catalyst useful in hydrogenating fluoroolefins is provided.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 3, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: HAIYOU WANG, HSUEH SUNG TUNG, DANIEL C. MERKEL
  • Publication number: 20110003681
    Abstract: The present invention relates to a catalyst composition and a catalyst material which are suitable for use as a reforming catalyst in a fuel cell and are less susceptible to catalyst poisoning by alkali metals. The invention also relates to a catalyst suspension for the preparation of the catalyst composition and the catalyst material, plus a process for the preparation of the catalyst suspension and the catalyst composition. The invention is also directed towards the use of the catalyst composition or the catalyst material in a fuel cell.
    Type: Application
    Filed: February 26, 2008
    Publication date: January 6, 2011
    Applicants: SUD-CHEMIE AG, MTU ONSITE ENERGY GMBH
    Inventors: Thomas Speyer, Wolfgang Gabriel, Klaus Wanninger, Uwe Wurtenberger
  • Publication number: 20100331571
    Abstract: An object of the present invention is to provide a molding and a method for producing the same; a catalyst for the production of an unsaturated aldehyde and an unsaturated carboxylic acid, and a method for producing the same; and a catalyst for the production of methacrylic acid, and a method for producing the same. The molding of the present invention shows a shape including a plurality of columnar portions disposed with a predetermined gap; and bridge portions which are provided at both ends in longitudinal directions of two adjacent columnar portions and join adjacent columnar portions each other; and including through holes surrounded by a plurality of columnar portions in the longitudinal directions of the columnar portions, and openings formed on a peripheral surface by a gap between the plurality of adjacent columnar portions.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 30, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Hirofumi Saito, Yuya Takahashi, Toyohisa Hoshikawa, Kazuya Tsuchimoto, Osamu Yamanishi
  • Publication number: 20100324346
    Abstract: The invention concerns a catalyst comprising nickel on an aluminium oxide support. The aluminium oxide support has, in the calcined state, a diffractogram obtained by X ray diffractometry comprising peaks which correspond to the following interplanar spacings and relative intensities: Interplanar spacings Relative intensities d (10?10 m ) I/I0 (%) 5.03 to 5.22 ?1-5 4.56 to 4.60 ?1-10 4.06 to 4.10 ?1-5 2.80 to 2.85 ?5-20 2.73 15-35 2.60 ?5-10 2.43 35-40 2.29 30-40 1.99 60-95 1.95 25-50 1.79 ?1-10 1.53 ?5-10 1.51 ?5-10 1.41 40-60 1.39 100 1.23 to 1.26 ?1-5 1.14 ?5-10 1.11 ?1-5 1.04 ?1-5 1.00 ?5-10 0.
    Type: Application
    Filed: January 30, 2009
    Publication date: December 23, 2010
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Anne Claire Dubreuil, Lars Fischer, Bernadette Rebours, Renaud Revel, Cecile Thomazeau
  • Patent number: 7846977
    Abstract: The present invention relates to a catalyst comprising a preferably oxidic, core material, a shell of zinc oxide around said core material, and a catalytically active material in or on the shell, based on one or more of the metals cobalt, iron, ruthenium and/or nickel, preferably a Fischer-Tropsch catalyst, to the preparation of such a catalyst and the use thereof in GTL processes.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: December 7, 2010
    Assignee: BASF Corporation
    Inventors: Cornelis Roeland Baijense, Geoffrey Johnson, Ahmad Moini
  • Patent number: 7846867
    Abstract: A method for the production of a composition comprising a metal containing compound, a silica containing material, a promoter, and alumina is disclosed. The composition can then be utilized in a process for the removal of sulfur from a hydrocarbon stream.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: December 7, 2010
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Uday T. Turaga, Tushar V. Choudhary, Glenn W. Dodwell, Marvin M. Johnson, Deborah K. Just
  • Patent number: 7842636
    Abstract: Compositions and methods for depositing one or more metal or metal alloy films on substrates. The compositions contain a catalyst, one or more carrier particles and one or more water-soluble or water-dispersible organic compounds. Metal or metal alloys may be deposited on the substrates by electroless or electrolytic deposition.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: November 30, 2010
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Peter R. Levey, Nathaniel E. Brese
  • Patent number: 7842634
    Abstract: A useful partial oxidation catalyst element includes a catalyst component, a support component, and a substrate. The catalyst component is formed by combining a catalytically active metal with a first support material to form a mixture and calcining the mixture. The support component is formed by calcining a second support material, not containing the active metal. The first and second support materials include particles having an average particle diameter of less than 20 microns. A catalyst material is formed by combining the catalyst component and the support component, wherein the catalyst material contains less than 20% of the catalyst component by weight. The catalyst material is applied to a substrate configured for gas flow therethrough, thereby formulating the partial oxidation catalyst element. The partial oxidation catalyst element is especially useful for fuel reforming and fuel cell applications.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: November 30, 2010
    Assignee: Umicore AG & Co. KG
    Inventors: Jeffrey G. Weissman, Ming-Cheng Wu
  • Patent number: 7838459
    Abstract: The present invention is related to single and/or multiple-wall carbon nanotubes which may contain interstitial metals obtainable by a preparation process, comprising a catalytic step using a catalytic system, said catalytic system comprising a catalyst and a support, said support comprising hydroxides and/or carbonates or mixtures thereof with or without metal oxides. The present invention is also related to carbon fibers obtainable by said preparation process. The present invention also pertains in particular to said catalytic system and to said preparation process. Another aspect concerns the use of the nanotubes and of the catalytic system according to the invention.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: November 23, 2010
    Assignee: Facultes Universitaires Notre-Dame De La Paix
    Inventors: Janos B. Nagy, Narasimaiah Nagaraju, Isabelle Willems, Antonio Fonseca
  • Patent number: 7833934
    Abstract: A hydrocarbon reforming catalyst, a method of preparing the same, and a fuel processor including the same includes the hydrocarbon reforming catalyst having an active catalyst component impregnated in a oxide carrier and a thermally conductive material having higher thermal conductivity than that of the oxide carrier, the method of preparing the same, and a fuel processor including the same. The hydrocarbon reforming catalyst has excellent catalytic activity and thermal conductivity, and thus can easily transfer heat required in a hydrocarbon reforming reaction. Accordingly, by using the hydrocarbon reforming catalyst above, a high hydrogen production rate can be obtained.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: November 16, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yulia Potapova, Soon-ho Kim, Doo-hwan Lee, Hyun-chul Lee
  • Publication number: 20100285950
    Abstract: Co-catalysts comprising yttria-stabilized aluminum oxide having nickel oxide loaded thereon, their uses and methods of preparing are described. Also, hybrid catalysts comprising these co-catalysts along with main catalyst components, and their uses and methods of preparing are described. Monocomponent catalysts having nickel oxide loaded thereon, their uses and methods of preparing are also described.
    Type: Application
    Filed: June 17, 2008
    Publication date: November 11, 2010
    Inventor: Raymond Le Van Mao
  • Patent number: 7824656
    Abstract: The present invention relates to catalysts for the production of hydrogen using the water gas shift reaction and the carbon dioxide reforming of hydrocarbon-containing fuels. The catalysts nickel and/or copper on a ceria/zirconia support, where the support is prepared using a surfactant templating method. The invention also includes processes for producing hydrogen, reactors and hydrogen production systems utilizing these catalysts.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: November 2, 2010
    Assignee: University of Regina
    Inventors: Raphael Oyom Idem, Prashant Kumar, Yanping Sun
  • Patent number: 7825058
    Abstract: Compositions and methods for depositing one or more metal or metal alloy films on substrates. The compositions contain a catalyst, one or more carrier particles and one or more water-soluble or water-dispersible organic compounds. Metal or metal alloys may be deposited on the substrates by electroless or electrolytic deposition.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: November 2, 2010
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Peter R. Levey, Nathaniel E. Brese
  • Publication number: 20100273646
    Abstract: A purifying catalyst includes catalyst powder composed of a transition metal oxide of which an average particle diameter is within 1 nm to 2 ?m and in which an electron binding energy of oxygen is shifted to an energy side lower than 531.3 eV. The purifying catalyst shows good purification performance even when noble metal is not contained as an essential component.
    Type: Application
    Filed: November 20, 2008
    Publication date: October 28, 2010
    Inventors: Hirofumi Yasuda, Yasunari Hanaki, Toru Sekiba, Shigeru Chida, Junji Ito
  • Patent number: 7820583
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: October 26, 2010
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20100266478
    Abstract: The present invention provides a metal nano catalyst, a method for preparing the same and a method for controlling the growth types of carbon nanotubes using the same. The metal nano catalyst can be prepared by burning an aqueous metal catalyst derivative comprising Co, Fe, Ni or a combination thereof in the presence of a supporting body precursor.
    Type: Application
    Filed: November 30, 2009
    Publication date: October 21, 2010
    Applicant: CHEIL INDUSTRIES INC.
    Inventors: Byeong Yeol KIM, Seung Yong BAE, Young Sil LEE
  • Patent number: 7816299
    Abstract: A stacked bed catalyst system comprising at least one first catalyst selected from conventional hydrotreating catalyst having an average pore diameter of greater than about 10 nm and at least one second catalyst comprising a bulk metal hydrotreating catalyst comprised of at least one Group VIII non-noble metal and at least one Group VIB metal and optionally a binder material.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gary P. Schleicher, Kenneth L. Riley
  • Patent number: 7811966
    Abstract: A catalyst, catalyst precursor, or catalyst carrier formed as an elongated shaped particle having a cross section comprising three protrusions each extending from and attached to a central position. The central position is aligned along the longitudinal axis of the particle. The cross-section of the particle occupies the space encompassed by the outer edges of six outer circles around a central circle, each of the six outer circles contacting two neighbouring outer circles, the particle occupying three alternating outer circles equidistant to the central circle and the six interstitial regions, the particle not occupying the three remaining outer circles which are between the alternating occupied outer circles. The ratio of the diameter of the central circle to the diameter of the outer occupied circle is more than 1, and the ratio of the diameter of the outer unoccupied circle to the diameter of the outer occupied circle is more than 1.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: October 12, 2010
    Assignee: Shell Oil Company
    Inventors: Hans Peter Alexander Calis, Guy Lode Magda Maria Verbist
  • Patent number: 7811963
    Abstract: An elongated-shaped particle having two protrusions; each extending from and attached to a central position, wherein the central position is aligned along the longitudinal axis of the particle, the cross-section of the particle occupying the space encompassed by the outer edges of six circles around a central circle, in which each of the six circles touches two neighboring circles and two alternating circles are equidistant to the central circle and may be attached to the central circle, and the two circles adjacent to the two alternating circles (but not the common circle) touching the central circle, minus the space occupied by the four remaining outer circles and including four remaining interstitial regions.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: October 12, 2010
    Assignee: Shell Oil Company
    Inventors: Hilbrand Klaver, Carolus Matthias Anna Maria Mesters, Gerardus Petrus Lambertus Niesen, Guy Lode Magda Maria Verbist
  • Patent number: 7811967
    Abstract: A method of preparing, preferably recycling, a catalyst support material is disclosed and is particularly applicable to recycling a titania support. The invention includes crushing the used catalyst support that is obtained by leaching catalytic components from a used supported catalyst and preferably combining it with new catalyst support in order to provide the required average particle size and ratio of crystal phases. The invention has a number of benefits including making use of used catalyst support materials which have been conventionally disposed of and also providing a method to more efficiently recycle the active component. Where the support is recycled for a similar application, less promoter may be required.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: October 12, 2010
    Assignee: Shell Oil Company
    Inventors: Marinus Johannes Reynhout, Guy Lode Magda Maria Verbist
  • Patent number: 7799729
    Abstract: In one embodiment, a reforming catalyst can include indium, tin, and a catalytically effective amount of a group VIII element for one or more reforming reactions. Typically, at least about 25%, by mole, of the indium is an In(3+) species based on the total moles of indium after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C. Usually, no more than about 25%, by mole, of the tin is a Sn(4+) species based on the total moles of tin after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Gregory J. Gajda, Mark Paul Lapinski, Jeffry Thurston Donner, Simon Russell Bare
  • Patent number: 7799727
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Publication number: 20100234215
    Abstract: A catalyst composition and a process for using it to decompose nitrous oxide into nitrogen and oxygen are disclosed. The catalyst composition has surface area of about 1 to about 200 m2/g after exposure to a calcination temperature of between about 400° C. and about 900° C., or about 1 to about 100 m2/g after exposure to a calcination temperature of between about 400° C. and about 950° C.
    Type: Application
    Filed: April 13, 2010
    Publication date: September 16, 2010
    Applicant: INVISTA NORTH AMERICA S.A R.L.
    Inventors: Colin S. Slaten, Sudhir Aki
  • Patent number: 7790648
    Abstract: The invention relates to a process for preparing a catalyst. The process allows the delamination of layered crystals which are used as a starting material for a catalyst. The starting material is subsequently converted into an active portion of a catalyst with an increased dispersion resulting in a higher activity. Preferred delaminating agents are di-carboxylic acids and one particular example is citric acid. Preferably at least 0.75 wt %, more preferably at least 1.5 wt % of a delaminating agent is added to the catalyst starting material.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: September 7, 2010
    Assignee: Shell Oil Company
    Inventors: Ronald Jan Dogterom, Robert Martijn Van Hardeveld, Marinus Johannes Reynhout, Bastiaan Anton Van De Werff
  • Patent number: 7776782
    Abstract: A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: August 17, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Todd Werpy, John G. Frye, Jr., Yong Wang, Alan H. Zacher
  • Patent number: 7776784
    Abstract: A hydrodesulfurization catalyst used for hydrodesulfurization of catalytically cracked gasoline comprises a support composed mainly of alumina modified with an oxide of at least one metal selected from the group consisting of iron, chromium, cobalt, nickel, copper, zinc, yttrium, scandium and lanthanoid-based metals, with at least one metal selected from the group consisting of Group 6A and Group 8 metals loaded as an active metal on the support. Hydrogenation of olefins generated as by-products during hydrodesulfurization of the catalytically cracked gasoline fraction, as an important constituent base of gasoline, can be adequately inhibited to maintain the octane number, while sufficiently reducing the sulfur content of the hydrodesulfurized catalytically cracked gasoline fraction.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: August 17, 2010
    Assignees: Nippon Oil Corporation, Petroleum Energy Center
    Inventors: Hideshi Iki, Shigeto Hatanaka, Eitaro Morita, Shinya Takahashi
  • Publication number: 20100204517
    Abstract: Nitro-compounds are hydrogenated with an activated Ni catalyst that has an average particle size (APS) less than 25 ?m and is doped with one or more elements from the list of Mg, Ce, Ti, V, Nb, Cr, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Pt, Cu, Ag, Au and Bi via its/their addition to the alloy before activation and/or doped with one or more elements from the list of Mg, Ce, Ti, V, Nb, Cr, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Cu, Ag, Au and Bi by their adsorption onto the surface of the activated catalyst.
    Type: Application
    Filed: May 29, 2007
    Publication date: August 12, 2010
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Daniel Ostgard, Monika Berweiler, Markus Gottlinger, Steffen Laporte, Matthias Schwarz
  • Patent number: 7771586
    Abstract: A strontium-doped, calcium-alumina nickel supported reforming catalyst is useful for reforming reactions when it is desired to generate a low H2/CO ratio synthesis gas and to reduce coking. The catalyst can generate a synthesis gas having a H2/CO ratio of less than about 2.3. The catalyst includes alumina, from about 0.3 wt. % to about 35 wt. % of calcium oxide, from about 0.1 wl % to about 35 wt. % of a strontium promoter, and about 0.5 wt. % to about 30 wt. % nickel. The support is prepared by a method wherein the calcium oxide is combined with the alumina to form aluminum-rich calcium aluminates.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: August 10, 2010
    Assignee: Sud-Chemie Inc.
    Inventors: Chandra Ratnasamy, Yeping Cai, William M. Faris, Jürgen R. Ladebeck
  • Patent number: 7771702
    Abstract: The invention provides active, affordable, durable, and sulfur-tolerant catalysts and related precursors and processes useful in hydrogen production. The catalysts have a wide applicability. For example, in one embodiment, the invention provides sulfur-tolerant catalysts which, when used in a catalytic fuel processor, will facilitate sufficient hydrogen generation within 30 seconds or so of automobile start-up to generate around 50 kW of fuel cell power. Catalysts of the instant invention are made by reducing a catalyst precursor comprising a support phase impregnated with one or more elemental transition metals, wherein: (a) the support phase is formed by dispersion of a monolayer on the surface of a high surface area alumina support; and (b) the monolayer comprises XOnYO2, where (1) XOn is a redox active metal oxide and n is either 1.5, 2, or 2.5 depending on the oxidation number of X, and (2) YO2 is a redox inactive metal oxide. Ni—V2O5—ZrO2/Al2O3 catalysts of the instant invention are preferred.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: August 10, 2010
    Assignees: University of Iowa Research Foundation, Honda Motor Co., Ltd.
    Inventors: Darrell P. Eyman, Christopher Brooks
  • Patent number: 7772147
    Abstract: A solid catalyst carrier substrate coated with a surface area-enhancing washcoat composition including a catalytic component, a metal oxide and a refractory fibrous or whisker-like material having an aspect ratio of length to thickness in excess of 5:1.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: August 10, 2010
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul John Collier, Alison Mary Wagland
  • Patent number: 7772151
    Abstract: A catalyzed soot filter is comprised of a monolithic ceramic honeycomb body that has a catalyzed inlet zone that has a catalyst within the walls of the ceramic honeycomb inlet end to at most about 45% of the length of the catalyzed soot filter. The catalyzed inlet zone has a porosity that is at least ? the porosity of a wall of the ceramic honeycomb that does not have a catalyst in the wall.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: August 10, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Cheng G. Li, Fuhe Mao
  • Patent number: 7767619
    Abstract: A promoted calcium-alumina supported reforming catalyst that is particularly useful for reforming reactions where low H2/CO ratio synthesis gas, such as less than 2.3 is generated directly is disclosed. The catalyst comprises from about 25 wt % to about 98 wt % alumina, from about 0.5 wt % to about 35 wt % calcium oxide, from about 0.01 wt % to about 35 wt % of a promoter, and from about 0.05 wt % to about 30 wt % of an active metal. The promoter is selected from the group consisting of titanium, zirconium, yttrium, niobium, elements of the lanthanum-series, such as, without limitation, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, ytterbium, and combinations thereof. The active metal is selected from the group consisting of nickel, cobalt, rhodium, ruthenium, palladium, platinum, iridium and combinations thereof as active metal, wherein the calcium oxide is combined with the alumina to form aluminum-rich calcium aluminates.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 3, 2010
    Assignee: Sud-Chemie Inc.
    Inventors: Shizhong Zhao, Yeping Cai, Xiao D. Hu, Jon P. Wagner, Jürgen Ladebeck, R. Steve Spivey
  • Publication number: 20100189615
    Abstract: Described are catalyst composites containing mechanically fused components, methods of making the catalyst composites, and methods of using the catalyst composites such as in pollution abatement applications. The catalyst composites contain a core and a shell at least substantially covering the core, the shell mechanically fused to the core and comprising particles mechanically fused to each other, wherein a size ratio of the core to particles of the shell is at least about 10:1.
    Type: Application
    Filed: January 29, 2009
    Publication date: July 29, 2010
    Applicant: BASF CATALYSTS LLC
    Inventor: Gary Gramiccioni
  • Patent number: 7759282
    Abstract: The present invention involves a process and materials for simultaneous desulfurization and water gas shift of a gaseous stream comprising contacting the gas stream with a nickel aluminate catalyst. The nickel aluminate catalyst is preferably selected from the group consisting of Ni2xAl2O2x+3, Ni(2?y)Ni0yAl2O(5?y), Ni(4?y)Ni0yAl2O(7?y), Ni(6?y)Ni0yAl2O(9?y), and intermediates thereof, wherein x?0.5 and 0.01?y?2. Preferably, x is between 1 and 3. More preferably, the nickel containing compound further comprises Ni2xAl2O2x+3?zSz wherein 0?z?2x.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: July 20, 2010
    Assignee: UOP LLC
    Inventors: Manuela Serban, Lisa M. King, Alakananda Bhattacharyya, Kurt M. Vanden Bussche
  • Patent number: 7749937
    Abstract: An unsupported catalyst composition which comprises one or more Group VIb metals, one or more Group VIII metals, and a refractory oxide material which comprises 50 wt % or more titania, on oxide basis, which is prepared by precipitation techniques, finds use in the hydroprocessing of hydrocarbonaceous feedstocks.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: July 6, 2010
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Willem Hartman Jurriaan Stork, Johanna Maria Helena Van Den Tol-Kershof
  • Publication number: 20100168257
    Abstract: The invention relates to catalysts for the methanation of carbon monoxide, which comprise metal-doped nickel oxide of the composition (in mol %) (M1)a(M2)bNicOxwhere a=0.1 to 5 mol %, b=3 to 20 mol % and c=100?(a+b) mol % and M1 comprises at least one metal of transition group VII or VIII of the PTE (=Periodic Table of the Elements) and M2 comprises at least one metal of transition group III or IV of the PTE. The catalysts can be used as pure catalysts or as supported catalysts, if appropriate applied as coatings to an inert support body. They display high conversion and high selectivity and are used in methanation processes of CO in hydrogen-containing gas mixtures, in particular in reformates for operation of fuel cells. The catalysts of the invention can be prepared by precipitation, impregnation, sol-gel methods, sintering processes or by powder synthesis.
    Type: Application
    Filed: March 11, 2008
    Publication date: July 1, 2010
    Inventors: Matthias Duisberg, Wilhelm F. Maier, Michael Kraemer
  • Patent number: 7745372
    Abstract: A catalyst for the selective hydrogenation of olefins especially dienes, its preparation and use, said catalyst comprising an alumina support and cobalt and/or nickel selected from Group VIII, molybdenum and/or tungsten from Group VIB and alkali metal components supported on said support, characterized in that the catalyst contains 0.5-8% by weight of cobalt and/or nickel selected from Group VIII, 2-15% by weight of molybdenum and/or tungsten from Group VIB, over 2-8% by weight of alkali metals, and a balanced amount of alumina support calculated for oxides and based on the catalyst. Compared to the prior catalysts, the activity and selectivity for olefins especially dienes of the catalyst are higher when used in the hydrogenation of a gasoline distillate.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: June 29, 2010
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Mingfeng Li, Yang Chu, Yunjian Hu, Guofu Xia, Hong Nie, Yahua Shi, Dadong Li