Of Silver Patents (Class 502/347)
  • Patent number: 7030054
    Abstract: The present invention provides new platinum group metal (“PGM”) free catalytic compositions that comprise silver and/or cobalt stabilized ceria. These compositions facilitate soot oxidation during the regeneration of diesel particulate filters (DPF) thereby replacing PGM formulations. The compositions of the invention are particularly useful as washcoat compositions for DPFs as part of an automotive after-treatment system. Among the formulations tested, the silver-stabilized ceria and cobalt-stabilized ceria formulations e.g. can oxidize soot at 250–300° C. in the presence of NO2 and oxygen, while silver-stabilized ceria can oxidize diesel soot even in the presence of oxygen as the sole oxidizing agent at these temperatures. A perovshite composition containing Ag—La—Mn was very active at temperatures above 300° C.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: April 18, 2006
    Assignee: Ford Global Technologlies, LLC.
    Inventors: Albert N Chigapov, Alexei A Dubkov, Brendan Patrick Carberry, Robert Walter McCabe
  • Patent number: 7005404
    Abstract: A substrate having a catalytic surface thereon characterized as a coating of metal oxide and noble metal particles in the nominal diameter size distribution range of <3 microns, and more particularly <1 micron, is produced by thermal spraying a mixture of large size particles (e.g., in a nominal size distribution range of >10 micrometers) of hydroxides, carbonates or nitrates of the metals: cerium, aluminum, tin, manganese, copper, cobalt, nickel, praseodymium or terbium particles; and hydroxides, carbonates or nitrates of the noble metals: ruthenium, rhodium, palladium, silver, iridium, platinum and gold onto the substrate. The coating adheres to the surface and provides desirable catalyst properties.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: February 28, 2006
    Assignee: Honda Motor Co., Ltd.
    Inventor: Ting He
  • Patent number: 6995113
    Abstract: The present invention relates to noble metal-containing catalysts which are composed of at least one organic/inorganic hybrid material which is composed of at least one titanium component and at least one Si—H group. The catalysts of the present invention have increased activity compared to known catalysts.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: February 7, 2006
    Assignee: Bayer Aktiengesellschaft
    Inventors: Markus Weisbeck, Gerhard Wegener, Georg Wiessmeier, Peter Vogtel
  • Patent number: 6992040
    Abstract: A process for preparing a shell-type catalyst which comprises applying to a substantially nonporous inorganic support material having a BET surface area of <80 m2/g, a catalytically active outer shell of a suspension containing at least one water soluble noble metal compound and a substantially water insoluble coating compound, drying the suspension onto the support material, and activating the coated support material in a reducing gas stream.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: January 31, 2006
    Assignee: Degussa AG
    Inventors: Herbert Müller, Stefan Bösing, Walter Behl
  • Patent number: 6992039
    Abstract: A method for uniformly dispersing noble metal particles on a porous carrier by first mixing an alkoxide product of aluminum or silicon and a noble metal precursor together; then mixing a surfactant into the mixture; then mixing ammonia solution into the mixture to form a hydroxide of aluminum or silicon; then mixing a reducing agent into the mixture to convert the noble metal precursor into noble metal nanoparticles dispersed on the hydroxide; then separating the noble metal nanoparticles and the hydroxide from the mixture before calcining the hydroxide into an oxide of aluminum or silicon.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: January 31, 2006
    Assignees: General Motors Corporation, Chinese Academy of Sciences
    Inventors: Long Jiang, Jinru Li, Mei Cai, Jerry Dale Rogers
  • Patent number: 6964936
    Abstract: A method of making a catalyst with monolayer or sub-monolayer metal by controlling the wetting characteristics on the support surface and increasing the adhesion between the catalytic metal and an oxide layer. There are two methods that have been demonstrated by experiment and supported by theory. In the first method, which is useful for noble metals as well as others, a negatively-charged species is introduced to the surface of a support in sub-ML coverage. The layer-by-layer growth of metal deposited onto the oxide surface is promoted because the adhesion strength of the metal-oxide interface is increased. This method can also be used to achieve nanoislands of metal upon sub-ML deposition. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: November 15, 2005
    Assignee: Sandia Corporation
    Inventor: Dwight R. Jennison
  • Patent number: 6958308
    Abstract: A method for producing dispersed metal particles on a substrate and the compositions produced is disclosed. A method for producing the particles comprises exposing an organometallic and a particulate substrate to supercritical or near supercritical fluid under conditions to form a mixture of the fluid and the organometallic, allowing the mixture to remain in contact with the substrate for a time sufficient to deposit dispersed organometallic onto the substrate, venting the mixture, thereby adsorbing the organometallic onto the substrate, and reducing the dispersed organometallic to dispersed metal particles with a reducing agent.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: October 25, 2005
    Assignee: Columbian Chemicals Company
    Inventor: Garth Desmond Brown
  • Patent number: 6927191
    Abstract: An inside layer including zeolite and an outside layer including alumina and Pd are formed in a layered shape on a carrier, and Ag and Bi are simultaneously allowed to be carried on the inside and outside layers through impregnation. Thus, production of an alloy through a reaction between Pd and Ag can be suppressed by Bi.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: August 9, 2005
    Assignee: Mazda Motor Corporation
    Inventors: Hisaya Kawabata, Masahiko Shigetsu, Kazuo Misonoo
  • Patent number: 6924249
    Abstract: Disclosed is a method for direct application of a catalyst to a substrate for treatment of atmospheric pollution including ozone. The method includes applying a catalytic metal to a substrate utilizing a thermal spray process. The process can be utilized to apply a base metal such as copper to a substrate and the base metal becomes the catalytically active oxide during and following application to the substrate. This system replaces a multi-step process within a single step process to provide a catalytically active surface that can be utilized to reduce ground level ozone and other atmospheric pollutants.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: August 2, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: John R. Smith, Michel Farid Sultan, Ming-Cheng Wu, Zhibo Zhao, Bryan A. Gillispie
  • Patent number: 6919472
    Abstract: A catalyst composition for the selective conversion of an alkane to an unsaturated carboxylic acid having the general formula: MoVaNbbAgcMdOx wherein optional element M may be one or more selected from aluminum, copper, lithium, sodium, potassium, rubidium, cesium, gallium, phosphorus, iron, rhenium, cobalt, chromium, manganese, arsenic, indium, thallium, bismuth, germanium, tin, cerium or lanthanum; a is 0.05 to 0.99, b is 0.01 to 0.99, c is 0.01 to 0.99, d is 0 to 0.5 and x is determined by the valence requirements of the other components of the catalyst composition. This catalyst is prepared by co-precipitation of compounds of molybdenum, vanadium, niobium, silver and M to form a mixed metal oxide catalyst. This catalyst can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process or the ammoxidation of alkanes and olefins.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 19, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 6887821
    Abstract: A robust, high temperature mixed metal oxide catalyst for propellant composition, including high concentration hydrogen peroxide, and catalytic combustion, including methane air mixtures. The uses include target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The catalyst system requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. Start-up transients of less than 1 second have been demonstrated with catalyst bed and propellant temperatures as low as 50 degrees Fahrenheit. The catalyst system has consistently demonstrated high decomposition effeciency, extremely low decomposition roughness, and long operating life on multiple test particles.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: May 3, 2005
    Assignee: The Boeing Company
    Inventors: Jeffrey A. Mays, Kevin A. Lohner, Kathleen M. Sevener, Jeff J. Jensen
  • Patent number: 6852298
    Abstract: A composition for controlling NOx emissions during FCC processes comprises (i) an acidic oxide support, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria such as praseodymium oxide, and (iv), optionally, an oxide of a metal from Groups Ib and IIb such as copper, silver and zinc.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: February 8, 2005
    Assignee: Engelhard Corporation
    Inventors: Chandrashekhar P. Kelkar, David Stockwell, Samual Tauster
  • Patent number: 6849574
    Abstract: A multimetal oxide of the formula I Aga?bMbV2Ox*c H2O,??I where M is a metal selected from the group consisting of Li, Na, K, Rb, Cs, Tl, Mg, Ca, Sr, Ba, Cu, Zn, Cd, Pb, Cr, Au, Al, Fe, Co, Ni and/or Mo, a is from 0.3 to 1.9 and b is from 0 to 0.5, with the proviso that the difference (a?b)?0.1 and c is from 0 to 20 and x is a number determined by the valence and amount of elements different from oxygen in the formula I, has a crystal structure giving an X-ray powder diffraction pattern which displays reflections at the lattice spacings d of 15.23±0.6, 12.16±0.4, 10.68±0.3, 3.41±0.04, 3.09±0.04, 3.02±0.04, 2.36±0.04 and 1.80±0.04 ?. Precatalysts and catalysts produced therefrom for the partial oxidation of aromatic hydrocarbons are also provided.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: February 1, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Thomas Heidemann, Hartmut Hibst, Stefan Bauer, Ulf Dietrich
  • Patent number: 6846774
    Abstract: The invention relates to an ethylene oxide catalyst comprised of silver deposited on an alumina carrier which has been treated to with an aqueous basic salt solution, the pH of the aqueous treating solution is maintained above 8 during the treatment.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: January 25, 2005
    Assignee: Scientific Design Co., Inc.
    Inventor: Nabil Rizkalla
  • Publication number: 20040260103
    Abstract: A high activity and high selectivity silver catalyst comprising silver and, optionally, one or more promoters supported on a suitable support material having the form of a shaped agglomerate. The structure of the shaped agglomerate is that of a hollow cylinder having a relatively small inside (bore) diameter. The catalyst is made by providing the shaped material of a particular geometry and incorporating the catalytic components therein. The catalyst is useful in the epoxidation of ethylene.
    Type: Application
    Filed: April 1, 2004
    Publication date: December 23, 2004
    Inventors: Marek Matusz, Michael Alan Richard, John Robert Lockemeyer, Alouisius Nicolaas Renee Bos, Dominicus Maria Rekers, Donald Reinalda, Randall Clayton Yeates
  • Publication number: 20040230083
    Abstract: The present invention provides hydro-oxidation catalysts for the oxidation of hydrocarbons, containing an organic-inorganic hybrid material as well as gold particles and/or silver particles, a process for the production thereof, and the use thereof as a catalyst.
    Type: Application
    Filed: January 6, 2004
    Publication date: November 18, 2004
    Inventors: Markus Weisbeck, Marie-Therese Heinen, Jorg Schmitt, Gerhard Wegener, Markus Dugal
  • Publication number: 20040224841
    Abstract: A high activity and high selectivity silver catalyst comprising silver and, optionally, one or more promoters supported on a suitable support material having the form of a shaped agglomerate. The structure of the shaped agglomerate is that of a hollow cylinder having a small inside diameter compared to the outside diameter. The catalyst is made by providing the shaped material of a particular geometry and incorporating the catalytic components therein. The catalyst is useful in the epoxidation of ethylene.
    Type: Application
    Filed: May 7, 2003
    Publication date: November 11, 2004
    Inventors: Marek Matusz, Michael Alan Richard
  • Patent number: 6815395
    Abstract: A carrier which permits preparation of a catalyst possessed of excellent catalytic performance and used for the production of ethylene oxide, a catalyst obtained by using this carrier, endowed with excellent catalytic performance, and used for the production of ethylene oxide, and a method for the production of ethylene oxide by the use of the catalyst are provided. The carrier is obtained by mixing &agr;-alumina having an alkali metal content in the range of 1-70 m.mols/kg (&agr;-alumina) with an aluminum compound, a silicon compound, and an alkali metal compound and calcining the produced mixture. The carrier which has an aluminum content as reduced to Al in the range of 0-3 mols/kg of carrier, a silicon compound content as reduced to Si in the range of 0.01-2 mols/kg of carrier, and an alkali metal content as reduced to alkali metal in the range of 0.01-2 mols/kg of carrier is used for the deposition of a catalyst for use in the production of ethylene oxide.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: November 9, 2004
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Masahide Shima, Hitoshi Takada
  • Publication number: 20040198992
    Abstract: A catalyst composition comprising a support having a surface area of at least 500 m2/kg, and deposited on the support:
    Type: Application
    Filed: March 31, 2004
    Publication date: October 7, 2004
    Inventors: Marek Matusz, Michael Alan Richard, Martin Lysle Hess
  • Publication number: 20040197247
    Abstract: A method for designing and assembling a high performance catalyst bed gas generator for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The gas generator utilizes a sectioned catalyst bed system, and incorporates a robust, high temperature mixed in metal oxide catalyst. The gas generator requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. The high performance catalyst bed gas generator system has consistently demonstrated high decomposition efficiency, extremely low decomposition roughness, and long operating life on multiple test articles.
    Type: Application
    Filed: April 1, 2003
    Publication date: October 7, 2004
    Inventors: Kevin A. Lohner, Jeffrey A. Mays, Kathleen M. Sevener
  • Patent number: 6800586
    Abstract: A composition for controlling NOx emissions during FCC processes comprises (i) an acidic oxide support, (ii) cerium oxide, (iii) a lanthanide oxide other than ceria such as praseodymium oxide, and (iv), optionally, an oxide of a metal from Groups Ib and IIb such as copper, silver and zinc.
    Type: Grant
    Filed: November 23, 2001
    Date of Patent: October 5, 2004
    Assignee: Engelhard Corporation
    Inventors: Chandrashekhar P. Kelkar, David Stockwell, Samuel Tauster
  • Patent number: 6762311
    Abstract: A silver catalyst for ethylene oxidation to ethylene oxide is provided containing a promoter combination consisting of critical amounts of an alkali metal component and a sulfur component, the catalyst being essentially free of rhenium and transition metal components; optionally the catalyst contains a fluorine component.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: July 13, 2004
    Assignee: Scientific Design Co., Ltd.
    Inventors: Nabil Rizkalla, Serguei Pak, Andrew D. Schmitz
  • Patent number: 6750173
    Abstract: The invention relates to an ethylene oxide catalyst comprised of silver deposited on an alumina carrier which has been treated to remove at least 25% of the surface sodium ions and replace the removed sodium ions with up to 10 ppm of lithium ions and to the preparation thereof.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: June 15, 2004
    Assignee: Scientific Design Company, Inc.
    Inventors: Nabil Rizkalla, Errrol Bornn, Charles W. Zulauf
  • Publication number: 20040110972
    Abstract: The invention relates to a process for preparing a catalyst which involves (a) preparing a paste having a uniform mixture of at least one alkaline earth metal carbonate; a liquid medium; a silver bonding additive; and, at least one extrusion aid and/or optionally a burnout additive; (b) forming one or more shaped particles from the paste; (c) drying and calcining the particles; and, (e) impregnating the dried and calcined particles with a solution containing a silver compound. The invention also relates to a process for preparing an olefin oxide comprising reacting a gas composition containing an olefin having at least two carbon atoms with oxygen in the presence of the catalyst composition obtained by the process of this invention.
    Type: Application
    Filed: September 30, 2003
    Publication date: June 10, 2004
    Inventors: Leonid Isaakovich Rubinstein, Candido Gutierrez
  • Patent number: 6740620
    Abstract: An orthorhombic phase mixed metal oxide is produced selectively in quantitative yield.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: May 25, 2004
    Assignee: Rohn and Haas Company
    Inventors: Leonard Edward Bogan, Jr., Daniel A. Bors, Fernando Antonio Pessoa Cavalcanti, Michael Bruce Clark, Jr., Anne Mae Gaffney, Scott Han
  • Patent number: 6723679
    Abstract: A substrate includes a non-conductive portion to be electroless-plated of a substrate, on the surface of which fine metal catalyst particles composed of silver nuclei and palladium nuclei each having an average particle size of 1 nm or less adhere at a high nuclei density of 2000 nuclei/&mgr;m2 or more. The metal catalyst particles are produced by sensitizing the non-conductive portion of the substrate by dipping the substrate in a sensitizing solution containing bivalent tin ions, activating the non-conductive portion of the substrate by dipping the substrate in a first activator containing silver ions, and activating the non-conductive portion of the substrate by dipping the substrate in a second activator containing palladium ions.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: April 20, 2004
    Assignees: Osaka Municipal Government, Matsushita Electric Industrial Co., Ltd., C. Uyemura & Co., Ltd.
    Inventors: Masanobu Izaki, Hiroshi Hatase, Yoshikazu Saijo
  • Publication number: 20040049061
    Abstract: A method for improving the selectivity of a supported highly selective epoxidation catalyst comprising silver in a quantity of at most 0.
    Type: Application
    Filed: June 26, 2003
    Publication date: March 11, 2004
    Inventors: John Robert Lockemeyer, Randall Clayton Yeates, Donald Reinalda
  • Publication number: 20040040887
    Abstract: A composition comprising a promoter and a metal oxide selected from the group consisting of a niobium oxide, a tantalum oxide, and combinations thereof, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Application
    Filed: August 30, 2002
    Publication date: March 4, 2004
    Inventors: David E. Simon, Robert W. Morton, Roland Schmidt, Jason J. Gislason, M. Bruce Welch
  • Patent number: 6696389
    Abstract: The invention relates to a method and a device for cleaning flowing gases. To reduce the total emissions, nitrogen oxides, especially NO and NOx, are extracted at least partially from the gas to be scrubbed, in the temperature range from 50 and 300° C., preferably between 50 and 150° C. To extract the nitrogen oxides, an intermediate storage medium is used that is composed of a storage material and a supporting material for the storage material. The intermediate storage medium having in particular a composition of the formal chemical formula Ag.CuAl2O4 in an Al2O3 matrix, with the composition being a spinel or being of the spinel type, and with the composition having characteristic spinel lines in the x-ray spectrum, where 0≦x<1.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: February 24, 2004
    Assignee: DaimlerChrysler AG
    Inventors: Walter Boegner, Rolf-Dirc Roitzheim, Martin Hartweg, Andrea Seibold, Thomas Fetzer, Bernd Morsbach
  • Publication number: 20040019240
    Abstract: The invention relates to a novel structured catalyst bed which optionally comprises at least one part bed comprising at least one catalytically active mixture of oxides of the main group metals and transition metals and additionally comprises at least one catalytically active part bed comprising at least silver, at least one alkali metal and a porous support material and finally and necessarily at least one catalytically active part bed comprising at least one alkali metal phosphate and at least one sheet silicate.
    Type: Application
    Filed: July 14, 2003
    Publication date: January 29, 2004
    Inventors: Hartmut Hibst, Sebastian Storck, Dirk Demuth, Wolfram Stichert, Jens Klein, Stephan A. Schunk, Andreas Sundermann
  • Patent number: 6656874
    Abstract: This invention relates to a process for depositing one or more catalytically reactive metals on a carrier, said process comprising selecting a carrier and depositing a catalytically effective amount of one or more catalytically reactive metals on the carrier, the deposition effected by submersing the carrier in an impregnation solution wherein the hydrogen ion activity of the impregnation solution has been lowered. The invention further relates to catalysts made from the process.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: December 2, 2003
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Patent number: 6646158
    Abstract: A mixed metal oxide Mo—V—Ga—Pd—Nb—X catalytic system, where X is selected from La, Te, and Zn, provides the oxidation of C2-C8 hydrocarbons to corresponding acids with a molecular oxygen-containing gas.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: November 11, 2003
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Yajnavalkya Subrai Bhat, Syed Irshad Zaheer, Abdullah Bin Nafisah, Asad Ahmed Khan
  • Publication number: 20030204102
    Abstract: The present invention relates to a catalyst for oxidizing hydrocarbons with a hydrogen/oxygen mixture. The catalyst contains a) a support material containing titanium and b) silver particles having an average particle size of from 0.3 to 100 nm.
    Type: Application
    Filed: June 3, 2003
    Publication date: October 30, 2003
    Inventors: Markus Weisbeck, Ernst Ulrich Dorf, Gerhard Wegener, Christoph Schild
  • Patent number: 6635600
    Abstract: A supported hydrogenation catalyst composition is disclosed which comprises palladium, an inorganic support such as alumina, and a selectivity enhancer selected from the group consisting of silver, phosphorus, sulfur, and combinations of two or more thereof. Also disclosed is a selective hydrogenation process in which highly unsaturated hydrocarbons such as diolefins and/or alkynes are hydrogenated with hydrogen to less unsaturated hydrocarbons such as monoolefins.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: October 21, 2003
    Assignee: Phillips Petroleum Company
    Inventors: James B. Kimble, Joseph J. Bergmeister
  • Publication number: 20030171215
    Abstract: The invention relates to the aqua-thermal treatment of an ethylene oxide catalyst carrier and to a silver catalyst prepared therefrom.
    Type: Application
    Filed: March 1, 2002
    Publication date: September 11, 2003
    Inventor: Andrew D. Schmitz
  • Publication number: 20030166465
    Abstract: Novel sorbent systems for the desulfurization of cracked-gasoline and diesel fuels are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promotors are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline and diesel fuels whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product.
    Type: Application
    Filed: January 21, 2003
    Publication date: September 4, 2003
    Inventor: Gyanesh P. Khare
  • Patent number: 6603028
    Abstract: The invention relates to a method for oxidizing hydrocarbons with a hydrogen/oxygen mixture in the presence of a catalyst. The catalyst contains a) a support material which contains titanium and b) silver particles having an average particle size ranging from 0.3 to 100 nm.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: August 5, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Markus Weisbeck, Ernst Ulrich Dorf, Gerhard Wegener, Christoph Schild
  • Publication number: 20030144141
    Abstract: A process and catalysts for the direct oxidation of an olefin having three or more carbon atoms, such as propylene, by oxygen to an olefin oxide, such as propylene oxide. The process involves contacting the olefin under reaction conditions with oxygen in the presence of hydrogen and a catalyst. The catalyst contains silver and titanium, optionally gold, and optionally, at least one promoter element selected from Group 1, Group 2, zinc, cadmium, the lanthanide rare earths, and the actinide elements. Suitable supports include titanium dioxide, titanium dioxide on silica, titanosilicates, promoter metal titanates, titanium dispersed on silica and promoter metal silicates.
    Type: Application
    Filed: January 14, 2003
    Publication date: July 31, 2003
    Inventors: Robert G. Bowman, Howard W. Clark, Alex Kuperman, George E. Hartwell, Garmt R. Meima
  • Publication number: 20030139290
    Abstract: The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.
    Type: Application
    Filed: January 22, 2002
    Publication date: July 24, 2003
    Inventors: Jeffrey D. Jordan, David R. Schryer, Patricia P. Davis, Bradley D. Leighty, Anthony Neal Watkins, Jacqueline L. Schryer, Donald M. Oglesby
  • Patent number: 6579825
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: June 17, 2003
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Patent number: 6562749
    Abstract: A process for the preparation of a ceramic foam supporting one or more catalytically active components or precursors thereof, which component is active in a form other than an inorganic oxide, the process comprising impregnation of the foam with an impregnating phase comprising the catalytically active component or a precursor thereof and drying, wherein the impregnating phase has a viscosity greater than 1 cps, wherein drying is performed without substantial prior draining of impregnating phase from the ceramic foam, and wherein the catalytically active component or precursor thereof is present throughout the process in one or more forms other than the inorganic oxide thereof. The ceramic foams prepared by this process find use in catalytic conversion processes, in particular the catalytic partial oxidation of a hydrocarbon feed.
    Type: Grant
    Filed: November 26, 1996
    Date of Patent: May 13, 2003
    Assignee: Shell Oil Company
    Inventors: Peter William Lednor, Katherine Searcy-Roberts
  • Patent number: 6528029
    Abstract: Composite of at least two metal oxides in the form of Primary Particles and a support having a particle size greater than the Primary Particles used in the formation of a catalyst composition for the treatment of a pollutant containing gas.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: March 4, 2003
    Assignee: Engelhard Corporation
    Inventors: Joseph C. Dettling, Joseph H-Z. Wu
  • Patent number: 6524540
    Abstract: A catalyst for the purification, e.g., disinfection, of water is disclosed. The catalyst of the invention comprises a substrate, a first metal, and at least one additional metal. The metals are codeposited on the substrate to form a unified structure. Methods of using the catalyst to disinfect water and devices for the purification of water are also disclosed.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: February 25, 2003
    Assignee: Biocatalytica Incorporated
    Inventor: Charles F. Heinig, Jr.
  • Patent number: 6517806
    Abstract: Present invention relates to a CdZnMS photocatalyst for producing hydrogen from water and a method for preparing thereof and a method for producing hydrogen by using said photocatalyst. Said photocatalyst is characterized by the following general formula VII: m(a)/CdxZnyMzS  (VII) wherein ‘m’ represents at least one doped metal element as an electron acceptor selected from the group consisting of Ni, Pt, Ru and the oxidized compound of these metals; ‘a’ represents a % by weight of m, ranging from 0.10 to 5.00; ‘M’ is a catalyst element selected from the group consisting of Mo, V, Al, Cs, Mn, Fe, Pd, Pt, P, Cu, Ag, Ir, Sb, Pb, Ga and Re. ‘z’ represents an atom % of M/(Cd+Zn+M), ranging from 0.05 to 20.00 and ‘x’ and ‘y’ represent an atom % of Cd/(Cd+Zn+M) and an atom % of Zn/(Cd+Zn+M), ranging from 10.00 to 90.00, respectively.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: February 11, 2003
    Assignees: Korea Research Institute of Chemical Technology, Chonggu Co., Ltd.
    Inventors: Dae-Chul Park, Jin-Ook Baeg
  • Patent number: 6511938
    Abstract: Catalysts for the production of alkylene oxide by the epoxidation of alkene with oxygen comprise a silver-containing support, and a sufficient amount of cobalt component to enhance at least one of activity and/or efficiency and/or stability as compared to a similar catalyst which does not contain cobalt component.
    Type: Grant
    Filed: March 21, 1996
    Date of Patent: January 28, 2003
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Albert Cheng-Yu Liu, Erlind Magnus Thorsteinson, Hwaili Soo, James Herndon McCain, David Michael Minahan
  • Patent number: 6498122
    Abstract: An olefin oxidation catalyst comprising a carrier, and silver and an alkali metal supported thereon, wherein the content of organic substances is less than 0.1 wt %.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: December 24, 2002
    Assignee: Mitsubishi Chemical Corporation
    Inventor: Katsumi Nakashiro
  • Publication number: 20020161250
    Abstract: A process and catalysts for the direct oxidation of an olefin having three or more carbon atoms, such as propylene, by oxygen to an olefin oxide, such as propylene oxide. The process involves contacting the olefin under reaction conditions with oxygen in the presence of hydrogen and a catalyst. The catalyst contains silver and titanium, optionally gold, and optionally, at least one promoter element selected from Group 1, Group 2, zinc, cadmium, the lanthanide rare earths, and the actinide elements. Suitable supports include titanium dioxide, titanium dioxide on silica, titanosilicates, promoter metal titanates, titanium dispersed on silica and promoter metal silicates.
    Type: Application
    Filed: February 19, 2002
    Publication date: October 31, 2002
    Inventors: Robert G. Bowman, Alex Kuperman, Howard W. Clark, George E. Hartwell, Garmt R. Meima
  • Publication number: 20020143197
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Application
    Filed: November 6, 2001
    Publication date: October 3, 2002
    Inventor: John Robert Lockemeyer
  • Publication number: 20020137957
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Application
    Filed: November 6, 2001
    Publication date: September 26, 2002
    Inventor: John Robert Lockemeyer
  • Patent number: 6437206
    Abstract: Unsaturated compounds in hydrocarbon streams are hydrogenated over a catalyst which, in the unused state, shows reflections which correspond to the following lattice plane spacings in the X-ray diffraction pattern [in 10−10m]: 4.52, 2.85, 2.73, 2.44, 2.31, 2.26, 2.02, 1.91, 1.80, 1.54, 1.51, 1.49, 1.45 and 1.39 and have specific relative intensities.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: August 20, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerald Meyer, Ekkehard Schwab, Michael Hesse, Peter Trübenbach, Hans-Joachim Müller