Of Nickel Patents (Class 502/337)
  • Publication number: 20080286176
    Abstract: Supports having a catalytic coating comprising at least one porous and cavity-containing catalyst layer are described, cavities being irregular spaces having dimensions greater than 5 ?m in at least two dimensions or having cross-sectional areas of at least 10 ?m2. The catalytic coatings are distinguished by a high adhesive strength and can preferably be used in microreactors.
    Type: Application
    Filed: April 18, 2006
    Publication date: November 20, 2008
    Applicants: Uhde GmbH, Evonik Degussa GmbH
    Inventors: Steffen Schirmeister, Karsten Bueker, Martin Schmitz-Niederau, Bernd Langanke, Andreas Geisselmann, Georg Markowz, Klaus Thomas Schwarz, Elias Johannes Klemm, Frank Becker, Reinhard Machnik
  • Patent number: 7452844
    Abstract: The Fischer-Tropsch catalyst of the present invention is a transition metal-based catalyst having a high surface area, a smooth, homogeneous surface morphology, an essentially uniform distribution of cobalt throughout the support, and a small metal crystallite size. In a first embodiment, the catalyst has a surface area of from about 100 m2/g to about 250 m2/g; an essentially smooth, homogeneous surface morphology; an essentially uniform distribution of metal throughout an essentially inert support; and a metal oxide crystallite size of from about 40 ? to about 200 ?. In a second embodiment, the Fischer-Tropsch catalyst is a cobalt-based catalyst with a first precious metal promoter and a second metal promoter on an aluminum oxide support, the catalyst having from about 5 wt % to about 60 wt % cobalt; from about 0.0001 wt % to about 1 wt % of the first promoter, and from about 0.01 wt % to about 5 wt % of the second promoter.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: November 18, 2008
    Assignee: Süd-Chemie Inc
    Inventors: X. D. Hu, Patrick J. Loi, Robert J. O'Brien
  • Patent number: 7452842
    Abstract: A porous preform (carrier) is soaked in an impregnating solution, which contains both of a catalytic-activity constituent, e.g. Ni and/or Co, and a carrier-forming constituent, e.g. Mg, Al, Zr, Ti and/or Ca, so as to simultaneously infiltrate the catalytic-activity and carrier-forming constituents into the porous preform. The impregnated preform is dried, calcined at a temperature of 700° C. or higher and then activated at a temperature of 500° C. or higher, whereby fine catalytic-activity particles are distributed on a surface of the porous carrier with high dispersion. Due to finely-distributed catalytic-activity particles, the surface of the catalyst is prevented from deposition of carbonaceous matters during reformation of hydrocarbon and held in an active state over a long term.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: November 18, 2008
    Assignee: Japan Oil, Gas and Metals National Corporation
    Inventors: Toshiya Wakatsuki, Kiyoshi Inaba, Hideyuki Nakajima, Eiichi Hosoya
  • Publication number: 20080280750
    Abstract: Catalysts for treating acid gases and halogen gases and the production methods thereof. The acid and halogen gases include HCl, HF, HBr, HI, F2, Cl2, Br2, I2, ClF3, PH3, PCl3, PCl5, POCl3, P2O5, AsH3, SiH4, SiF4, SiCl4, SiHCl3, SiH2Cl2, BF3, BCl3, GeCl4, GeH4, NO, NO2, SO2, SO3 and SF6, etc. The catalysts comprise one or more carrier materials selected from activated carbon, argil, diatomite, cement, silica and ceramic materials; and one or more metal compounds selected from: alkali metal hydroxides, oxides, carbonates and bicarbonates, alkaline earth metal hydroxides, oxides, carbonates and bicarbonates, Group IIIA metal oxides, Group IVA metal oxides, and transition metal oxides, oxide hydrates, sulfates and carbonates.
    Type: Application
    Filed: May 6, 2008
    Publication date: November 13, 2008
    Inventor: Pao-Chu Liu
  • Publication number: 20080280756
    Abstract: A method of producing a catalyst material with nano-scale structure, the method comprising: introducing a starting powder into a nano-powder production reactor, the starting powder comprising a catalyst material; the nano-powder production reactor nano-sizing the starting powder, thereby producing a nano-powder from the starting powder, the nano-powder comprising a plurality of nano-particles, each nano-particle comprising the catalyst material; and forming a catalyst precursor material from the nano-powder, wherein the catalyst precursor material is a densified bulk porous structure comprising the catalyst material, the catalyst material having a nano-scale structure.
    Type: Application
    Filed: May 9, 2008
    Publication date: November 13, 2008
    Inventor: Maximilian A. Biberger
  • Patent number: 7449167
    Abstract: A process for adiabatically prereforming a feedstock, includes: providing an adiabatic reactor; providing a catalyst containing 1-20 wt. % nickel and 0.4-5 wt. % potassium, wherein the catalyst has an overall catalyst porosity of 25-50% with 20-80% of the overall catalyst porosity contributed by pores having pore diameters of at least 500 ?; providing the feedstock containing natural gas and steam, wherein the natural gas contains an initial concentration of higher hydrocarbons, and a ratio of steam to natural gas in the feedstock is from 1.5:1 to 5:1; preheating the feedstock to a temperature of 300-700° C. to provide a heated feedstock; providing the heated feedstock to the reactor; and producing a product containing hydrogen, carbon monoxide, carbon dioxide, unreacted methane, and steam, wherein said product contains a reduced concentration of higher hydrocarbons less than the initial concentration of higher hydrocarbons, to prereform the feedstock.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: November 11, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Shankar Nataraj, Kevin Boyle Fogash, James Richard O'Leary, William Robert Licht, Sanjay Mehta, Eugene S. Genkin
  • Publication number: 20080262114
    Abstract: A Fischer-Tropsch catalyst support comprising at least 15 wt % of a material having the formula XaYbOc wherein: X comprises an element selected from the group consisting of magnesium, calcium, barium, strontium, cerium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, niobium, ruthenium, rhodium, palladium, cadmium, osmium, iridium, platinum, gold, mercury, tin, lead, lanthanides, and mixtures thereof; Y comprises a different element to X, Y selected from the group consisting of silicon, aluminium, titanium, zirconium, cerium, hafnium, gallium, and mixtures of these, preferably silicon, aluminium and titanium and mixtures thereof, especially titanium; O is oxygen; a and b are, independently, in the range of 1-6; c is in the range of 1-15. Preferably a perovskite-type structure results which is more stable and resistant to degradation.
    Type: Application
    Filed: January 18, 2008
    Publication date: October 23, 2008
    Inventor: Marinus Johannes REYNHOUT
  • Publication number: 20080262113
    Abstract: A process for preparing a Fischer-Tropsch catalyst comprising the steps of a) providing a particle comprising a support and having a catalytically active metal homogenously distributed therein, wherein at least 50 wt % of the catalytically active metal is present as divalent oxide or divalent hydroxide; b) treating the particle with a water vapour comprising gas having a relative humidity of at least 80% or with liquid water for at least two hours; and c) drying the catalyst particle.
    Type: Application
    Filed: April 9, 2008
    Publication date: October 23, 2008
    Inventors: Hans Peter Alexander Calis, Marinus Johannes Reynhout, Guy Lode Magda Maria Verbist
  • Publication number: 20080255257
    Abstract: A process for preparing a Fischer-Tropsch catalyst comprising the steps of a) providing a particle having a size of at least 1 mm and having a catalytically active metal homogenously distributed therein, wherein at least 50 wt % of the catalytically active metal is present as divalent oxide or divalent hydroxide; b) treating the particle with formic acid, acetic acid, propionic acid, butyric acid, n-pentanoic acid, hexanoic acid, citric acid, and/or benzoic acid an organic acid for more than 5 minutes; c) washing the catalyst particle; and d) drying the catalyst particle and/or heating the particle to a temperature in the range of 200 to 400° C.
    Type: Application
    Filed: April 9, 2008
    Publication date: October 16, 2008
    Inventors: Herman Pieter Charles Eduard KUIPERS, Marinus Johannes REYNHOUT
  • Publication number: 20080255256
    Abstract: A catalyst composition comprising cobalt as an active catalytic element and a lesser amount of nickel as a promoter supported on a metal oxide support. The support may comprise alumina, silica, silica-alumina, zeolite, zirconia, magnesia or titania. The amount of nickel is preferably less than 50 wt %, relative to the amount of cobalt.
    Type: Application
    Filed: September 23, 2005
    Publication date: October 16, 2008
    Inventor: Erling Rytter
  • Patent number: 7435274
    Abstract: There is disclosed a metal particle-dispersed composite oxide comprising a matrix material containing a composite oxide comprising a non-reducible metal oxide and an easily reducible metal oxide, the composite oxide containing 0.01 to 0.25 mol % of at least one additive metal selected from Al, Sc, Cr, B, Fe, Ga, In, Lu, Nb and Si, surface metal particles precipitated on an outer surface of the matrix material containing the composite oxide, and inner metal particles precipitated on an inner surface of the matrix material containing the composite oxide.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: October 14, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Suenaga, Tomohiro Suetsuna, Takayuki Fukasawa, Yasuhiro Goto, Koichi Harada
  • Patent number: 7431904
    Abstract: The present invention relates to a catalyst support material and catalysts made therefrom having improved resistance towards erosion. The catalyst support contains at least 20% by weight of TiO2 being present mainly in the anatase form. Furthermore, the catalyst support contains diatomaceous earth in an amount of at least 2% and less than 80% by weight of the catalyst support. In one embodiment catalysts made from said catalyst support contain oxides or sulfates of base metals from the group of V, W, Mn, Nb, Mo, Ni, Fe or Cu. Another option is a catalyst prepared from said catalyst support containing Pt or Pd. Said catalysts are used for treatment of a flue gas. More specifically the catalyst supports prepared according to the present invention and showing improved resistance towards erosion are used in flue gas containing a large amount of particulate matter and for selective catalytic reduction of nitrous oxides.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: October 7, 2008
    Assignee: Haldor Topsoe A/S
    Inventors: Jakob Weiland Høj, Claus S. Jørgensen
  • Patent number: 7427581
    Abstract: Novel sorbent systems for the desulfurization of cracked-gasoline and diesel fuels are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promotors are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline and diesel fuels whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: September 23, 2008
    Assignee: China Petroleum & Chemical Corporation
    Inventor: Gyanesh P. Khare
  • Patent number: 7425647
    Abstract: A process for preparing a catalyst by (a) selecting a carrier which is a silica based carrier which has been subjected to a series of washings with one or more aqueous liquids consisting of aqueous liquids which have a pH of least 3, when measured at 20° C., or which is a silica based carrier which is formed from materials one or more of which have been subjected to this series of washings, (b) precipitating a Group 8 metal compound onto the carrier, (c) converting the precipitated Group 8 metal compound into metallic species, and (d) subjecting the Group 8 metal/carrier composition to a purification treatment, before or after step (c); a catalyst which is obtainable by this process; and a process for preparing an alkenyl carboxylate by reacting a mixture comprising an olefin, a carboxylic acid and oxygen in the presence of the catalyst.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: September 16, 2008
    Assignee: Shell Oil Company
    Inventors: Michael Francis Lemanski, John Robert Lockemeyer
  • Patent number: 7422995
    Abstract: The present invention relates to a Catalyst comprising a, preferably oxidic, core material, a shell of zinc oxide around said core material, and a catalytically active material in or on the shell, based on one or more of the metals cobalt, iron, ruthenium and/or nickel, preferably a Fischer-Tropsch catalyst, to the preparation of such a catalyst and the use thereof in GTL processes.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: September 9, 2008
    Assignee: BASF Catalysts LLC
    Inventors: Cornelis Roeland Baijense, Geoffrey Johnson, Ahmad Moini
  • Publication number: 20080213154
    Abstract: This invention relates to a solid divided composition comprising grains whose mean size is greater than 25 ?m and less than 2.5 mm, wherein each grain is provided with a solid porous core and a homogeneous continuous metal layer consisting of at least one type of transition non-oxidised metal and extending along a gangue coating the core in such a way that pores are inaccessible. A method for the production of said composition and for the use thereof in the form of a solid catalyst is also disclosed.
    Type: Application
    Filed: June 21, 2005
    Publication date: September 4, 2008
    Inventors: Philippe Kalck, Philippe Serp, Massimiliano Corrias
  • Publication number: 20080214387
    Abstract: Process for modifying catalysts via the deposition of carbon containing residues in the presence of one or more solvents, where the gas phase over the catalyst treatment solution during the treatment is air or an inert gas, and/or the liquid phase contains a templating agent and/or base. The modified catalyst can be used for stereo-, chemo- and regioselective transformations of organic compounds.
    Type: Application
    Filed: November 12, 2004
    Publication date: September 4, 2008
    Inventors: Daniel Ostgard, Virginie Duprez, Roberta Olindo, Stefan Roder, Monika Berweiler
  • Patent number: 7419928
    Abstract: A process for enhancing the activity of a catalyst metal particulate for hydrogenation reactions comprising calcining the particulate in an oxidant-containing atmosphere to partially oxidize it thereby forming a porous layer of oxides thereon, treating with an solution capable of oxidizing the calcined metal particulate and comprising a compound of a hydrogenation catalyst metal to where said metal particulate has absorbed a volume of solution equal to at least about 10% of its calculated pore volume and activating it by treatment with a hydrogen-containing gas at elevated temperatures thereby forming a dispersed active metal catalyst. Preferably, the treated particulate is calcined a second time under the same conditions as the first before final activation with a hydrogen-containing gas. The metal particulate is preferably sized after each calcination and any agglomerates larger than 250 microns are comminuted to a desired size.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: September 2, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Andrzej M. Malek, Stephen C. Leviness, Horacio M. Trevino, Weldon K. Bell, David O. Marler
  • Publication number: 20080206562
    Abstract: The disclosure relates to metal nanoparticle compositions and methods of making such nanoparticle compositions that are useful for the production of electrically conductive features and catalysts.
    Type: Application
    Filed: January 12, 2008
    Publication date: August 28, 2008
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Galen D. Stucky, Nanfeng Zheng
  • Publication number: 20080194401
    Abstract: Novel nickel and/or cobalt plated sponge based catalysts are disclosed. The catalyst have an activity and/or selectivity comparable to conventional nickel and/or cobalt sponge catalysts, e.g., Raney® nickel or Raney® cobalt catalysts, but require a reduced content of nickel and/or cobalt. Catalysts in accordance with the invention comprise nickel and/or cobalt coated on at least a portion of the surface of a sponge support. Preferably, the sponge support comprises at least one metal other than or different from the metal(s) contained in the coating. The method of preparing the plated catalysts, and the method of using the catalysts in the preparation of organic compounds are also disclosed.
    Type: Application
    Filed: April 21, 2008
    Publication date: August 14, 2008
    Inventor: Stephen Raymond Schmidt
  • Publication number: 20080193370
    Abstract: Materials that are useful for absorption enhanced reforming (AER) of a fuel, including absorbent materials and catalyst materials and methods for using the materials. The materials can be fabricated by spray processing. The use of the materials in AER can produce a H2 product gas having a high H2 content and a low level of carbon oxides.
    Type: Application
    Filed: August 31, 2007
    Publication date: August 14, 2008
    Applicant: CABOT CORPORATION
    Inventors: Mark J. Hampden-Smith, Paolina Atanassova, Jian-Ping Shen, James Brewster, Paul Napolitano
  • Publication number: 20080187801
    Abstract: A fuel oxidizing catalyst, a method of preparing the same, and a reformer and a fuel cell system including the same. In one embodiment, the fuel oxidizing catalyst for a fuel cell includes CeO2, MO (wherein M is a transition metal), and CuO. In this embodiment, the fuel oxidizing catalyst has a relatively high (or excellent) catalytic activity for a fuel oxidizing catalyst reaction and performs a fuel oxidizing catalyst reaction at a relatively low temperature even though it does not include a noble metal.
    Type: Application
    Filed: November 9, 2007
    Publication date: August 7, 2008
    Inventors: Leonid Gorobinskiy, Ju-Yong Kim, Kie Hyun Nam, Jin-Goo Ahn, Man-Seok Han, Yong-Kul Lee, Sung-Chul Lee, Chan-Ho Lee, Jin-Kwang Kim, Dong-Uk Lee, Noboru Sato
  • Patent number: 7408086
    Abstract: A catalyst comprising nickel on a TiO2 support is obtainable by coprecipitation of nickel and at least one further metal selected from among Si, Zr, Hf, alkaline earth metals, Y, La and Ce, and optionally at least one dopant metal selected from groups 5 to 11 of the Periodic Table of the Elements, from a solution in which the corresponding metal salts are present onto a particulate TiO2 support, subsequent drying, calcination and reduction and optionally passivation to give the nickel-containing catalyst. It is used, in particular, for the hydrogenation of nitroaromatic compounds.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: August 5, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Dominic Vanoppen, Ekkehard Schwab, Joern Mueller, Ulrich Penzel, Gunter Georgi, Bernd Weidner, Dietrich Tittelbach-Helmrich, Juergen Dahlhaus
  • Patent number: 7405178
    Abstract: A catalyst for manufacturing carbon substances, such as carbon nanotube that has a diameter of 1000 nm or less, the catalyst containing at least iron, cobalt or nickel of a first element group and tin or indium of a second element group. The catalyst can be formed by at least tin and indium in addition to cobalt or nickel. The former catalyst provides a 2-component type catalyst and a multi-component type catalyst that is composed on the basis of the 2-component type catalyst, and the later catalyst provides a 3-component type catalyst and a multi-component type catalyst that is composed on the basis of the 3-component type catalyst.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: July 29, 2008
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Xu Li, Youchang Wang, Takashi Okawa, Akio Harada, Yoshikazu Nakayama
  • Patent number: 7402612
    Abstract: This invention relates to methods for making a stabilized transition alumina of enhanced hydrothermal stability, which include the introduction of at least one structural stabilizer; a steaming step before or after the introduction step, wherein steaming is effective in transforming a transition alumina at least partially to boehmite and/or pseudoboehmite; and a calcining step to create a stabilized transition alumina. The combination of the structural stabilizer and the steaming step is believed to impart high hydrothermal stability to the alumina crystal lattice. Particularly preferred structural stabilizers include boron, cobalt, and zirconium. The stabilized transition alumina is useful as a catalyst support for high water partial pressure environments, and is particularly useful for making a catalyst having improved hydrothermal stability. The invention more specifically discloses Fischer-Tropsch catalysts and processes for the production of hydrocarbons from synthesis gas.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: July 22, 2008
    Assignee: ConocoPhillips Company
    Inventors: Yaming Jin, Rafael L. Espinoza, Nithya Srinivasan, Olga P. Ionkina
  • Publication number: 20080171655
    Abstract: A process for the preparation of a catalyst precursor for use in a reactor, comprising the steps of: (a) coating one or more promoter(s) and/or one or more co-catalyst(s) onto a carrier material to form a coated carrier material; (b) combining a catalyst material with the coated carrier material of step (a); and (c) calcining the material of step (b).
    Type: Application
    Filed: December 12, 2007
    Publication date: July 17, 2008
    Inventors: Edward Julius Creyghton, Carolus Matthias Anna Maria Mesters, Marinus Johannes Reynhout, Guy Lode Magda Maria Verbist
  • Publication number: 20080161182
    Abstract: Plasma modifications of catalyst supports before and after impregnation of metal precursors improve the activity, selectivity and stability of catalysts, e.g. Ni catalysts for benzene hydrogenation and Pd catalysts for selective hydrogenation of acetylene. Plasma modification of the support before impregnation is slightly more effective than the plasma modification after impregnation. However, plasma modifications after impregnation increase the stability and selectivity of catalysts more effectively. The economic benefit of much improved stability of Ni catalysts for hydrogenation of benzene and the enhanced activity and selectivity of Pd catalysts for acetylene hydrogenation, e.g., is significant. Similar benefits for various catalysts and other industrial processes via RF plasma techniques are expected.
    Type: Application
    Filed: August 31, 2007
    Publication date: July 3, 2008
    Inventors: Wen-Long Jang, Chalita Ratanatawanate
  • Publication number: 20080153691
    Abstract: The present invention relates to a method of making a catalyst for carbon nanotubes and nanofibers, comprising heating oxygen compound of transition metal in oxidative ambient at a temperature of 800° C. through 1,5000 C to be transformed into an agglomerated transition metal oxide; and powdering the agglomerated transition metal oxide into a minute particle. Thus, the present invention provides a catalyst for carbon nanotubes and carbon nanofibers, and a method of making the same, in which production cost is reduced and it is possible to safekeep for a long time.
    Type: Application
    Filed: October 5, 2004
    Publication date: June 26, 2008
    Inventors: Won-Sub Jung, Sung-Sil Jung, Heung-Won Kang, Dae-Yeol Lee
  • Publication number: 20080139382
    Abstract: A catalyst for purifying exhaust gas that provides a superior catalytic performance even at a high temperature by increasing the durability of the promoter. The catalyst for purifying exhaust gas includes a promoter clathrate wherein a promoter component particle is covered with a high heat-resistant oxide. A promoter active species is contained in the promoter clathrate. The catalytic active species are located adjacent to the promoter clathrates. The catalytic active species has a precious metallic particle having a catalyst activity, a metallic oxide particle for bearing the precious metallic particle and a metallic oxide placed around the metallic oxide particle and the precious metallic particle.
    Type: Application
    Filed: September 26, 2007
    Publication date: June 12, 2008
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hideaki Morisaka, Hironori Wakamatsu, Masanori Nakamaura, Kazuyuki Shiratori, Hirofumi Yasuda, Katsuo Suga
  • Publication number: 20080132410
    Abstract: Chemical vapor deposition (CVD) is used to synthesize single-wall carbon nanotubes by a catalytic reaction, and a method of preparing the catalyst is also provided. A transition metal catalyzing growth of carbon nanotubes, an oxide of a precursor metal preventing agglomeration of catalyst particles, and a precious metal are essentially consisted in the catalyst. The catalyst particles can be further dispersed by quasi-explosive effect occurred when the oxidized precious metal is reduced.
    Type: Application
    Filed: May 16, 2007
    Publication date: June 5, 2008
    Applicant: RITEK CORPORATION
    Inventors: Wei-Hsiang WANG, Cheng-Tzu KUO, Tsai-Hau HONG
  • Publication number: 20080125312
    Abstract: The present teachings are directed toward methods of modifying the properties of a composition by providing particles of a first composition having dimensions of less than about 3 nanometers and a substrate of a second composition. The particles of the first composition are placed on the substrate, whereby the particles of the first composition and the substrate interact to modify at least one property of the particles of the first composition relative to the same property of particles of the first composition having dimensions greater than about 10 nanometers placed on a substrate of the second composition.
    Type: Application
    Filed: November 16, 2007
    Publication date: May 29, 2008
    Applicant: Honda Motor Co., Ltd.
    Inventor: Avetik Harutyunyan
  • Patent number: 7378370
    Abstract: A promoted calcium-alumina supported reforming catalyst that is particularly useful for reforming reactions where low H2/CO ratio synthesis gas, such as less than 2.3 is generated directly is disclosed. The catalyst comprises from about 25 wt % to about 98 wt % alumina, from about 0.5 wt % to about 35 wt % calcium oxide, from about 0.01 wt % to about 35 wt % of a promoter, and from about 0.05 wt % to about 30 wt % of an active metal. The promoter is selected from the group consisting of titanium, zirconium, yttrium, niobium, elements of the lanthanum-series, such as, without limitation, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, ytterbium, and combinations thereof. The active metal is selected from the group consisting of nickel, cobalt, rhodium, ruthenium, palladium, platinum, iridium and combinations thereof as active metal, wherein the calcium oxide is combined with the alumina to form aluminum-rich calcium aluminates.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: May 27, 2008
    Assignee: Süd-Chemie Inc
    Inventors: Yeping Cai, William M. Faris, Jeffery E. Riley, Robert E. Riley, David P. Tolle, Jon P. Wagner, Shizhong Zhao
  • Patent number: 7378368
    Abstract: The present invention relates to a catalyst for reforming a hydrocarbon comprising a carrier containing manganese oxide and carried thereon (a) at least one component selected from a ruthenium component, a platinum component, a rhodium component, a palladium component, an iridium component and a nickel component and a process for producing the same and to a process for reforming a hydrocarbon (steam reforming, self thermal reforming, partial oxidation reforming and carbon dioxide reforming) using the above catalyst. Provided are a catalyst for reforming a hydrocarbon which comprises ruthenium, platinum, rhodium, palladium, iridium or nickel as an active component and in which a reforming activity is elevated, a process for producing the same, and a steam reforming process, a self thermal reforming process, a partial oxidation reforming process and a carbon dioxide reforming process for a hydrocarbon using the above catalyst.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: May 27, 2008
    Assignee: Idemitsu Kosan, Co., Ltd.
    Inventors: Tetsuya Fukunaga, Tomoki Yanagino, Kozo Takatsu, Takashi Umeki
  • Patent number: 7378369
    Abstract: A calcium-promoted alumina supported nickel reforming catalyst stabilized with titanium is disclosed. The catalyst is particularly useful for reforming reaction in feed streams containing significant quantities of CO and CO2, low quantities of steam (the feed stream having a H2O/CH4 of less than 0.8 and a CO2/CH4 of greater than 0.5) and relatively high quantities of sulfur compounds (up to about 20 ppm). The catalyst comprises from about 25 wt % to about 98 wt % alumina as a support, from about 2 wt % to about 40 wt % nickel oxide, which is promoted with from about 0.5 wt % to about 35 wt % calcium oxide, and which is stabilized with from about 0.01 wt % to about 20 wt % titanium, wherein the calcium oxide is combined with the alumina to form calcium aluminate. The catalyst can be used in reforming reactions to produce syngas and has advantages in producing low hydrogen to carbon monoxide ratio syngas for applications such as iron ore reduction.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: May 27, 2008
    Assignee: Sud-Chemie Inc.
    Inventors: Shizhong Zhao, Yeping Cai, Jurgen Ladebeck
  • Publication number: 20080119354
    Abstract: More selective and efficient Ni hydrotreating catalysts are those which contain more than about 60% of the Ni content on the peripheral surface of porous supports, such as extruded alumina, which may be obtained by spraying an atomized solution of a Ni compound onto the support and drying it at a temperature in the range of from 200 to 600° C. When used, for example, to remove acetylenic compounds from butadiene streams, higher recovery of the desired butadiene with lower acetylenic content and low heavy polymer deposition is obtained than was possible with prior catalysts.
    Type: Application
    Filed: December 5, 2007
    Publication date: May 22, 2008
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: J. Yong Ryu
  • Patent number: 7375053
    Abstract: Novel nickel and/or cobalt plated sponge based catalysts are disclosed. The catalyst have an activity and/or selectivity comparable to conventional nickel and/or cobalt sponge catalysts, e.g., Raney® nickel or Raney® cobalt catalysts, but require a reduced content of nickel and/or cobalt. Catalysts in accordance with the invention comprise nickel and/or cobalt coated on at least a portion of the surface of a sponge support. Preferably, the sponge support comprises at least one metal other than or different from the metal(s) contained in the coating. The method of preparing the plated catalysts, and the method of using the catalysts in the preparation of organic compounds are also disclosed.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: May 20, 2008
    Assignee: W. R. Grace & Co.- Conn.
    Inventor: Stephen Raymond Schmidt
  • Patent number: 7361619
    Abstract: Dispersed Active Metal catalyst for hydrogenation reactions is produced by treating a substantially catalytically inactive metal particulate with a solution capable of oxidizing the metal particulate and comprising of at least one compound of a hydrogenation catalyst metal thereby forming a layer of at least one of hydroxides and oxides thereon. The metal particulate is activated by treatment with a hydrogen-containing gas at elevated temperatures to form a porous layer of Dispersed Active Metal catalyst. Preferably, the treated metal particulate is dried prior to activation, and also preferably calcined in an oxidant-containing atmosphere prior to activation. The treatment solution may advantageously contain a compound of at least one promoter metal for the added catalyst metal. The porosity of the layer provides enhanced catalyst activity as well as improved methane selectivity in the Fischer-Tropsch process.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: April 22, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Andrzej M. Malek, Stephen C. Leviness, Horacio M. Trevino, Weldon K. Bell, David O. Marler
  • Patent number: 7351328
    Abstract: A composition comprising a metal oxide and a promoter, wherein at least a portion of the promoter is present as a reduced valence promoter, and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: April 1, 2008
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Tushar V. Choudhary, Jason J. Gislason, Glenn W. Dodwell, William H. Beever
  • Patent number: 7335618
    Abstract: A heavy oil is hydrorefined using a hydrorefining catalyst. A spent hydrorefining catalyst whose activity has decreased is heat treated (S1) and pulverized to obtained a regenerated powder (S2). This regenerated powder is fractionated according to its metal content (S3), formed (S6), dried (S7), and calcined (S7) to manufacture a regenerated catalyst whose volume of pores with a diameter of 50 to 2000 nm is at least 0.2 ml/g, and whose volume of pores with a diameter over 2000 nm is no more than 0.1 mL/g. Using this regenerated catalyst, a heavy oil containing at least 45 wt ppm vanadium and nickel as combined metal elements is hydrodemetalized, and the vanadium and nickel are recovered from the used regenerated catalyst (SS1). Through hydrorefining, the metal components are recovered more efficiently, and the spent catalyst can be reused to manufacture a regenerated catalyst that exhibits high reaction, activity.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: February 26, 2008
    Assignee: Japan Energy Corporation
    Inventors: Hiroki Koyama, Toru Saito, Yoshiki Iwata, Chikanori Nakaoka
  • Publication number: 20080039658
    Abstract: A method of producing a primary amine by the hydrogenation of a nitrile in the presence of a hydrogenation catalyst. The hydrogenation catalyst contains at least one metal selected from the group consisting of nickel, cobalt and iron. Before use in the hydrogenation of nitrile, the hydrogenation catalyst is pretreated with at least one treating agent selected from the group consisting of hydrocarbons, alcohols, ethers, esters and carbon monoxide at 150 to 500° C.
    Type: Application
    Filed: August 9, 2007
    Publication date: February 14, 2008
    Inventors: KAZUHIKO AMAKAWA, Yoshiaki Yamamoto
  • Patent number: 7329691
    Abstract: A composition and method for a Catalytic Partial Oxidation (CPO) of methane to synthesis gas. The catalyst allows the process to proceed at low residence time providing a long time thermal stability. The perovskite structure [AzA?1-z][B1-x-yNix Rhy] O3-? of the catalyst is obtained using mainly La, Sr, as A and A? cation sites (A, A?: actinide and/or lanthanide, elements and/or elements from Group I and II) and mainly Fe, Ni, as B cation sites (B: transition metal element and/or element from Group III to V).
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: February 12, 2008
    Assignee: L'Air Liquid, Societe Anonyme A Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Francesco Basile, Giuseppe Fornasari, Angelo Vaccari, Pascal Del Gallo, Daniel Gary
  • Patent number: 7319179
    Abstract: The invention relates to a method for the oxidative dehydrogenation of ethane. The inventive method is characterized in that it consists of bringing the ethane into contact with the catalyst containing Mo, Te, V, Nb and at least a fifth element A which is selected from Cu, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Zr, Sb, Bi, an alkali metal, an alkaline-earth metal and a rare earth, in which at least Mo, Te, V and Nb are present in the form of at least one oxide, said catalyst presenting, in calcined form, an X-ray diffractogram with more than ten intense diffraction lines, typically, the most intense lines corresponding to diffraction angles 2? of 7.7°±0.4, 8.9°±0.4, 22.1°+0.4, 26.6°±0.4, 26.9°±0.4, 27.1°±0.4, 28.1°±0.4, 31.2°±0.4, 35.0°±0.4 and 45.06°±0.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: January 15, 2008
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: José Manuel López Nieto, Pablo Botella Asunción, Maria Isabel Vazquez Navarro, Ana Dejoz García
  • Publication number: 20070297973
    Abstract: A method for preparing for a photocatalyst. The method comprises steps of providing a mixture of indium oxide and vanadium oxide and then calcinning the mixture to obtain a indium vanadium quadrioxide. Further, a nickel nitrate solution is added to the indium vanadium quadrioxide to form a catalyst with a nickel oxide supported amount of about 0.1-2.0 wt. % and a post treatment is performed on the catalyst. In the post treatment, a reduction process is performed and then an oxidation process is performed.
    Type: Application
    Filed: June 21, 2006
    Publication date: December 27, 2007
    Inventors: Yueh-Fang Chen, Hsin-Yu Lin, Yu-Wen Chen
  • Patent number: 7297655
    Abstract: A catalyst is provided comprising nickel in a reduced valence state on a carrier comprising zinc oxide and alumina, wherein the Zn:Ni atomic ratio is at least 12, and the catalyst particles are prepared by a) mixing zinc oxide in the form of a powder and alumina or an alumina precursor in the form of a powder; b) peptising the powder mixture and forming an extrudable dough by adding acid and water to the powder mixture in such amounts that the dough contains 0.8-1.2 moles acid equivalents per kg powder; c) extruding the extrudable dough to form extrudates; d) drying and calcining the extrudates; e) impregnating the extrudates with an aqueous solution of a nickel compound; f) drying, calcining and reducing the impregnated extrudates.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: November 20, 2007
    Assignee: Shell Oil Company
    Inventor: Carolus Matthias Anna Maria Mesters
  • Patent number: 7291577
    Abstract: A process for the production of a supported catalyst. The process comprises heating a slurry that comprises a catalyst support and at least one active catalytic ingredient precursor. Gas is introduced to the slurry at a sufficient pressure to reduce the at least one active catalytic ingredient precursor and deposit at least one active catalytic ingredient onto a surface of the catalyst support to form the supported catalyst. The supported catalyst has a large active catalytic surface area.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: November 6, 2007
    Assignee: Sulzer Metco (Canada) Inc.
    Inventors: Karel Hajmrle, Syed Hussain, Paul Albert Laplante
  • Patent number: 7288182
    Abstract: A process for hydroprocessing petroleum and chemical feedstocks by use of a bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least one, preferably two Group VIB metal wherein the ratio of Group VIB metal to Group VIII metal is from about 10:1 to 1:10.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: October 30, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart Leon Soled, Sabato Miseo, Roman Krycak, Hilda B. Vroman, Teh Chung Ho, Kenneth Lloyd Riley
  • Patent number: 7282467
    Abstract: A process for preparing a catalyst support or a supported Group VIII metal catalyst or a precusor of the supported Group VIII metal catalyst, which process comprises (a) exerting mechanical power on a mixture comprising a refractory oxide and a first liquid to obtain a dough, (b) admixing the dough with a second liquid to obtain a slurry, (c) shaping and drying the slurry, and (d) calcining.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: October 16, 2007
    Assignee: Shell Oil Company
    Inventors: Hans Michiel Huisman, Gerardus Petrus Lambertus Niesen, Johannes Jacobus Maria Van Vlaanderen
  • Patent number: 7270738
    Abstract: This invention relates to silico-aluminum substrates, catalysts, and the hydrocracking and hydrotreatment processes that use them. The catalyst comprises at least one hydro-dehydrogenating element that is selected from the group that is formed by elements of group VIB and group VIII of the periodic table and a non-zeolitic silica-alumina-based substrate that contains an amount of more than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and has the following characteristics: A mean pore diameter, measured by mercury porosimetry, encompassed between 20 and 140 ?, a total pore volume, measured by mercury porosimetry, encompassed between 0.1 ml/g and 0.6 ml/g, a total pore volume, measured by nitrogen porosimetry, encompassed between 0.1 ml/g and 0.6 ml/g, a BET specific surface area encompassed between 100 and 550 m2/g, a pore volume, measured by mercury porosimetry, encompassed in the pores with diameters of more than 140 ?, of less than 0.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: September 18, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Patrick Euzen, Carole Bobin, Magalie Roy-Auberger, Eric Benazzi, Patrick Bourges, Christophe Gueret
  • Patent number: 7271127
    Abstract: Disclosed is a catalyst for a partial oxidation reforming reaction of fuel in the form of disk having through-hole. In addition, according to the invention, there is provided a fuel reforming apparatus and method using the catalyst. The catalyst for a partial oxidation reforming reaction of fuel according to the invention makes it possible to progress the partial oxidation reforming reaction of fuel smoothly, to improve the efficiency when reforming the fuel and to simplify the fuel reforming reactor. According to the fuel reforming apparatus and method, since the heat of reaction is efficiently controlled and used, a simple on-off operation, reduction of starting time and a stable operational condition are accomplished, which are indispensably required for a fuel reforming system in fuel cells, such as household, portable and car fuel cells.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: September 18, 2007
    Assignee: Korea Institute of Science and Technology
    Inventors: Suk-Woo Nam, Sang Jun Kong, Seong-Ahn Hong, In-Hwan Oh, Tae-Hoon Lim, Heung Yong Ha, Sung Pil Yoon, Jonghee Han, EunAe Cho
  • Patent number: 7268097
    Abstract: A desulfurizing agent comprising a silica-alumina carrier having an Si/Al mole ratio of 10 or less and nickel carried thereon; a desulfurizing agent for hydrocarbons derived from petroleum which comprises a carrier and a metal component carried thereon and has a specific surface area of pores having a pore diameter of 3 nm or less of 100 m2/g or more; an Ni-Cu based desulfurizing agent comprising a carrier and, carried thereon, (A) nickel, (B) copper, and (C) an alkali metal or another metal; a desulfurizing agent for hydrocarbons derived from petroleum which comprises a carrier and a metal component carried thereon and has a hydrogen adsorption capacity of 0.4 mmol/g or more; and methods for producing these nickel-based and nickel-copper-based desulfurizing agents. The above desulfurizing agents are capable of adsorbing and removing with good efficiency the sulfur contained in hydrocarbons derived from petroleum to a content of 0.2 wt. ppm or less and have a long service life.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: September 11, 2007
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Hisashi Katsuno, Satoshi Matsuda, Kazuhito Saito, Masahiro Yoshinaka