Of Silver Patents (Class 502/347)
-
Patent number: 7988887Abstract: Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.Type: GrantFiled: August 19, 2009Date of Patent: August 2, 2011Assignee: Los Alamos National Security, LLCInventors: Hsing-Lin Wang, Sea Ho Jeon, Nathan H. Mack
-
Patent number: 7985395Abstract: Catalyst for oxidation reactions which comprises at least one constituent active in the catalysis of hydrogen chloride oxidation and support therefor, which support is based on uranium oxide. The catalyst is notable for a high stability and activity.Type: GrantFiled: June 26, 2008Date of Patent: July 26, 2011Assignee: Bayer Technology Services GmbHInventors: Aurel Wolf, Leslaw Mleczko, Oliver Felix-Karl Schlüter, Stephan Schubert
-
Patent number: 7985709Abstract: The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.Type: GrantFiled: September 28, 2004Date of Patent: July 26, 2011Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space AdministrationInventors: Jeffrey D. Jordan, David R. Schryer, Patricia P. Davis, Bradley D. Leighty, Anthony N. Watkins, Jacqueline L. Schryer, Donald M. Oglesby, Suresh T. Gulati, Jerry C. Summers
-
Patent number: 7985830Abstract: Methods for synthesizing dimeric or polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst comprises a first metal substrate having a second reduced metal coated on the substrate.Type: GrantFiled: December 30, 2009Date of Patent: July 26, 2011Assignee: GM Global Technology Operations LLCInventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden
-
Publication number: 20110172086Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.Type: ApplicationFiled: August 24, 2009Publication date: July 14, 2011Applicant: JOHNSON MATTHEY PLCInventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
-
Patent number: 7977274Abstract: The invention pertains to a catalyst useful for the epoxidation of an olefin. More particularly, the invention pertains to an improved catalyst useful for the epoxidation of ethylene to ethylene oxide. The catalyst has improved selectivity in the epoxidation process. The catalyst comprises a solid support having a surface, which has a first mode of pores which have a diameter ranging from about 0.01 ?m to about 5 ?m and having a differential pore volume peak in the range of from about 0.01 ?m to about 5 ?m. The surface then has a second mode of pores, different from the first mode of pores, which second mode of pores have a diameter ranging from about 1 ?m to about 20 ?m and have a differential pore volume peak in the range of from about 1 ?m to about 20 ?m.Type: GrantFiled: September 29, 2006Date of Patent: July 12, 2011Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KGInventor: Christian Gueckel
-
Publication number: 20110166012Abstract: In one embodiment, the catalyst assembly includes a two-dimension (2-D) extensive catalyst having a catalyst crystal plane; and a substrate supporting the 2-D extensive catalyst and having a substrate crystal plane in substantial alignment with the catalyst crystal plane. In certain instances, the catalyst crystal plane includes first and second adjacent catalyst atoms defining a catalyst atomic distance, the substrate crystal plane includes first and second adjacent substrate atoms defining a substrate atomic distance, a percent difference between the catalyst and substrate atomic distances is less than 10 percent.Type: ApplicationFiled: October 26, 2010Publication date: July 7, 2011Applicant: FORD GLOBAL TECHNOLOGIES, LLCInventors: Jun Yang, Shinichi Hirano, Richard E. Soltis, Andrew Robert Drews, Andrea Pulskamp, James Waldecker
-
Publication number: 20110160478Abstract: The present invention pertains to a catalyst for the synthesis of organic alkyl carbamates, the method for preparing the same and the use thereof. The catalyst comprises a catalytically active component and a catalyst support, and the catalytically active component being carried by the catalyst support, wherein the catalytically active component comprises a transition metal oxide, and the general formula of the transition metal oxide is EOx, wherein E is selected from transition metal element and x is in the range of 0.5-4.Type: ApplicationFiled: February 13, 2009Publication date: June 30, 2011Inventors: Youquan Deng, Yubo Ma, Liguo Wang, Xiaoguang Guo, Shigo Zhang, Yude He, Stefan Wershofen, Stephan Klein, Zhiping Zhou
-
Publication number: 20110152073Abstract: A method for the start-up of a process for the epoxidation of ethylene comprising: initiating an epoxidation reaction by reacting a feed gas composition containing ethylene, and oxygen, in the presence of an epoxidation catalyst at a temperature of about 180° C. to about 210° C.; adding to the feed gas composition about 0.05 ppm to about 2 ppm of moderator; increasing the first temperature to a second temperature of about 240° C. to about 250° C., over a time period of about 12 hours to about 60 hours; and maintaining the second temperature for a time period of about 50 hours to about 150 hours.Type: ApplicationFiled: December 23, 2009Publication date: June 23, 2011Applicant: SCIENTIFIC DESIGN COMPANY, INC.Inventors: Harald Dialer, Andrzej Rokicki, Anding Zhang
-
Publication number: 20110120100Abstract: A catalyst system comprising a first catalytic composition comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support. The pores of the solid mixture have an average diameter in a range of about 1 nanometer to about 15 nanometers. The catalytic metal comprises nanocrystals.Type: ApplicationFiled: November 24, 2009Publication date: May 26, 2011Applicant: GENERAL ELECTRIC COMPANYInventors: Ming Yin, Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Benjamin Hale Winkler, Daniel George Norton, Ashish Balkrishna Mhadeshwar
-
Patent number: 7943108Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.Type: GrantFiled: September 11, 2008Date of Patent: May 17, 2011Assignee: MEMC Electronic Materials, Inc.Inventors: Vithal Revankar, Jameel Ibrahim
-
Patent number: 7932408Abstract: The invention is directed to a catalyst for the epoxidation of an olefin to an olefin oxide, the catalyst comprising a support having at least two pore size distributions, each pore size distribution possessing a different mean pore size and a different pore size of maximum concentration, the catalyst further comprising a catalytically effective amount of silver, a promoting amount of rhenium, and a promoting amount of one or more alkali metals, wherein the at least two pore size distributions are within a pore size range of about 0.01 ?m to about 50 ?m. The invention is also directed to a process for the oxidation of an olefin to an olefin oxide using the above-described catalyst.Type: GrantFiled: January 27, 2009Date of Patent: April 26, 2011Assignee: Scientific Design Company, Inc.Inventor: Christian Gückel
-
Patent number: 7928034Abstract: There is disclosed a process for producing an olefin oxide characterized by contacting an olefin and oxygen, in the presence of water and a halogen compound, with a silver catalyst, wherein the silver catalyst is a silver catalyst that is obtainable by contacting metal silver, a silver compound or a mixture of both with an alkaline earth metal carbonate and that has an alkali metal content of 1,500 ppm or less based on the total weight of the silver catalyst.Type: GrantFiled: February 16, 2006Date of Patent: April 19, 2011Assignee: Sumitomo Chemical Company, LimitedInventors: Hirotsugu Kano, Michio Yamamoto, Makoto Yako
-
Publication number: 20110076202Abstract: Provided is a particulate combustion catalyst including a carrier formed of monoclinic zirconium oxide particles, and metallic Ag or Ag oxide, which serves as a catalyst component and is supported on the carrier, wherein the amount of the catalyst component is 0.5 to 10 mass %, as reduced to metallic Ag, on the basis of the mass of the carrier, and preferably, the catalyst has a BET specific surface area of 8 to 21 m2/g. Also provided are a particulate filter coated with the particulate combustion catalyst; and an exhaust gas cleaning apparatus including a particulate filter coated with the particulate combustion catalyst.Type: ApplicationFiled: October 23, 2008Publication date: March 31, 2011Applicant: MITSUI MINING & SMELTING CO., LTDInventors: Takahito Asanuma, Hiromitsu Takagi, Isamu Yashima, Akira Abe
-
Patent number: 7910518Abstract: A geometrically shaped solid carrier is provided that improves the performance and effectiveness of an olefin epoxidation catalyst for epoxidizing an olefin to an olefin oxide. In particular, improved performance and effectiveness of an olefin epoxidation catalyst is achieved by utilizing a geometrically shaped refractory solid carrier in which at least one wall thickness of said carrier is less than 2.5 mm.Type: GrantFiled: March 10, 2008Date of Patent: March 22, 2011Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KGInventors: Serguei Pak, Andrzej Rokicki, Howard Sachs
-
Publication number: 20110058999Abstract: According to one embodiment, described herein is an exhaust gas after-treatment system that is coupleable in exhaust gas stream receiving communication with an internal combustion engine. The exhaust gas after-treatment system includes a low temperature SCR catalyst configured to reduce NOx in exhaust gas having a temperature below a temperature threshold. The system also includes a normal-to-high temperature SCR catalyst configured to reduce NOx in exhaust gas having a temperature above the temperature threshold.Type: ApplicationFiled: September 10, 2010Publication date: March 10, 2011Applicant: CUMMINS IP, INCInventors: Padmanabha Reddy Ettireddy, Matthew Henrichsen
-
Publication number: 20110053020Abstract: Nanostructured catalysts and related methods are described. The nanostructured catalysts have a hierarchical structure that facilitates modification of the catalysts for use in particular reactions. Methods for generating hydrogen from a hydrogen-containing molecular species using a nanostructured catalyst are described. The hydrogen gas may be collected and stored, or the hydrogen gas may be collected and consumed for the generation of energy. Thus, the methods may be used as part of the operation of an energy-consuming device or system, e.g., an engine or a fuel cell. Methods for storing hydrogen by using a nanostructured catalyst to react a dehydrogenated molecular species with hydrogen gas to form a hydrogen-containing molecular species are also described.Type: ApplicationFiled: November 7, 2008Publication date: March 3, 2011Applicants: WASHINGTON STATE UNIVERSITY RESEARCH FOUNDATION, IDAHO RESEARCH FOUNDATION, INC.Inventors: M. Grant Norton, David N. McIlroy
-
Publication number: 20110039689Abstract: The present invention relates to a shaped catalyst body comprising a core and a first catalytically active layer arranged on sections of the core, characterized in that the total density of the core is greater than the total density of the catalytically active layer. The invention further relates to the use of said shaped catalyst body as an oxidation catalyst in the cleaning of exhaust gases or for reducing and decomposing nitrogen oxides and nitrous oxide.Type: ApplicationFiled: April 21, 2008Publication date: February 17, 2011Inventors: Arno Tissler, Hans-Christoph Schwarzer, Roderik Althoff
-
Patent number: 7879757Abstract: A photocatalytic titanium oxide sol presents antibacterial properties in a dark place, and, in particular, relates to a photocatalytic titanium oxide sol which is stable and causes no discoloration by light even though containing silver, and relates to a coating composition and a member using the same. The photocatalytic titanium oxide sol includes silver, copper and a quaternary ammonium hydroxide, may be dispersed in a binder, and may be coated on the surface of a substrate.Type: GrantFiled: September 27, 2007Date of Patent: February 1, 2011Assignees: Taki Chemical Co., Ltd., Toto Ltd.Inventors: Taketoshi Kuroda, Hiroyuki Izutsu, Isamu Yamaguchi, Yoshiyuki Nakanishi
-
Patent number: 7875572Abstract: The present invention provides a catalyst for combustion treatment of suspended particulate matter in diesel exhaust gases, and a combustion catalyst for treating diesel exhaust gases in which a precious metal or an oxide thereof as the catalytic component is loaded on a carrier composed of oxide ceramic particles comprising ceria-zirconia or ceria-praseodymium oxide. In the present invention, depending on the carried precious metal, the carrier is preferably composed of oxide ceramic particles further comprising yttria or lanthanum oxide. The present invention provides a sufficient activity to combust suspended particulate matter in exhaust gases, and can cause combustion at a low temperature of about 300° C. It operates stably for a long period, and can burn suspended particulate matter, especially carbon microparticles.Type: GrantFiled: December 15, 2005Date of Patent: January 25, 2011Assignee: Tanaka Kikinzoku Kogyo K.K.Inventors: Shunji Kikuhara, Takeshi Yamashita, Hitoshi Kubo, Kazuto Itaya, Masahiro Sasaki
-
Patent number: 7842641Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.Type: GrantFiled: July 14, 2009Date of Patent: November 30, 2010Assignee: Millennium Inorganic Chemicals, Inc.Inventors: Guoyi Fu, Steven M. Augustine
-
Patent number: 7842636Abstract: Compositions and methods for depositing one or more metal or metal alloy films on substrates. The compositions contain a catalyst, one or more carrier particles and one or more water-soluble or water-dispersible organic compounds. Metal or metal alloys may be deposited on the substrates by electroless or electrolytic deposition.Type: GrantFiled: January 14, 2009Date of Patent: November 30, 2010Assignee: Rohm and Haas Electronic Materials LLCInventors: Peter R. Levey, Nathaniel E. Brese
-
Patent number: 7835868Abstract: A process for selecting shaped particles for use in a tube which is capable of being packed with shaped particles to form a packed bed in the tube. A desired value of one or more properties of the packed bed is defined. The dimensions of the shaped particles are calculated such that a packed bed in the tube of the shaped particles having the calculated dimensions meets or substantially meets the desired value(s), and shaped particles are selected in accordance with the calculated dimensions. The properties of the packed bed may be the volume fraction which is occupied by shaped particles, the packing density, and the resistivity for a gas flowing through the packed bed.Type: GrantFiled: September 21, 2005Date of Patent: November 16, 2010Assignee: Shell Oil CompanyInventors: Michael Alan Richard, Paul Michael McAllister, Anne Taylor Coleman, Johannes Leopold Marie Syrier, Alouisius Nicolaas Renée Bos
-
Publication number: 20100280261Abstract: The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors are germanium doped and comprise a precursor alumina blend. It has now surprisingly been discovered that inclusion of germanium, alone or in combination with such a blend, in porous body precursors can provide control over, or improvements to, surface morphology, physical properties, and/or surface chemistry of shaped porous bodies based thereupon. Surprisingly and advantageously, heat treating the shaped porous bodies can result in additional morphological changes so that additional fine tuning of the shaped porous bodies is possible in subsequent steps.Type: ApplicationFiled: April 10, 2010Publication date: November 4, 2010Applicant: DOW TECHNOLOGY INVESTMENTS LLCInventors: Kevin E. Howard, Cathy L. Tway, Peter C. Lebaron, Jamie L. Lovelace, Hirokazu Shibata
-
Publication number: 20100279012Abstract: A method for adsorbing a catalyst, including: a step of applying, to a substrate, a photocurable composition which contains a compound having a polymerizable group and a group that is interactive with a plating catalyst or a precursor thereof, and that, when photo-cured, forms a surface-hydrophobic cured material satisfying the following Requirements 1 and 2; a step of curing the curable composition by pattern-wise exposure, a step of removing uncured materials by development; and a step of bringing an aqueous plating catalyst solution containing a plating catalyst or a precursor thereof and an organic solvent into contact with the substrate, wherein when a palladium-containing test liquid is brought into contact with the substrate having the patterned surface-hydrophobic cured material layer formed thereon, A mg/m2 and B mg/m2, which respectively refer to a palladium adsorption in an area having the surface-hydrophobic cured material layer formed thereon and a palladium adsorption in an area not having the sType: ApplicationFiled: December 5, 2008Publication date: November 4, 2010Applicant: FUJIFILM CORPORATIONInventor: Masataka Sato
-
Patent number: 7825058Abstract: Compositions and methods for depositing one or more metal or metal alloy films on substrates. The compositions contain a catalyst, one or more carrier particles and one or more water-soluble or water-dispersible organic compounds. Metal or metal alloys may be deposited on the substrates by electroless or electrolytic deposition.Type: GrantFiled: January 14, 2009Date of Patent: November 2, 2010Assignee: Rohm and Haas Electronic Materials LLCInventors: Peter R. Levey, Nathaniel E. Brese
-
Patent number: 7820840Abstract: Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.Type: GrantFiled: July 7, 2009Date of Patent: October 26, 2010Assignee: The Regents of the University of MichiganInventors: Suljo Linic, Phillip Christopher
-
Patent number: 7820583Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.Type: GrantFiled: August 24, 2006Date of Patent: October 26, 2010Assignee: Millennium Inorganic Chemicals, Inc.Inventors: Guoyi Fu, Steven M. Augustine
-
Patent number: 7803734Abstract: The present invention relates to a metal catalyst containing fine metal particles, characterized in that the fine metal particles have a particle diameter of 3 nm or less and also have a proportion of metallic bond state of 40% or more, which is ascribed by subjecting to waveform separation of a binding energy peak peculiar to the metal as measured by using an X-ray photoelectron spectrometer. The fine metal particles are preferably fine platinum particles. The fine metal particles are preferably supported on the surface of carrier particles by reducing ions of metal to be deposited through the action of a reducing agent in a reaction system of a liquid phase containing the carrier particles dispersed therein, thereby to deposit the metal on the surface of carrier particles in the form of fine particles. The proportion of metallic bond state of the fine metal particles is adjusted within the above range by reducing after deposition thereby to decrease the oxidation state.Type: GrantFiled: May 20, 2005Date of Patent: September 28, 2010Assignee: Sumitomo Electric Industries, Ltd.Inventors: Masatoshi Majima, Kohei Shimoda, Kouji Yamaguchi
-
Patent number: 7803338Abstract: A method and apparatus for catalytically processing a gas stream passing therethrough to reduce the presence of NOx therein, wherein the apparatus includes a first catalyst composed of a silver containing alumina that is adapted for catalytically processing the gas stream at a first temperature range, and a second catalyst composed of a copper containing zeolite located downstream from the first catalyst, wherein the second catalyst is adapted for catalytically processing the gas stream at a lower second temperature range relative to the first temperature range.Type: GrantFiled: June 21, 2005Date of Patent: September 28, 2010Assignees: ExonMobil Research and Engineering Company, Caterpillar Inc.Inventors: Richard F. Socha, James C. Vartuli, El-Mekki El-Malki, Mohan Kalyanaraman, Paul W. Park
-
Publication number: 20100239675Abstract: A method of preparing silver triangular bipyramids having a high shape selectivity and low edge length variation is disclosed. Also disclosed are silver triangular bipyramids prepared by this method.Type: ApplicationFiled: March 19, 2010Publication date: September 23, 2010Applicant: NORTHWESTERN UNIVERSITYInventors: Chad A. Mirkin, Jian Zhang
-
Publication number: 20100240530Abstract: The present invention relates to a method for producing a metallic coating material to coat the surface of matrices with a metal, and it is an object of the invention to provide a method for producing a metallic coating material for which there is no concern that metallic powder will scatter or ignite at the time of production, and which is excellent in productivity not requiring any cumbersome process such as burning at a high temperature, etc., and is excellent in decorative features and functionality such as a catalyzing action. With the method for producing a metallic coating material according to the present invention, a metallic layer that coats the surface of the matrices with the metallic powder is formed by the mechanical alloying of matrices formed by any of ceramic, mineral, metal, synthetic resin, or a mixed material thereof, and metallic powder.Type: ApplicationFiled: March 22, 2007Publication date: September 23, 2010Applicants: T.N.G. Technologies Co., Ltd.Inventor: Kiichirou Sumi
-
Patent number: 7799727Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.Type: GrantFiled: December 15, 2009Date of Patent: September 21, 2010Assignee: UOP LLCInventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
-
Publication number: 20100233053Abstract: A method is provided. The method comprises reacting a reactive solution and a templating agent to form a gel; and calcining the gel to form a catalyst composition comprising homogeneous solid mixture. The homogenous solid mixture contains (i) at least one catalytic metal and (ii) at least one metal inorganic network. The templating agent comprises an octylphenol ethoxylate having a structure [I]: wherein “n” is an integer having a value of about 8 to 20. A catalyst composition prepared using the templating agent having a structure [1] is also provided.Type: ApplicationFiled: May 28, 2010Publication date: September 16, 2010Applicant: GENERAL ELECTRIC COMPANYInventors: Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Ashish Balkrishna Mhadeshwar, Ming Yin
-
Publication number: 20100233054Abstract: The invention relates to a catalyst for the desulfurization of hydrocarbon-comprising gases, which comprises a support material, with the exception of activated carbons and zeolites, and a silver-comprising active composition, wherein the catalyst has a pore structure having a maximum number of the pores in a pore diameter range from 6 to 11 nm. The invention further provides processes for producing such a catalyst, its use for the desulfurization of hydrocarbon-comprising gases, in particular in fuel cell applications, and a process for the desulfurization of hydrocarbon-comprising gases.Type: ApplicationFiled: August 4, 2008Publication date: September 16, 2010Applicant: BASF SEInventors: Jochen Steiner, Markus Hoelzle, Heiko Urtel
-
Patent number: 7772149Abstract: A Cr trapping agent is disposed so that it contacts with constituting components of the substrate containing Cr. As the Cr trapping agent, an element or Ag is used, wherein the element is stronger in basicity than alkali metals or alkaline earth metals. Since the Cr trapping agent prevents transfer of Cr towards the alkali metals or alkaline earth metals, the reaction between Cr and alkali metals or alkaline earth metals is prevented.Type: GrantFiled: December 6, 2006Date of Patent: August 10, 2010Assignees: Hitachi, Ltd., Honda Motor Co., Ltd., Nippon Steel Materials Co., Ltd.Inventors: Masato Kaneeda, Hidehiro Iizuka, Norihiro Shinotsuka, Masahiro Sakanushi, Kimihiro Tokushima, Hiroki Hosoe, Masayuki Kasuya, Toshio Iwasaki, Shogo Konya
-
Patent number: 7772147Abstract: A solid catalyst carrier substrate coated with a surface area-enhancing washcoat composition including a catalytic component, a metal oxide and a refractory fibrous or whisker-like material having an aspect ratio of length to thickness in excess of 5:1.Type: GrantFiled: September 12, 2005Date of Patent: August 10, 2010Assignee: Johnson Matthey Public Limited CompanyInventors: Paul John Collier, Alison Mary Wagland
-
Publication number: 20100196236Abstract: A composition includes a templated metal oxide substrate having a plurality of pores and a catalyst material includes silver. The composition under H2 at 30 degrees Celsius, the composition at a wavelength that is in a range of from about 350 nm to about 500 nm has a VIS-UV absorbance intensity that is at least 20 percent less than a standard silver alumina catalyst (Ag STD). The standard alumina is Norton alumina, and which has the same amount of silver by weight.Type: ApplicationFiled: January 30, 2009Publication date: August 5, 2010Applicant: GENERAL ELECTRIC COMPANYInventors: Larry Neil Lewis, Dan Hancu, Oltea Puica Siclovan, Ming Yin
-
Publication number: 20100196237Abstract: A composition includes a templated metal oxide, at least 3 weight percent of silver, and at least one catalytic metal. A method of making and a method of using are included.Type: ApplicationFiled: January 30, 2009Publication date: August 5, 2010Applicant: GENERAL ELECTRIC COMPANYInventors: Ming Yin, Larry Neil Lewis, Dan Hancu, Oltea Puica Siclovan
-
Publication number: 20100191006Abstract: The invention is directed to a catalyst useful in the epoxidation of an olefin to an olefin oxide, the catalyst comprising a support having a multimodal pore size distribution comprising a first and a second distribution of pore sizes wherein each distribution of pore sizes possesses a different mean pore size and a different pore size of maximum concentration, the support having a catalytically effective amount of silver, a promoting amount of rhenium, and cesium in an amount up to, but not exceeding 700 ppm disposed thereon. The invention is also directed to methods for using the catalyst for the commercial production of an olefin oxide from olefin and oxygen-containing feed gases.Type: ApplicationFiled: January 27, 2009Publication date: July 29, 2010Applicant: SCIENTIFIC DESIGN COMPANY, INC.Inventor: Christian Guckel
-
Publication number: 20100190638Abstract: A method for producing a shell catalyst comprising a porous catalyst support shaped body with an outer shell containing at least one transition metal in metal form. To provide a shell catalyst with a relatively small shell thickness, a device is set up to circulate the catalyst support shaped bodies by means of process gases with a reductive effect. The device is charged with catalyst support shaped bodies that are circulated by means of a process gas with a reductive effect, an outer shell of the catalyst support shaped bodies is impregnated with a transition-metal precursor compound by spraying the circulating catalyst support shaped bodies with a solution containing the transition-metal precursor compound, the metal component of the transition-metal precursor compound is converted into the metal form by reduction by means of the process gas, and the catalyst support shaped bodies sprayed with the solution are dried.Type: ApplicationFiled: May 30, 2008Publication date: July 29, 2010Applicant: Sud-Chemie AGInventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck, Silvia Neumann
-
Patent number: 7759284Abstract: This invention relates to an improved process for preparing silver catalysts useful for the vapor phase production of ethylene oxide from ethylene and oxygen. An inert support is impregnated with a solution of a catalytically effective amount of a silver containing compound, a promoting amount of an alkali metal containing compound, and a promoting amount of a transition metal containing compound. The impregnated support is calcined by heating at a temperature of from about 200° C. to about 600° C. to convert the silver in the silver containing compound to metallic silver and to decompose and remove substantially all organic materials. The heating is conducted under an atmosphere comprising a combination of an inert gas and from about 10 ppm to about 5% by volume of a gas of an oxygen containing oxidizing component.Type: GrantFiled: May 9, 2005Date of Patent: July 20, 2010Assignee: Scientific Design Company, Inc.Inventors: Serguei Pak, Andrzej Rokicki
-
Publication number: 20100179336Abstract: A carrier for a catalyst useful for the epoxidation of an olefin which comprises an inert, refractory solid carrier is provided. The carrier has no or little absolute volume from small pores, of less than 1 micrometer, and large pores, of above 5 micrometer. By “no or little absolute volume from small pores of less than 1 micron” it is meant that the pore volume of such pores is less than 0.20 ml/g. By “no or little absolute volume from large pores of above 5 micron” it is meant that the pore volume of such pores is less than 0.20 ml/g. The invention further provides a catalyst useful for the epoxidation of an olefin supported on such a carrier and a process for the oxidation of an olefin, especially ethylene, to an olefin oxide, especially ethylene oxide.Type: ApplicationFiled: March 26, 2010Publication date: July 15, 2010Applicant: SD LIZENZVERWERTUNGSGESELLSCHAFT MBH & CO. KGInventor: Serguei Pak
-
Patent number: 7745370Abstract: A catalyst for selective hydrogenation of acetylenes and diolefins, particularly in a raw gas feed stream for front end selective hydrogenation. The catalyst contains a low surface area carrier with a surface area from about 2-20 m2/g, wherein the pore volume of the pores of the carrier is greater than about 0.4 cc/g, at least 90 percent of the pore volume of the pores is contained within pores having a pore diameter greater than about 500 ? and about 1 to about 2 percent of the total pore volume is contained in pores with a pore diameter from about 500 to about 1,000 ?. The palladium comprises about 0.01 to about 0.1 weight % and a Group IB metal comprises about 0.005 to about 0.06 weight % of the catalyst.Type: GrantFiled: April 20, 2009Date of Patent: June 29, 2010Assignee: Sud-Chemie Inc.Inventors: Steven A. Blankenship, Jennifer A. Boyer, Gary R. Gildert
-
Patent number: 7743772Abstract: A component of a cigarette comprises a silver-based catalyst for the conversion of carbon monoxide to carbon dioxide. The silver-based catalyst comprises particles (e.g., nanoscale or larger sized particles) of metallic silver and/or silver oxide supported in and/or on metal oxide support particles. The silver-based catalyst can be incorporated into a cigarette component such as tobacco cut filler, cigarette paper and cigarette filter material to reduce the concentration of carbon monoxide in the mainstream smoke of a cigarette during smoking. The catalyst can also be used in non-cigarette applications.Type: GrantFiled: June 16, 2004Date of Patent: June 29, 2010Assignee: Philip Morris USA Inc.Inventors: Rangaraj S. Sundar, Sarojini Deevi
-
Publication number: 20100143807Abstract: A catalyst including: a plurality of porous clusters of silver particles, each cluster including: (a) a plurality of primary particles of silver, and (b) crystalline particles of zirconium oxide (ZrO2), wherein at least a portion of the crystalline particles of ZrO2 is located in pores formed by a surface of the plurality of primary particles of silver.Type: ApplicationFiled: September 24, 2007Publication date: June 10, 2010Inventors: Ernst Khasin, Arie Zaban
-
Publication number: 20100137131Abstract: The present invention provides a photocatalyst structure capable of improving catalyst efficiency dramatically and stably. In the present invention, the photocatalyst structure is comprised of a metal nanoparticle, a semiconductor photocatalyst, and a material intervening between the metal nanoparticle and the semiconductor photocatalyst. The material is transparent to a light of a wavelength which excites the semiconductor photocatalyst.Type: ApplicationFiled: April 9, 2008Publication date: June 3, 2010Applicant: National Institute of Advanced Industrial Science and TechnologyInventors: Koichi Awazu, Hirotaka Murakami, Toshiya Watanabe, Naoya Yoshida
-
Patent number: 7713908Abstract: A method of producing a porous composite metal oxide comprising the steps of: dispersing first metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, in a dispersion medium by use of microbeads each with a diameter of not larger than 150 ?m, thus obtaining first metal oxide particles, which are 1 nm to 50 nm in average particle diameter, and not less than 80% by mass of which are not larger than 75 nm in diameter; dispersing and mixing up, in a dispersion medium, the first metal oxide particles and second metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, and which is not larger than 200 nm in average particle diameter, thus obtaining a homogeneously-dispersed solution in which the first metal oxide particles and second metal oxide particles are homogeneously dispersed; and drying the homogeneously-dispersed solution, thus obtaining a porous composite metal oxide.Type: GrantFiled: August 29, 2005Date of Patent: May 11, 2010Assignee: Kabushiki Kaisha Toyota Chuo KenkyushoInventors: Toshio Yamamoto, Akihiko Suda, Akira Morikawa, Kae Yamamura, Hirotaka Yonekura
-
Patent number: 7713907Abstract: The invention provides a method for depositing catalytic clusters on a surface, the method comprising confining the surface to a controlled atmosphere; contacting the surface with catalyst containing vapor for a first period of time; removing the vapor from the controlled atmosphere; and contacting the surface with a reducing agent for a second period of time so as to produce catalyst-containing nucleation sites.Type: GrantFiled: March 5, 2007Date of Patent: May 11, 2010Assignee: UChicago Argonne, LLCInventors: Jeffrey W. Elam, Michael J. Pellin, Peter C. Stair
-
Publication number: 20100105548Abstract: An electrocatalyst is described. The electrocatalyst includes a core of a non-noble metal or non-noble metal alloy; and a continuous shell of a noble metal or noble metal alloy on the core, the continuous shell being at least two monolayers of the noble metal or noble metal alloy. Methods for making the electrocatalyst are also described.Type: ApplicationFiled: October 24, 2008Publication date: April 29, 2010Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.Inventors: Junliang Zhang, Frederick T. Wagner, Zhongyi Liu, Michael K. Carpenter