Irradiation By, Or Application Of, Electrical, Magnetic Or Wave Energy Patents (Class 502/5)
  • Patent number: 7588822
    Abstract: A method of surface cross-linking superabsorbent polymer particles using UV irradiation is provided. The superabsorbent polymer particles for use in the method have a relatively high degree of neutralization. Brønsted acids are selectively applied onto the surface of the superabsorbent polymer particles to selectively facilitate a relatively high number of protonated carboxyl groups at the surface of the superabsorbent polymer particles while the relatively high degree of neutralization in the core of the superabsorbent polymer particles remains substantially unaffected.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: September 15, 2009
    Assignee: The Procter & Gamble Co.
    Inventors: Andreas Flohr, Torsten Lindner, Yoshiro Mitsukami
  • Patent number: 7553793
    Abstract: A method for recovering a catalyst for a fuel cell includes a collection step in which a catalyst is collected by attracting, using a magnetic force, a magnetic material contained in at least one of the catalyst and a carrier on which the catalyst is supported. A system for recovering a catalyst for a fuel cell includes a collection device that attracts, using a magnetic force, a magnetic material contained in at least one of a catalyst and a carrier on which the catalyst is supported.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: June 30, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kazuhiro Taniwaki
  • Publication number: 20090005234
    Abstract: A photocatalytic material which comprises a resin base and photocatalyst particles tenaciously deposited thereon in such a manner that the function of the photocatalyst is not impaired. Even when the photocatalytic material is used over long, the photocatalyst particles are less apt to shed and the resin base is less apt to deteriorate. In the photocatalytic material, the photocatalyst particles have been bonded to the base by chemical bonding through a silane compound. The photocatalytic material is characterized in that the chemical bonding through a silane compound is bonding by graft polymerization, and that the graft polymerization is radiation-induced graft polymerization.
    Type: Application
    Filed: July 10, 2008
    Publication date: January 1, 2009
    Inventors: Tsuruo Nakayama, Nobukazu Motojima, Toru Yokomizo
  • Publication number: 20080249340
    Abstract: A process and hydro-oxidation catalyst for the hydro-oxidation of a hydrocarbon, preferably a C3-8 olefin, such as propylene, by oxigen in the presence of hydrogen to the corresponding partially-oxidized hydrocarbon, preferably, a C3-8 olefin oxide, preferably, propylene oxide. The catalyst comprises gold, silver, one or more platinum group metals, one or more lanthanide rare earth metals, or a mixture thereof, deposited on a titanosilicate, preferably TS-1 characterized in that titanosilicate is prepared by microwave heating.
    Type: Application
    Filed: March 4, 2005
    Publication date: October 9, 2008
    Inventors: Susan J. Siler, Joseph D. Henry
  • Patent number: 7288498
    Abstract: The invention, in its various embodiments, relates to a medium for purifying fluids, particularly consumable fluids like air and water, by removing organic materials from the fluids by contacting the fluids with a combination of extremely small diameter transition metal oxide and an aluminosilicate having relatively large pores. In addition, contact of the fluids with the purification medium can also significantly reduce the level of microorganisms existing in the fluid, providing another purification benefit.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: October 30, 2007
    Assignee: Selecto, Inc
    Inventor: Ehud Levy
  • Patent number: 7259122
    Abstract: A shelter coating comprising polyvinyl alcohol and polyethyleneimine is disclosed. The shelter coating may optionally further include a photocatalyst capable of generating singlet oxygen from ambient air. The shelter coating may optionally include a singlet oxygen scavenger.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: August 21, 2007
    Inventor: John Lombardi
  • Patent number: 7253131
    Abstract: The invention provides a curing resin composition to be used for a sealant or an end-sealing material for a display element, which comprises a curing resin together with a photopolymerization initiator and/or a curing agent and, has a carbonyl group derived from a (meth)acryl group together with an epoxy group and/or a hydroxyl group derived from an epoxy group and, a cured product of which has nitrogen atoms at a ratio of 3 to 10% by atom in the total of carbon atoms, hydrogen atoms and nitrogen atoms in the composition; a volume resistance of 1×1013 ?·cm or higher; a dielectric constant of 3 or higher at 100 kHz; and a glass transition temperature of 80 to 150° C.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: August 7, 2007
    Assignees: Sekisui Chemical Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Takashi Watanabe, Yuichi Oyama, Takuya Yamamoto, Nobuo Sasaki, Tazoh Ikeguchi, Makoto Nakahara
  • Patent number: 6960327
    Abstract: The present invention provides methods for selectively removing organic compound from a nano-composite material which comprises the organic compound that is dispersed within a solid inorganic compound structure. In particular, methods of the present invention comprise irradiating the nano-composite material with electromagnetic radiation wavelength that is shorter than the wavelength of visible light.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: November 1, 2005
    Assignee: The Regents of the University of California
    Inventors: Alexandra Navrotsky, Atul Navinchandra Parikh
  • Patent number: 6811945
    Abstract: A method of producing a pattern-formed structure, comprising: preparing a substrate for a pattern-formed structure having a characteristic-modifiable layer whose characteristic at a surface thereof can be modified by the action of photocatalyst; preparing a photocatalyst-containing-layer side substrate having a photocatalyst-containing layer formed on a base material, the photocatalyst-containing layer containing photocatalyst, arranging the substrate for a pattern-formed structure and the photocatalyst-containing-Iayer side substrate such that the characteristic-modifiable layer faces the photocatalyst-containing layer with a clearance of no larger than 200 &mgr;m therebetween; and irradiating energy to the characteristic-modifiable layer from a predetermined direction, and modifying characteristic of a surface of the characteristic-modifiable layer, thereby forming a pattern at the characteristic-modifiable layer.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: November 2, 2004
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventor: Hironori Kobayashi
  • Patent number: 6803175
    Abstract: A method of producing a pattern-formed structure, comprising: preparing a substrate for a pattern-formed structure having a characteristic-modifiable layer whose characteristic at a surface thereof can be modified by the action of photocatalyst; preparing a photocatalyst-containing-layer side substrate having a photocatalyst-containing layer formed on a base material, the photocatalyst-containing layer containing photocatalyst; arranging the substrate for a pattern-formed structure and the photocatalyst-containing-layer side substrate such that the characteristic-modifiable layer faces the photocatalyst-containing layer with a clearance of no larger than 200 &mgr;m therebetween; and irradiating energy to the characteristic-modifiable layer from a predetermined direction, and modifying characteristic of a surface of the characteristic-modifiable layer, thereby forming a pattern at the characteristic-modifiable layer.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: October 12, 2004
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventor: Hironori Kobayashi
  • Patent number: 6803392
    Abstract: Aqueous storage-stable, non-sedimenting photoinitiator suspensions comprising (a) a mono- or bis-acylphosphine oxide of formula (I), wherein R1 is C1-C20alkyl; C2-C20alkyl interrupted by one or more O atoms; C1-C12alkoxy; phenyl-C1-C4alkyl; or phenyl that is unsubstituted or substituted by C1C20alkyl, C1-C12alkoxy, halogen, cyclopentyl, cyclohexyl, C2-C12alkenyl, C2-C18alkyl interrupted by one or more O atoms, and/or by phenyl-C1-C4alkyl; or R1 is biphenylyl; R2 is an aromatic radical or has one of the meanings give for R1; R3 and R4 are each independently of the other C1-C12alkyl, C1-C12alkoxy or halogen; and R5 is hydrogen, C1-C12alkyl, C1-C12alkoxy or halogen; (b) a dispersant; and (c) water are suitable especially in the photopolymerisation of aqueous formulations comprising ethylenically unsaturated monomers.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: October 12, 2004
    Assignee: Ciba Specialty Chemicals Corporation
    Inventors: Manfred Köhler, Beat Michael Aebli, Martin Holer, Ernst Eckstein, Jean-Pierre Wolf
  • Patent number: 6685889
    Abstract: Photochemical catalysts and methods for their manufacture and use are provided. In one aspect of the invention, a photochemical catalyst includes an optical microfiber coated with a catalytic amount of a molecular sieve, such as a zeolite. In one preferred form, at least a portion of the outer surface of the optical microfiber is cladding-free to allow radial transmission of light to the molecular sieve coating. In another aspect of the invention, a method of making a photochemical catalyst is provided that includes depositing a catalytic amount of a molecular sieve onto an outer surface of an optical microfiber, wherein the optical microfiber is configured to transmit light to the molecular sieve. A method of photocatalysis utilizing the above-described photocatalysts includes exposing the photocatalyst and a reactant to a light source to photocatalytically react the reactant.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: February 3, 2004
    Assignee: Purdue Research Foundation
    Inventors: Daniel Raftery, Ajit R. Pradhan, Megan A. Macnaughtan
  • Publication number: 20030144127
    Abstract: A method for the production of a cross-linked support matrix that in form of a bed will permit liquid flow velocities above 5 cm/h, preferably above 50 cm/h, to pass through the bed. The method is characterized in that it comprises the steps: (a) providing a starting support matrix that has pendent unsaturated groups, and (b) subjecting said starting support matrix to electron beam or gamma-ray irradiation. The use of a cross-linked support matrix produced by a method comprising the steps of: (a) providing a starting support matrix that has pendent unsaturated groups, and (b) subjecting said starting support matrix to electron beam or gamma-ray irradiation as a support matrix in liquid chromatography, cell culturing, step-wise solid phase synthesis of organic compounds, running catalytic reactions by the use of a solid phase bound catalyst.
    Type: Application
    Filed: September 9, 2002
    Publication date: July 31, 2003
    Inventors: Eva Berggren, Dag Lindstrom
  • Patent number: 6566300
    Abstract: The present invention relates to a novel titania photocatalyst and its manufacturing method. More specifically, the present invention is to provide the quantum-sized novel titania photocatalyst prepared the steps comprising: (a) titanium tetraisopropoxide is encapsulated in zeolite support by adding citric acid to isopropyl alcohol; (b) ethylene glycol is dissolved herein to obtain a uniformly dispersed mixture solution; and (c) it is encapsulated in zeolite cavities.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: May 20, 2003
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Sang-Eon Park, Jin-Soo Hwang, Jong-San Chang, Ji-Man Kim, Dae Sung Kim, Hee Seok Chai
  • Publication number: 20030080473
    Abstract: An improved process for producing bonded activated carbon structures utilizing microwave radiation is provided. The structures are produced by exposing a particulate mixture comprised of activated carbon particles and polyolefin resin binder particles in a microwave transparent mold to increase the temperature of the activated carbon particles 3 to 30° C. above the crystalline melting point of the polyolefin resin binder and thereafter compressing the mixture to increase contact between the particles and lowering the temperature of the particulate mixture below the melting point of the polyolefin while maintaining point bond formation conditions. The bonded structures may be separated from the container and used as such or the bonded structure and container in which it is formed may be retained and used as a unit.
    Type: Application
    Filed: October 23, 2001
    Publication date: May 1, 2003
    Inventors: William L. Kelly, Douglas C. McFaddin
  • Patent number: 6522457
    Abstract: A process for the conversion of boric acid to dry boron oxide by thermal decomposition is described. Boron oxide may be produced as a powder or in the form of pellets, and in either form may additionally be enclosed in a gas permeable container to control particulate contamination. Applications are further disclosed for the use of boron oxide formed by this process to remove water from evacuated chambers and from gases. Specific applications include removing water from both inert gases and reactive gases, especially halogen and halogenated gases. Further applications directed to optical amplifiers and gas purifiers are also discussed.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: February 18, 2003
    Inventors: Paolo Battilana, Giorgio Vergani, Claudio Boffito, Marco Succi, Luca Toia
  • Patent number: 6455456
    Abstract: A method and apparatus for cleaning the catalytically active surfaces of selective catalytic reduction (SCR) substrate, and more particularly such a method and apparatus which: simultaneously generates two differing frequency sound waves which are effective in cleaning such surfaces, more effectively than if only single waves of such frequency were generated; utilizing spaced arrays of sound emitters at the entry and exit sides of selected SCR layers, with the emitters on opposite sides of the layers being in counter phase, or opposed synchronization; teaches design and placement of sound sources which optimize a variety of output cleanability predictions, for example pulsating pressure distribution, pulsating velocity distribution (U, V, W), time-averaged parameters and measure of cleanability.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: September 24, 2002
    Assignee: Hera, LLC
    Inventor: Felix E. Spokoyny
  • Patent number: 6368994
    Abstract: A method for rapid polymerization, curing or a combination thereof of a polymerizable or curable composition to yield polymers and composites based on these polymers through the utilization of short wavelength microwave energy is described. The inventive method is generally applicable to the chemical transformation of any organic material that can be processed by heating. This invention also relates to specially prepared particulate polymerization curing materials which, when dispersed and irradiated in a polymerizable or curable composition, will effect rapid polymerization, curing or a combination of polymerization and curing of that composition without exceeding the decomposition temperature of the polymerizable or curable composition when the composition is exposed to microwave radiation. The polymerization agent may also be encapsulated by a material which coats the polymerization agent to prevent its premature release into the polymerizable or curable composition.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: April 9, 2002
    Assignee: Gyrorron Technology, Inc.
    Inventor: Vladislav E. Sklyarevich
  • Patent number: 6365007
    Abstract: A photocatalyst is provided consisting of TiO2 doped with at least one lanthanide metal oxide. The photocatalyst may be prepared by forming a titanium-containing gel and then drying the gel and subjecting it to calcinations. The photocatalyst may be used in photodegradation of organic material.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: April 2, 2002
    Assignee: Yissum Research Development Company of the Hebrew University of Jerusalem
    Inventors: Itamar Willner, Koodali Ranjit
  • Publication number: 20020016250
    Abstract: The surface of a substrate is coated with an abrasion-resistant photocatalytic coating comprised of a semiconductor photocatalyst. Upon irradiation by a light having a wavelength of an energy higher than the bandgap energy of the photocatalyst, water is chemisorbed onto the surface in the form of hydroxyl groups (OH−) whereby the surface of the photocatalytic coating is rendered highly hydrophilic. In certain embodiments, the surface of a mirror, lens, or windowpane is coated with the photocatalytic coating to exhibit a high degree of antifogging function. In another embodiment, an article or product coated with the photocatalytic coating is disposed outdoors and the highly hydrophilic surface thereof is self-cleaned as it is subjected to rainfall. In a still another embodiment, an article is coated with the photocatalytic coating and, when the article is soaked in, rinsed by or wetted with water, fatty dirt and contaminants are readily released without resort to a detergent.
    Type: Application
    Filed: August 14, 2001
    Publication date: February 7, 2002
    Inventors: Makoto Hayakawa, Eiichi Kojima, Keiichiro Norimoto, Mitsuyoshi Machida, Atsushi Kitamura, Toshiya Watanabe, Makoto Chikuni, Akira Fujishima, Kazuhito Hashimoto
  • Patent number: 6337220
    Abstract: An ion implanter vacuum integrity check process and apparatus that enables a vacuum integrity check at a pressure substantially below the ion implantation process pressure, while storing an ion implantation process pressure set point for a subsequent ion implantation process. An ion implanter includes an end station chamber, a high vacuum system, a disk, a gas supply system and a controller for storing at least a vacuum integrity check pressure set point and an ion implantation process pressure set point. A disk inserted into the end station is accelerated to a predetermined rotational speed, while the high vacuum system is used to pump down the end station chamber. The end station chamber is, then, purged with an inert gas for a first predetermined time period, while maintaining the disk rotational speed and continuing to pump down the end station chamber. The pressure of the end station chamber is monitored, while the disk rotational speed and pumping of the chamber are maintained.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: January 8, 2002
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Donald L. Wilcox, Randy M. Underwood
  • Patent number: 6304367
    Abstract: A process for the conversion of boric acid to dry boron oxide by thermal decomposition is described. Boron oxide may be produced as a powder or in the form of pellets, and in either form may additionally be enclosed in a gas permeable container to control particulate contamination. Applications are further disclosed for the use of boron oxide formed by this process to remove water from evacuated chambers and from gases. Specific applications include removing water from both inert gases and reactive gases, especially halogen and halogenated gases. Further applications directed to optical amplifiers and gas purifiers are also discussed.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: October 16, 2001
    Assignee: SAES Getters S.p.A.
    Inventors: Paolo Battilana, Giorgio Vergani, Claudio Boffito, Marco Succi, Luca Toia
  • Patent number: 6297009
    Abstract: Disclosed is a method for increasing the electroosmotic flow rate available for a silica surface. In the method, there is provided an electrophoretic channel which is defined by one or more silica surfaces. The surface(s) are contacted with an alkaline aqueous solution containing a solubilized silicate-monovalent metal complex in an amount effective to increase the acidity of the silica surface(s), as evidenced by a reduction in the average bulk pKa of the surface(s). The achieved increase in acidity is greater than would be obtained using an otherwise identical solution lacking said silicate. In one preferred embodiment, the monovalent metal used in the solution is Li+, Na+, or K+. Also disclosed is a method for increasing the acidity of a silica surface, by contacting the surface with an alkaline aqueous solution of the type noted above.
    Type: Grant
    Filed: January 9, 1998
    Date of Patent: October 2, 2001
    Assignee: Perkin-Elmer Corporation
    Inventors: David M. Demorest, Stephen E. Moring, Claudia Chiesa
  • Patent number: 6267940
    Abstract: A method of reducing NOX within a gas stream includes the step of placing a NOX reducing catalyst within a flue gas stream. The NOX reducing catalyst activity is enhanced by applying a separate activating source that significantly improves removal of NOX from the flue gas stream. The NOX reducing catalyst may be a stationary NOX reducing catalyst structure positioned in the flue gas stream. Alternately, the NOX reducing catalyst may be injected into the flue gas stream as a NOX reducing catalyst powder. The NOX reducing catalyst powder may be subsequently gathered in a particulate collection device. The NOX reducing catalyst may be further activated in the particulate collection device.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: July 31, 2001
    Assignee: Electric Power Research Institute, Inc.
    Inventors: Ramsay Chang, Sharon Sjostrom
  • Patent number: 6217712
    Abstract: The invention relates to a method of using radio frequency waves to artificially create catalytic action in a catalyst-free chemical reaction within a substance. To mimic or imitate the catalyst, radio frequency waves are transmitted through the substance at a signal strength sufficient to electronically reproduce the effect of the physical presence of a selected catalyst. The radio frequency waves have a selected transmission frequency substantially equal to a catalyst signal frequency of the selected catalyst, defined as the signal frequency determined by nuclear magnetic resonance of the selected catalyst. It is commonplace to use nuclear magnetic resonance to identify elements within a substance and the signal frequencies of various elements (including catalysts) are listed in widely published tables. To date, the mechanism by which catalysts bring about chemical reactions has been unknown.
    Type: Grant
    Filed: October 5, 1999
    Date of Patent: April 17, 2001
    Inventor: Thomas J. Mohr
  • Patent number: 6206941
    Abstract: An apparatus for converting carbonaceous raw materials into a carbonized product and activating the product, includes a device for heating the carbonaceous raw materials to form a carbonized product, and equipment for activating the carbonized product and supplying by-product of the activation to the device to help in the heating. The device heats a column of carbonaceous raw materials to pyrolize it and form a carbonized product and vapors and gases. Upward flow of the gases and vapors is restrained so that they flow, with the carbonized product, out of the bottom of the column where they are burned in a combustion box and the resultant hot gases used to heat the column through a tube defining the column. Descending carbonized materials pass rapidly through the combustion box into the equipment which through electical resistance heating and steam, activates the carbonized materials and passes gas and vapor by-products thereby created up into the combustion box to help fuel the heating of the raw materials.
    Type: Grant
    Filed: January 2, 1998
    Date of Patent: March 27, 2001
    Inventor: Cornelius J. Du Plessis
  • Patent number: 6156211
    Abstract: A method and apparatus for the conversion of methane in solution or gas provides photochemical conversion in a unique two-phase or three-phase boundary system formed in each pore of a semiconductor membrane in a photocatalytic reactor. In a three-phase system, gaseous oxidant, methane contained in a liquid, and solid semiconductor photocatalyst having a metal catalyst disposed thereon meet and engage in an efficient conversion reaction. The porous membrane has pores which have a region wherein the meniscus of the liquid varies from the molecular diameter of water to that of a capillary tube resulting in a diffusion layer that is several orders of magnitude smaller than the closest known reactors.
    Type: Grant
    Filed: July 14, 1998
    Date of Patent: December 5, 2000
    Assignee: LynnTech, Inc.
    Inventors: Anuncia Gonzalez-Martin, Oliver J. Murphy
  • Patent number: 6090736
    Abstract: A photocatalytic powder for environmental clarification, comprising finely divided titanium dioxide particles having a coating of porous calcium phosphate formed on at least part of the surface of each titanium dioxide particle, wherein an anionic surface active agent is present at least on the interface between said coating of porous calcium phosphate and the titanium dioxide particle. This photocatalytic powder is produced by dispersing finely divided titanium dioxide particles in an aqueous slurry containing an anionic surface active agent, and then forming a coating of porous calcium phosphate on at least part of the surface of each titanium dioxide particle. This photocatalytic powder is used, for example, by supporting it in an organic polymer shaped article.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: July 18, 2000
    Assignees: Agency of Industrial Science and Technology, Showa Denko Kabushiki Kaisha, Hiroshi Taoda, Toru Nonami
    Inventors: Hiroshi Taoda, Toru Nonami, Katsura Ito, Hiroyuki Hagihara
  • Patent number: 6077492
    Abstract: A titanium oxide photocatalyst having metal ions of one or more metals incorporated therein selected from the group consisting of Cr, V, Cu, Fe, Mg, Ag, Pd, Ni, Mn and Pt, wherein the metal ions are implanted from the surface to deep inside of the bulk of the photocatalyst in an amount of at least 1.times.10.sup.15 ions per g of the titanium oxide; a process for producing the photocatalyst; and a photocatalytic reaction method using the photocatalyst.
    Type: Grant
    Filed: August 21, 1997
    Date of Patent: June 20, 2000
    Assignee: Petroleum Energy Center
    Inventors: Masakazu Anpo, Hiromi Yamashita, Sakunobu Kanai, Kazuhito Sato, Takanori Fujimoto
  • Patent number: 6060416
    Abstract: A high-performance prepolymerized solid catalyst is prepared by polymerizing an olefin onto an olefin polymerization catalyst in a heterogeneous system under irradiation with an elastic wave, wherein the olefin is prepolymerized in an amount of not less than 0.1 g based on 1 mmol of a transition metal contained in the olefin polymerization catalyst. The elastic wave is preferably an ultrasonic wave. In a process for heterogeneous polymerization of an olefin, an olefin is subjected to slurry polymerization or gas phase polymerization in the presence of the prepolymerized solid catalyst. In a process for heterogeneous polymerization of an olefin, an olefin may be polymerized onto the olefin polymerization catalyst in a heterogeneous system under irradiation with an elastic wave to prepare polyolefin. Therefore, the heterogeneous polymerization of an olefin can be stably conducted and polyolefins of uniform property and high quality can be obtained.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: May 9, 2000
    Assignee: Mitsui Chemicals
    Inventors: Atsuo Kobata, Tetsuhiro Matsumoto
  • Patent number: 6054507
    Abstract: There are disclosed a metal-organic polymer composite structure, particularly a porous metal-organic polymer composite structure, for use as functional materials such as catalysts, and a method for producing the structure. The composite structure is composed of a microphase-separated structure from a block copolymer in which a metalphilic polymer chain and a metalphobic polymer chain are bonded together at each end, and ultrafine metal particles are contained in the metalphilic polymer phase of the microphase-separated structure.
    Type: Grant
    Filed: March 9, 1998
    Date of Patent: April 25, 2000
    Assignee: Japan Science and Technology Corporation
    Inventors: Yoshinori Funaki, Kiyoharu Tsutsumi, Takeji Hashimoto, Masafumi Harada
  • Patent number: 6034024
    Abstract: A process is described which comprises heating a methylalumoxane solution in an aromatic hydrocarbon solvent at a temperature of at least 35.degree. C. for at least 0.5 hour in an inert, dry atmosphere such that the resulting heat-treated composition provides, in a supported metallocene catalyst produced using the heat-treated composition, increased activity as compared to the same supported metallocene catalyst produced in the same way except for using a portion of the methylalumoxane solution that has not been heat-treated. Before the heating the methylalumoxane of the solution contains from about 5 to about 35 mole percent unreacted trimethylaluminum, and was formed by partial hydrolysis of trimethylaluminum with free water in an organic solvent.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: March 7, 2000
    Assignee: Albemarle Corporation
    Inventors: Niomi L. Krzystowczyk, Steven P. Diefenbach, Edward A. Burt
  • Patent number: 6017471
    Abstract: A light-stable colored composition which includes a colorant and a radiation transorber. The colorant, in the presence of the radiation transorber, is adapted, upon exposure of the transorber to specific, narrow bandwidth radiation, to be mutable. The radiation transorber also imparts light-stability to the colorant so that the colorant does not fade when exposed to sunlight or artificial light.
    Type: Grant
    Filed: April 23, 1997
    Date of Patent: January 25, 2000
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: John Gavin MacDonald, Ronald Sinclair Nohr
  • Patent number: 5981426
    Abstract: A photocatalyst compound comprising: (i) a photocatalyst selected from the group consisting of TiO.sub.2, WO.sub.3 and mixtures thereof, the photocatalyst being substantially free of sharp, narrow band X-ray reflections at angles corresponding those of crystalline TiO.sub.2, WO.sub.3 and mixtures thereof, and (ii) a porous, crystalline, adsorbent support material. A process for producing the photocatalyst compound is also disclosed. The process comprises: (i) hydrolysing a non-ionic titanium compound to produce a colloidal suspension having an average particle size of less than about 250 .ANG.; (ii) contacting a porous, crystalline, adsorbent support material with the colloidal suspension to produce an impregnated support; and (iii) calcining the impregnated support to produce the photocatalyst compound. The photocatalyst compound is useful, in the treatment of a fluid containing an organic pollutant.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: November 9, 1999
    Assignee: University Technologies International Inc.
    Inventors: Cooper H. Langford, Yiming Xu
  • Patent number: 5968860
    Abstract: A process for the production of a catalyst for preparing vinyl acetate in the gas phase from ethylene, acetic acid and oxygen or oxygen-containing gases which catalyst comprises palladium and/or its compounds, gold and/or its compounds and also alkali metal compounds on a particulate, porous support obtained bya) impregnating the support with soluble palladium and gold compounds,b) converting the soluble palladium and gold compounds into insoluble palladium and gold compounds by addition of an alkaline solution to the support,c) reducing the insoluble palladium and gold compounds on the support with a reducing agent in the liquid or gaseous phase,d) impregnating the support with at least one soluble alkali metal compound ande) finally drying the support at a maximum of 150.degree.C.,wherein the catalyst is irradiated with microwaves before, during or after one of process steps a) to e).
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: October 19, 1999
    Assignee: Celanese GmbH
    Inventor: Bernhard Herzog
  • Patent number: 5955393
    Abstract: A method for producing an enhanced adsorbent and/or enhanced catalytic particle and/or for producing a catalytic particle, comprising the steps of: (a) removing an effective amount of air from a closed chamber containing an adsorbent and/or catalytic particle, wherein the resultant chamber pressure is less than one atmosphere; (b) raising the chamber pressure with an inert gas to at least one atmosphere; (c) contacting the particle with an energy beam of sufficient energy for a sufficient time to thereby enhance the adsorbent and/or catalytic properties of the particle and/or produce catalytic properties in the particle. A continuous process directed to step (c) alone is also provided. Also disclosed are adsorbent and/or catalytic particles, methods of contaminant reduction or elimination, including room temperature catalysis, particle binders, apparatuses of the present invention, and methods of increasing the surface area of adsorbent and/or catalytic particles.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: September 21, 1999
    Assignee: Project Earth Industries, Inc.
    Inventors: Mark L. Moskovitz, Bryan E. Kepner
  • Patent number: 5939345
    Abstract: A high-performance prepolymerized solid catalyst is prepared by polymerizing an olefin onto an olefin polymerization catalyst in a heterogeneous system under irradiation with an elastic wave, wherein the olefin is prepolymerized in an amount of not less than 0.1 g based on 1 mmol of a transition metal contained in the olefin polymerization catalyst. The elastic wave is preferably an ultrasonic wave.
    Type: Grant
    Filed: August 26, 1997
    Date of Patent: August 17, 1999
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Atsuo Kobata, Tetsuhiro Matsumoto
  • Patent number: 5755952
    Abstract: The method is practiced such that the material is alternately repeatedly placed in low temperature and high temperature active gas atmospheres, the material is subjected to low temperature contraction and high temperature expansion due to the endothermic reaction of active gas, and a part of the active gas adhesively adsorbed to the material during low temperature contraction is detached from the material due to high temperature expansion.
    Type: Grant
    Filed: December 15, 1995
    Date of Patent: May 26, 1998
    Assignee: Heiyo Shoji Kabushiki Kaisha
    Inventor: Yoji Hirai
  • Patent number: 5712461
    Abstract: Methods for forming membranes of semiconductive material incorporating molecular sieve material therein can involve sol gel techniques and suction techniques. The semiconductors, such as metal oxides, sulfides or carbides have photoactivity and are useful in photocatalytic reactions. An example of such a membrane is titanium oxide including zeolite molecular sieve incorporated therein. The membranes can be used to perform useful chemical reactions such as the mineralization of organic chemicals in the presence of light. For example, many toxic organic chemicals can be converted to useful or benign products by contacting those chemicals with active metal oxide-molecular sieve membranes in accordance with the invention and illuminating the membranes with light of a suitable wavelength.
    Type: Grant
    Filed: November 17, 1995
    Date of Patent: January 27, 1998
    Assignee: Inrad
    Inventors: Zhenyu Zhang, James R. Fehlner
  • Patent number: 5686503
    Abstract: A method of generating reactive species which includes exposing a polymolecular photoreactor to radiation, in which the polymolecular photoreactor comprises a wavelength-specific sensitizer associated with a reactive species-generating photoinitiator. The sensitizer absorbs energy and transfers the absorbed energy to the photoinitiator which, in turn, generates reactive species. The wavelength-specific sensitizer is adapted to have an absorption wavelength band generally corresponding to an emission peak of the radiation. The radiation to which the polymolecular photoreactor is exposed generally will have a wavelength of from about 4 to about 1,000 nanometers. Thus, the radiation may be ultraviolet radiation, including near ultraviolet and far or vacuum ultraviolet radiation: visible radiation: and near infrared radiation. Desirably, the radiation will have a wavelength of from about 100 to about 900 nanometers.
    Type: Grant
    Filed: January 22, 1996
    Date of Patent: November 11, 1997
    Assignee: Kimberly-Clark Corporation
    Inventors: Ronald Sinclair Nohr, John Gavin MacDonald
  • Patent number: 5602218
    Abstract: A particularly uniform Ziegler catalyst in the form of spherical particles is obtained by using shock waves instead of a stirrer for the thorough mixing of the reactants. By means of this highly active catalyst based on a magnesium dialkyl, it is possible to obtain polymers in the form of spherical particles in the polymerization of alpha-olefins. A further advantage of the catalyst according to the invention is its high activity, which is such that only very small amounts of the catalyst are required for the polymerization. The residual content of titanium and/or zirconium in the polymers prepared according to the invention is less than 10 ppm. By virtue of its good responsiveness to hydrogen, the catalyst is suitable for the preparation of polymers with a broad bimodal molar mass distribution, particularly in two-stage processes.
    Type: Grant
    Filed: November 3, 1994
    Date of Patent: February 11, 1997
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Werner Breuers, Ludwig B ohm, Rainer Lecht
  • Patent number: 5565077
    Abstract: A transverse flow, self-heating electrically conductive sorption system for separating species of different adsorption characteristics in a fluid includes a containment vessel, an electrically conductive permeable sorbent bed having a multiplicity of adsorption sites in said vessel; a porting structure for supplying contaminated fluid in a first direction at one surface of the bed and for receiving the contaminated fluid at another surface of the bed; and a pair of spaced electrodes for applying current through the bed in a second direction transverse to the first direction to self-heat the electrically conductive sorbent bed.
    Type: Grant
    Filed: September 26, 1994
    Date of Patent: October 15, 1996
    Assignee: Foster Miller, Inc.
    Inventors: Harris Gold, Richard E. Hicks, Andrew C. Harvey, John F. McCoy, III
  • Patent number: 5559065
    Abstract: A coated catalyst is prepared by depositing an alloy by physical vapor deposition and/or chemical vapor deposition on a molding, at least one alloy component being a metal selected from the group consisting of aluminum, gallium, silicon, germanium, tin, lead, bismuth, yttrium, titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron, cobalt, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, silver, gold and zinc.
    Type: Grant
    Filed: September 14, 1994
    Date of Patent: September 24, 1996
    Assignee: BASF Aktiengesellschaft
    Inventors: Guenter Lauth, Wolfgang Hoelderich, Klaus Harth, Hartmut Hibst
  • Patent number: 5538624
    Abstract: An improved catalytic process for heavy hydrocarbon conversion (usually but not necessarily in the presence of nickel and vanadium in the feedstock and on the catalyst) to produce lighter and selective molecular weight fractions. This process is specifically targeted as a means of retaining specialty high-valued, preferably microspherical additives (SHVA) which assist in attaining preferred conversion products such as gasoline, especially the recent gasolines meeting compositional requirements of "Reformulated Fuel".Selective magnetic retention of these high-cost specialty additives can be achieved by incorporating into them selective magnetic moieties, preferably manganese, the heavy rare earths and superparamagnetic iron. Selective retention is achieved by passing spent or regenerated catalyst containing small amounts of these SHVAs through a magnetic separator, and selectively recycling them back to the circulating catalyst.
    Type: Grant
    Filed: October 21, 1994
    Date of Patent: July 23, 1996
    Assignee: Ashland Inc.
    Inventor: William P. Hettinger
  • Patent number: 5508243
    Abstract: For the treatment of solid catalyst or adsorbent particles, particles are urged upwardly in at least one vibrating helical coil having at least two pitches or turns, the particles being subjected to a temperature profile on most of their path within the coil and being contacted with at least one fluid over at least part of their path. At least one pitch or turn of the coil is heated by the Joule effect at a temperature between 20.degree. and 1000.degree. C.
    Type: Grant
    Filed: February 24, 1994
    Date of Patent: April 16, 1996
    Assignee: Eurecat
    Inventors: Martin Mitzkat, Pierre Dufresne, Francois Ackermann
  • Patent number: 5476826
    Abstract: A catalyst material of carbon black powder having nitrogen affixed to its surface and process for its production by contacting carbon black powder particles with a plasma or low energy beam of nitrogen containing ions affixing the nitrogen ions to the surface of the particles in a concentration of about 0.1 to about 10 percent, based upon the total number of surface atoms. The catalysts are particularly suited for use in phosphoric acid fuel cells.
    Type: Grant
    Filed: August 2, 1993
    Date of Patent: December 19, 1995
    Assignee: Gas Research Institute
    Inventors: Anton C. Greenwald, Vinod Jalan, deceased
  • Patent number: 5468699
    Abstract: Methods for forming membranes of semiconductive material incorporating molecular sieve material therein can involve sol gel techniques and suction techniques. The semiconductors, such as metal oxides, sulfides or carbides have photoactivity and are useful in photocatalytic reactions. An example of such a membrane is titanium oxide including zeolite molecular sieve incorporated therein. The membranes can be used to perform useful chemical reactions such as the mineralization of organic chemicals in the presence of light. For example, many toxic organic chemicals can be converted to useful or benign products by contacting those chemicals with active metal oxide-molecular sieve membranes in accordance with the invention and illuminating the membranes with light of a suitable wavelength.
    Type: Grant
    Filed: July 30, 1992
    Date of Patent: November 21, 1995
    Assignee: Inrad
    Inventors: Zhenyu Zhang, James R. Fehlner
  • Patent number: 5427993
    Abstract: A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios.
    Type: Grant
    Filed: August 30, 1993
    Date of Patent: June 27, 1995
    Assignee: Regents, the University of California
    Inventors: Dale L. Perry, Richard E. Russo, Xianglei Mao
  • Patent number: 5420088
    Abstract: A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture.
    Type: Grant
    Filed: January 26, 1993
    Date of Patent: May 30, 1995
    Assignee: Battelle Memorial Institute
    Inventors: Laura J. Silva, Lane A. Bray
  • Patent number: 5414204
    Abstract: The improved method of treating activated carbon having an organochlorine compound adsorbed thereon which comprises adding water to said activated carbon and then exposing said activated carbon to ionizing radiation, thereby decomposing and rendering harmless the organochlorine compound adsorbed on the activated carbon is described. The method is capable of safe and efficient decomposition of the activated carbon that has been used in adsorption treatment of organochlorine compounds such as PCBs and trichloroethylene that have heretofore been difficult to treat. The activated carbon that has hitherto simply been accumulated to date after adsorbing organochlorine compounds can be effectively treated by the method at low cost.
    Type: Grant
    Filed: November 29, 1993
    Date of Patent: May 9, 1995
    Assignee: Japan Atomic Energy Research Institute
    Inventors: Masakazu Hosono, Hidehiko Arai, Teijiro Miyata