Of Group Ii (i.e., Alkaline Earth, Be, Mg, Zn, Cd Or Hg) Patents (Class 502/340)
  • Patent number: 9272962
    Abstract: A process is disclosed for making styrene by converting methanol to formaldehyde in a reactor then reacting the formaldehyde with toluene to form styrene in a separate reactor.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: March 1, 2016
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: James R. Butler, Joseph E. Pelati
  • Patent number: 9029286
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 12, 2015
    Assignee: Massachusettes Institute of Technology
    Inventors: Brian Neltner, Angela M. Belcher
  • Patent number: 9024090
    Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 5, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Patent number: 9018129
    Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also disclosed is a production process for producing an exhaust gas purifying catalyst. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
  • Patent number: 9017626
    Abstract: Described are SCR catalyst systems comprising a first SCR catalyst composition and a second SCR catalyst composition arranged in the system, the first SCR catalyst composition promoting higher N2 formation and lower N2O formation than the second SCR catalyst composition, and the second SCR catalyst composition having a different composition than the first SCR catalyst composition, the second SCR catalyst composition promoting lower N2 formation and higher N2O formation than the first SCR catalyst composition. The SCR catalyst systems are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 28, 2015
    Assignee: BASF Corporation
    Inventors: Weiyong Tang, Jaya L. Mohanan
  • Patent number: 9012354
    Abstract: Disclosed is a method for forming a photocatalyst thin film, which is characterized in that a photocatalyst thin film containing a niobium-alkali metal complex oxide is formed by forming and then firing a layer containing a niobia nanosheet on the surface of a base containing an alkali metal.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: April 21, 2015
    Assignee: Central Japan Railway Company
    Inventors: Christopher Cordonier, Tetsuya Shichi, Kenichi Katsumata, Yasuhiro Katsumata, Akira Fujishima, Takafumi Numata, Takayoshi Sasaki
  • Patent number: 9006132
    Abstract: The present invention relates to a process for preparing catalyst composition for the synthesis of carbon nanotube with high yields using the spray pyrolysis method. More particularly, this invention relates to a process for preparing catalyst composition for the synthesis of carbon nanotube comprising the steps of i) dissolving multi-component metal precursors of catalyst composition in de-ionized water; ii) spraying obtained catalytic metal precursor solution into the high temperature reactor by gas atomization method; iii) forming the catalyst composition powder by pyrolysis of gas atomized material; and iv) obtaining the catalyst composition powder, wherein said catalyst composition comprises i) main catalyst selected from Fe or Co, ii) Al, iii) optional co-catalyst at least one selected from Ni, Cu, Sn, Mo, Cr, Mn, V, W, Ti, Si, Zr or Y, iv) inactive support of Mg. Further, the catalyst composition prepared by this invention has a very low apparent density of 0.01˜0.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: April 14, 2015
    Assignee: Korea Kumho Petrochemical Co., Ltd
    Inventors: Sang-Hyo Ryu, Hyun-Kyung Sung, Namsun Choi, Wan Sung Lee, Dong Hwan Kim, Youngchan Jang
  • Publication number: 20150098893
    Abstract: The present invention relates to a photocatalyst for the generation of diatomic hydrogen from a hydrogen containing precursor under the influence of actinic radiation comprising semiconductor support particles comprised of SrTiO3 and TiO2 with one or more noble and/or transition metals deposited thereon. Further disclosed is a method for preparing such catalyst and a method for generating diatomic hydrogen by photolysis.
    Type: Application
    Filed: April 22, 2013
    Publication date: April 9, 2015
    Inventors: Hicham Idriss, Ahmed Wahab Khaja, Taiwo Odedairo, Majed Mohammed Mussa
  • Patent number: 8999882
    Abstract: A process for treating a carrier, or a precursor thereof, to at least partly remove impurities from the carrier, or the precursor thereof, comprising: contacting the carrier, or the precursor thereof, with a treatment solution comprising a salt in a concentration of at most 0.05 molar, wherein the salt comprises a cation and an anion, and wherein the cation is selected from ammonium, phosphonium, organic cations and combinations thereof, and wherein the anion is selected from organic anions, inorganic carboxylates, oxyanions of elements from Groups IIIA through VIIA of the Periodic Table of Elements, and combinations thereof; and separating at least part of the treatment solution from the carrier, or the precursor thereof.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 7, 2015
    Assignee: Shell Oil Company
    Inventors: John Robert Lockemeyer, Randall Clayton Yeates
  • Patent number: 8961914
    Abstract: Described is a selective catalytic reduction catalyst comprising an 8-ring small pore molecular sieve promoted with copper and an alkaline earth component. The catalyst is effective to catalyze the reduction of nitrogen oxides (NOx) in the presence of a reductant. A method for selectively reducing nitrogen oxides is also described.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: February 24, 2015
    Assignees: Basf Corporation, N.E. Chemcat Corporation, Heesung Catalysts Corporation
    Inventors: Jaya L. Mohanan, Patrick Burk, Makato Nagata, Yasuyuki Banno, Eunseok Kim
  • Patent number: 8962517
    Abstract: Nanowires useful as heterogeneous catalysts are provided. The nanowire catalysts are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons. Related methods for use and manufacture of the same are also disclosed.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: February 24, 2015
    Assignee: Siluria Technologies, Inc.
    Inventors: Fabio R. Zurcher, Erik C. Scher, Joel M. Cizeron, Wayne P. Schammel, Alex Tkachenko, Joel Gamoras, Dmitry Karshtedt, Greg Nyce, Anja Rumplecker, Jarod McCormick, Anna Merzlyak, Marian Alcid, Daniel Rosenberg, Erik-Jan Ras
  • Publication number: 20150051425
    Abstract: In one embodiment, the invention is to a catalyst composition comprising lime and cement. Preferably, the catalyst composition comprises the lime and the cement in a weight ratio of at least 3.5:1 respectively.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 19, 2015
    Inventors: Gustavo Angel Robelo Grajales, Ricardo Alderete Delgadillo
  • Publication number: 20150024929
    Abstract: The present invention discloses a method of producing a magnesia-zirconia complex carrier for a catalyst for oxidative dehydrogenation of n-butane by sol-gel method; a method of producing a magnesium orthovanadate catalyst containing vanadium supported by said magnesia-zirconia complex carrier; and a method of producing n-butene and 1,3-butadiene using said catalyst.
    Type: Application
    Filed: October 15, 2012
    Publication date: January 22, 2015
    Inventors: Yeon Shick Yoo, Young Jin Cho, Jin Suk Lee, Ho Sik Chang
  • Patent number: 8937030
    Abstract: The present invention is directed to perovskite nanostructures of Formula ABO3, wherein A and B represent one or more metals with A having a valence lower than B, to methods of making the perovskite nanostructures of Formula ABO3 comprising their synthesis within and precipitation from reverse micelles, and the use of the perovskite nanostructures of Formula ABO3 as capacitors, and their use in dynamic random access memory, electromechanics, and non-linear optics.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: January 20, 2015
    Assignee: Research Foundation of the City University of New York
    Inventors: Kai Su, Nan-Loh Yang
  • Patent number: 8932978
    Abstract: A solid solution photocatalyst composition and its preparation method are provided in the present invention. The solid solution photocatalyst can utilize its solid solution structure to regulate the conduction band position, valence band position, conduction band range and valence band range of the different response properties of the photocatalyst, so that oxidoreductive reaction is performed to remove the foul-smelling substances.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: January 13, 2015
    Assignee: National Tsing Hua University
    Inventors: Yong-Chien Ling, Jen-Yu Liu
  • Patent number: 8932979
    Abstract: A catalyst composition comprising a support having a surface area of at least 500 m2/kg, and deposited on the support: silver metal, a metal or component comprising rhenium, tungsten, molybdenum or a nitrate- or nitrite-forming compound, and a Group IA metal or component comprising a Group IA metal having an atomic number of at least 37, and in addition potassium, wherein the value of the expression (QK/R)+QHIA is in the range of from 1.5 to 30 mmole/kg, wherein QHIA and QK represent the quantities in mmole/kg of the Group IA metal having an atomic number of at least 37 and potassium, respectively, present in the catalyst composition, the ratio of QHIA to QK is at least 1:1, the value of QK is at least 0.01 mmole/kg, and R is a dimensionless number in the range of from 1.5 to 5, the units mmole/kg being relative to the weight of the catalyst composition.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: January 13, 2015
    Assignee: Shell Oil Company
    Inventors: Marek Matusz, Michael Alan Richard, Martin Lysle Hess
  • Patent number: 8927455
    Abstract: The present invention discloses a method of producing a magnesia-zirconia complex carrier for a catalyst for oxidative dehydrogenation of n-butane through a single-step precipitation process wherein the oxidative dehydrogenation of n-butane is to produce n-butene and 1,3-butadiene from n-butane; a method of producing a magnesium orthovanadate catalyst supported by thus prepared magnesia-zirconia complex carrier; and a method of producing n-butene and 1,3-butadiene using said catalyst.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: January 6, 2015
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: Young Jin Cho, Yeon Shick Yoo, Jin Suk Lee, Ho Sik Chang, In Kyu Song, Ho Won Lee, Jong Kwon Lee
  • Publication number: 20140378300
    Abstract: The present invention provides a catalyst for forming carbon nanotubes that improves a yield at the time of manufacturing carbon nanotubes and enables continuous mass production of carbon nanotubes with high purity. The catalyst for forming carbon nanotubes of the present invention includes a carrier that includes MgO and a metal catalyst that is supported by the carrier, and the concentration of the MgO in the carrier is set equal to 99 mass % or higher.
    Type: Application
    Filed: February 22, 2013
    Publication date: December 25, 2014
    Inventors: Nariyuki Tomonaga, Tomoaki Sugiyama, Yasushi Mori, Takashi Kurisaki, Takanori Suto, Kota Kikuchi
  • Publication number: 20140371055
    Abstract: A catalyst for decomposing a plastic includes a porous support having an exterior surface and defines at least one pore therein. The catalyst also includes a depolymerization catalyst component disposed on the exterior surface of the porous support for depolymerizing the plastic. The depolymerization catalyst component includes a Ziegler-Natta catalyst, a Group IIA oxide catalyst, or a combination thereof. The catalyst further includes a reducing catalyst component disposed in the at least one pore. The catalyst is formed by a method that includes the step of disposing the depolymerization catalyst component on the exterior surface. The method further includes the step of disposing the reducing catalyst component in the at least one pore.
    Type: Application
    Filed: December 21, 2012
    Publication date: December 18, 2014
    Inventor: Swaminathan Ramesh
  • Publication number: 20140343306
    Abstract: A method for lowering the sodium content of different carriers which may have different physical properties as well as varying degrees of sodium is provided. The method, which lowers the sodium content from the surface, subsurface as well as the binding layer of the carrier, includes contacting a carrier with water. A rinse solution is recovered from the contacting. The rinse solution includes leached sodium from the carrier. The sodium content in the rinse solution is then determined. The contacting, recovering and determining are repeated until a steady state in the sodium content is achieved.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 20, 2014
    Applicant: SCIENTIFIC DESIGN COMPANY, INC.
    Inventors: Nabil Rizkalla, Andrzej Rokicki
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Patent number: 8871673
    Abstract: Catalysts for the decomposition of N2O into nitrogen and oxygen in the gas phase, which comprises a porous support composed of polycrystalline or vitreous inorganic material, a cerium oxide functional layer applied thereto and a layer of oxidic cobalt-containing material applied thereto are described. The catalysts can be used, in particular, as secondary or tertiary catalysts in nitric acid plants.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: October 28, 2014
    Assignee: UHDE GmbH
    Inventors: Meinhard Schwefer, Rolf Siefert, Frank Seifert, Frank Froehlich, Wolfgang Burckhardt
  • Patent number: 8853436
    Abstract: Method for transesterification of fatty acid esters. The method includes contacting (i) a catalyst comprising at least one of barium oxide and apatite with (ii) a reaction medium comprising at least one of vegetable oil and fats.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: October 7, 2014
    Assignee: Petroleo Brasileiro S.A.-Petrobras
    Inventors: Márcio de Figueiredo Portilho, Alexander Rangel Bastos
  • Patent number: 8845998
    Abstract: A catalyst has a long life span and efficiently separates hydrogen from water. A first metal element (Ni, Pd, Pt) for cutting the combination of hydrogen and oxygen and a second metal element (Cr, Mo, W, Fe) for helping the function of the first metal element are melted in alkaline metal hydroxide or alkaline earth metal hydroxide to make a mixture heated at a temperature above the melting point of the hydroxide to eject fine particles from the liquid surface, bringing steam into contact with the fine particles. Instead of this, a mixture of alkaline metal hydroxide and metal oxide is heated at a temperature above the melting point of the alkaline metal hydroxide to make metal compound in which at least two kinds of metal elements are melted, and fine particles are ejected from the surface of the metal compound to be brought into contact with steam.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: September 30, 2014
    Inventor: Yasuo Ishikawa
  • Patent number: 8841232
    Abstract: The present disclosure generally relates to an advanced ceramic catalyst made by metal oxides dispersed in refractory ceramics and the process of making same. The advanced ceramic catalyst is capable of significantly lowering carbon foot prints and noxious emissions by generating the same heat energy with much lower quantity of fuel such as of natural gas, propane and other gaseous hydrocarbons. A process of making such a catalyst from inexpensive combination of metal oxide prepared in solution to have many oxygen lattice defects and particle size distribution selected from nanometer to millimeter range which can provide a huge surface area for combustion reaction thus lowering the activation energy of combustion.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: September 23, 2014
    Inventors: Lucian Borduz, Dumitru Tuclea, Stefan Borduz
  • Patent number: 8835346
    Abstract: A catalyst material including a catalyst carrier including a porous alumina support and a hindrance layer on the alumina support, the hindrance layer comprising one or more barium sulfate, strontium sulfate, zirconium sulfate, and calcium sulfate is described. The catalyst carrier further includes a rare earth oxide. The catalyst material can further comprise a platinum group metal oxide. The hindrance layer may prevent the rare earth oxide from forming a complex with the support. The catalyst material is useful for methods and systems of abating pollutants from automotive exhaust gas.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: September 16, 2014
    Assignee: BASF Corporation
    Inventors: Gary A. Gramiccioni, Stephan Siemund, Shau-Lin F. Chen, Kenneth Brown
  • Patent number: 8834835
    Abstract: A catalytic water gas shift process at temperatures above about 450° C. up to about 900° C. or so wherein the catalyst includes rhenium deposited on a support, preferably without a precious metal, wherein the support is prepared from a high surface area material, such as a mixed metal oxide, particularly a mixture of zirconia and ceria, to which may be added one or more of a high surface area transitional alumina, an alkali or alkaline earth metal dopant and/or an additional dopant selected from Ga, Nd, Pr, W, Ge, Fe, oxides thereof and mixtures thereof.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: September 16, 2014
    Assignees: Clariant Corporation, L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Jon P. Wagner, Michael W. Balakos, Chandra Ratnasamy
  • Publication number: 20140256966
    Abstract: A method for stabilizing a metal or metal-containing particle supported on a surface is described, along with the resulting composition of matter. The method includes the steps of depositing upon the surface a protective thin film of a material of sufficient thickness to overcoat the metal or metal-containing particle and the surface, thereby yielding an armored surface; and then calcining the armored surface for a time and at a temperature sufficient to form channels in the protective thin film, wherein the channels so formed expose a portion of the metal- or metal-containing particle to the surrounding environment. Also described is a method of performing a heterogeneous catalytic reaction using the stabilized, supported catalyst.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: James A. Dumesic, Brandon J. O'Neill
  • Publication number: 20140250872
    Abstract: An exhaust gas purifying catalyst comprises: a plurality of catalyst units which contain anchor particles that support noble metal particles; and an enclosure material that internally contains the plurality of catalyst units and separates the catalyst units from each other. Both the anchor particles and the enclosure material contain an alkali element and/or an alkaline earth element. Due to this configuration, this exhaust gas purifying catalyst is capable of maintaining the exhaust gas purification performance by suppressing agglomeration of the noble metal particles even in cases where the ambient temperature is high.
    Type: Application
    Filed: August 2, 2012
    Publication date: September 11, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kazuyuki Shiratori, Yoshiaki Hiramoto, Haruhiko Shibayama
  • Patent number: 8822371
    Abstract: A process for producing geometric shaped catalyst bodies K whose active material is a multielement oxide of stoichiometry [Bi1WbOx]a[Mo12Z1cZ2dFeeZ3fZ4gZ5nOy]1, in which a finely divided oxide Bi1WbOx with the particle size d50A1 and, formed from element sources, a finely divided intimate mixture of stoichiometry Mo12Z1cZ2dFeeZ3fZ4gZ5h with the particle size d50A2 are mixed in a ratio of a:1, this mixture is used to form shaped bodies and these are treated thermally, where (d50A1)0.7·(d90A1)1.5·(a)?1?820.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: September 2, 2014
    Assignee: BASF SE
    Inventors: Andreas Raichle, Catharina Horstmann, Frank Rosowski, Klaus Joachim Müller-Engel, Holger Borchert, Gerhard Cox, Ulrich Cremer
  • Patent number: 8809226
    Abstract: A method of producing a carrier used for a catalyst for oxidative dehydrogenation of n-butane; a method of producing a magnesium orthovanadate catalyst supported by the carrier; and a method of producing n-butene and 1,3-butadiene using the catalyst are described.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: August 19, 2014
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: In Kyu Song, Ho Won Lee, Yeon Shick Yoo, Young Jin Cho, Jin Suk Lee, Ho Sik Jang
  • Patent number: 8809223
    Abstract: A process for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. The process comprises providing at least a metal precursor in solution comprising at least two different metal cations in its molecular structure, with at least one of the metal cations is a Group VIB metal cation; sulfiding the metal precursor with a sulfiding agent in solution forming a catalyst precursor; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In one embodiment, the at least a metal precursor comprising at least two different metal cations is prepared by combining and reacting at least one Group VIB metal compound with at least a Promoter metal compound selected from Group VIII, Group IIB, Group IIA, Group IVA metals and combinations thereof.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Julie Chabot, Oleg Mironov
  • Patent number: 8802044
    Abstract: The invention relates to a filtration structure, for filtering a gas coming from a diesel engine, which is laden with gaseous pollutants of the nitrogen oxide NOx type and with solid particles, of the particulate filter type, said filtration structure being characterized in that it includes a catalytic system comprising at least one noble metal or transition metal suitable for reducing the NOx and a support material, in which said support material comprises or is made of a zirconium oxide partially substituted with a trivalent cation M3+ or with a divalent cation M?2+, said zirconium oxide being in a reduced, oxygen-sub-stoichiometric, state.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: August 12, 2014
    Assignees: Saint-Gobain Centre de Recherches et d'Etudes Europeen, Centre National de la Recherche Scientifique
    Inventors: Philippe Vernoux, Abdelkader Hadjar, Agnes Princivalle, Christian Guizard
  • Patent number: 8795626
    Abstract: A chabazite-type zeolite having copper and an alkali earth metal supported thereon. The alkali earth metal is preferably at least one metal selected from the group consisting of calcium, magnesium and barium. Moreover, the SiO2/Al2O3 molar ratio is preferably from 10 to 50, and the copper/aluminum atomic ratio is preferably from 0.15 to 0.25. This type of chabazite-type zeolite exhibits a higher nitrogen oxide purification rate after a hydrothermal durability treatment than those of conventional chabazite-type zeolite catalysts on which only copper is supported.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: August 5, 2014
    Assignee: Tosoh Corporation
    Inventors: Keisuke Tokunaga, Yuuki Ito
  • Patent number: 8791307
    Abstract: A process of producing ?,?-unsaturated ethers includes pyrolyzing an acetal represented by Formula (2) below in a gas phase in the presence of a catalyst and a compound having at least one hydrogen atom capable of hydrogen bonding to produce an ?,?-unsaturated ether represented by Formula (3) below: R1R2CH—CR3(OR4)2??(2) R1R2C?C—R3(OR4)??(3) In Formulae (2) and (3), R1, R2 and R3 are each independently a hydrogen atom, an alkyl group, an alkenyl group or an aryl group; R4 is an alkyl group, an alkenyl group or an aryl group; the plurality of R4 in Formula (2) may be the same or different from each other.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: July 29, 2014
    Assignee: Showa Denko K.K.
    Inventors: Yoshikuni Okumura, Hiroto Kouka, Takanori Aoki
  • Patent number: 8785343
    Abstract: This invention relates to a mesoporous carbon supported copper based catalyst comprising mesoporous carbon, a copper component and an auxiliary element supported on said mesoporous carbon, production and use thereof. The catalyst is cheap in cost, friendly to the environment, and satisfactory in high temperature resistance to sintering, with a highly improved and a relatively stable catalytic activity.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: July 22, 2014
    Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Co., Ltd.
    Inventors: Jingwei Liu, Zezhuang Li, Shaohui Chen, Aiwu Yang, Jiye Bai, Lijuan Liu, Yingwu Wang
  • Patent number: 8771624
    Abstract: An Object of the patent is to remove highly reducing hydrocarbon exhausted during acceleration period, and to remove efficiently hydrocarbon even after contacting with highly reducing hydrocarbon. By using a catalyst having a higher proportion of palladium having surface charge of 2-valence or 4-valence supported than that of 0-valence by supporting palladium together with magnesium oxide, hydrocarbon exhausted from an internal combustion engine especially during acceleration period can be efficiently removed.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: July 8, 2014
    Assignees: Umicore Shokubai Japan Co., Ltd, Umicore Shokubai USA Inc.
    Inventors: Masanori Ikeda, Hideki Goto, Kosuke Mikita
  • Publication number: 20140178262
    Abstract: Hollow porous metal oxide microspheres are provided. The microspheres may be used as a support for a catalyst, particularly an exhaust treatment catalyst for an internal combustion engine. Also provided are methods of making the microspheres, methods of using the microspheres as catalyst supports, and methods of exhaust treatment using catalyst articles comprising the microspheres.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicant: BASF Corporation
    Inventors: Pascaline Harrison Tran, Michael P. Galligan, Ye Liu, Xiaolin David Yang, Qingyuan Hu, Doan Lieu
  • Publication number: 20140171695
    Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Publication number: 20140171298
    Abstract: A hydroprocessing co-catalyst composition may comprise in an embodiment a first component comprising co-catalyst particles and a liquid carrier, and a second component comprising a dispersant and a dispersant diluent. The co-catalyst particles may be in the micron size range, and the dispersant may promote dispersion of the co-catalyst particles in materials such as the liquid carrier, the dispersant diluent, and combinations thereof. Methods of introducing a hydroprocessing co-catalyst composition into a hydroprocessing system are also disclosed.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Inventors: Julie Chabot, Bo Kou, Alexander Kuperman
  • Patent number: 8753596
    Abstract: The invention relates to a catalyst for removal of nitrogen oxides from the exhaust gas of diesel engines, and to a process for reducing the level of nitrogen oxides in the exhaust gas of diesel engines. The catalyst consists of a support body of length L and of a catalytically active coating which in turn may be formed from one or more material zones. The material zones comprise a copper-containing zeolite or a zeolite-like compound. The materials used include chabazite, SAPO-34, ALPO-34 and zeolite ?. In addition, the material zones comprise at least one compound selected from the group consisting of barium oxide, barium hydroxide, barium carbonate, strontium oxide, strontium hydroxide, strontium carbonate, praseodymium oxide, lanthanum oxide, magnesium oxide, magnesium/aluminum mixed oxide, alkali metal oxide, alkali metal hydroxide, alkali metal carbonate and mixtures thereof. Noble metal may optionally also be present in the catalyst.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: June 17, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Paul Spurk, Nicola Soeger, Elena Mueller, Stephan Malmberg
  • Publication number: 20140155251
    Abstract: Provided is a substrate for carbon nanotube growth in which no metal particles as a catalyst aggregates and a method for manufacturing the substrate. A substrate for carbon nanotube growth 1 includes a base plate 2, a catalyst 3, a form-defining material layer 4 which allows the catalyst 3 to be dispersed and arranged, and a covering layer 5 which has a metal oxide to cover the catalyst. A method for manufacturing a substrate for carbon nanotube growth 1 includes a step of sputtering on a base plate 2 a metal which forms a catalyst 3 and oxidizing the surface of the metal, a step of sputtering a form-defining material on the base plate 2, and a step of further sputtering on the form-defining material a metal which forms a catalyst 3 and oxidizing the surface of the metal.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 5, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Toshiyuki Ohashi, Toshio Tokune, Masahiro Ohta, Ryogo Kato, Toshiyuki Shima
  • Publication number: 20140155250
    Abstract: Provided is a substrate for carbon nanotube growth in which no metal particles as a catalyst aggregates and a method for manufacturing the substrate. A substrate for carbon nanotube growth 1 includes a base plate 2, a noble metal alloy catalyst 3 having an alloy of a noble metal and a transition metal, and a form-defining material layer 4 which allows the noble metal alloy catalyst 3 to be dispersed and arranged. A method for manufacturing a substrate for carbon nanotube growth 1 includes a step of sputtering a noble metal alloy on a base plate 2, a step of sputtering a form-defining material on the base plate 2, and a step of further sputtering the noble metal alloy on the form-defining material.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 5, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Toshiyuki Ohashi, Toshio Tokune, Masahiro Ohta, Ryogo Kato, Toshiyuki Shima
  • Patent number: 8741242
    Abstract: A NOx storage component comprises caesium silicate (Cs2SiO3) and at least one platinum group metal. The invention also includes a NOx absorber catalyst comprising a NOx storage component according to the invention disposed on a substrate monolith; a method of treating exhaust gas containing NOx from a lean burn internal combustion engine comprising the steps of contacting a NOx storage component comprising caesium silicate (Cs2SiO3) and at least one platinum group metal with lean exhaust gas containing NOx to adsorb NOx thereon; and periodically desorbing adsorbed NOx by contacting the NOx storage component with stoichiometric or rich exhaust gas; and a method of making a NOx storage component according to the invention comprising the steps of combining and reacting an aqueous salt of at least one platinum group metal, an aqueous caesium salt and a source of silica.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: June 3, 2014
    Assignee: Johnson Matthey PLC
    Inventors: Jonathan Ashley Cooper, Michael Anthony Howard
  • Publication number: 20140148331
    Abstract: A metal catalyst is formed by vaporizing a quantity of metal and a quantity of carrier forming a vapor cloud. The vapor cloud is quenched forming precipitate nanoparticles comprising a portion of metal and a portion of carrier. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal catalysts comprises means for vaporizing a quantity of metals and a quantity of carrier, quenching the resulting vapor cloud and forming precipitate nanoparticles comprising a portion of metals and a portion of carrier. The system further comprises means for impregnating supports with the nanoparticles.
    Type: Application
    Filed: April 26, 2013
    Publication date: May 29, 2014
    Applicant: SDCmaterials, Inc.
    Inventor: SDCmaterials, Inc.
  • Patent number: 8734743
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Patent number: 8735318
    Abstract: A catalyst for NOx storage and reduction may include a carrier that contains alkali metal and Al, or alkali earth metal and Al, a NOx storage element of alkali metal, alkali earth metal or rare earth element, and one or more noble metals that are selected from the group consisting of Pt, Pd, Ru, Ag, Au and Rh. The catalyst for NOx storage and reduction shows excellent NOx storage and reduction capability, maintains excellent storage and reduction capability especially before and after deterioration and sulfation, and shows excellent catalytic activity under low temperature environment, while maintaining unusually high hydrophobicity.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: May 27, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: In-Sik Nam, Sang Jun Park, Jin Ha Lee, Young-Kee Youn
  • Patent number: 8735317
    Abstract: The present invention relates to petrochemistry, gas chemistry, coal chemistry, particularly the invention relates to a catalyst for synthesis of hydrocarbons from CO and H2 and a preparation method thereof. The catalyst is pelletized and comprises at least Raney cobalt as active component in an amount of 1-40% by weight based on the total weight of the catalyst, metallic aluminium in an amount of 25-94% by weight based on the total weight of the catalyst and a binder in an amount of 5-30% by weight based on the total weight of the catalyst. The present invention provides the catalyst stability to overheating and high productivity of hydrocarbons C5-C100 for synthesis of hydrocarbons from CO and H2.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: May 27, 2014
    Assignee: Infra XTL Technology Limited
    Inventors: Vladimir Zalmanovich Mordkovich, Lilia Vadimova Sineva, Igor Grigorievich Solomonik, Vadim Sergeevich Ermolaev, Eduard Borisovich Mitberg
  • Publication number: 20140140909
    Abstract: The present disclosure relates to a substrate comprising nanomaterials for treatment of gases, washcoats for use in preparing such a substrate, and methods of preparation of the nanomaterials and the substrate comprising the nanomaterials. More specifically, the present disclosure relates to a substrate comprising nanomaterial for three-way catalytic converters for treatment of exhaust gases.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 22, 2014
    Applicant: SDCMATERIALS, INC.
    Inventor: SDCmaterials, Inc.
  • Patent number: 8722001
    Abstract: A catalyst for the purification of exhaust gas that can be used to highly efficiently treat an exhaust gas which has moisture and fluctuates between an oxidizing atmosphere and a reducing atmosphere even after the catalyst is exposed to a high temperature is provided. The present invention relates to a catalyst for the purification of exhaust gas having a catalyst layer of catalyst components comprising a noble metal, magnesium oxide, and a refractory inorganic oxide formed on a three-dimensional structure, wherein the catalyst layer has two peaks originated from the magnesium oxide in a pore distribution obtained by mercury intrusion technique.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: May 13, 2014
    Assignees: Umicore Shokubai Japan Co., Ltd., Umicore Shokubai USA, Inc.
    Inventors: Mariko Ono, Akihisa Okumura