And Group Viii (iron Group Or Platinum Group) Metal Containing Patents (Class 502/66)
  • Patent number: 10850264
    Abstract: The present invention relates to a catalyst comprising a carrier substrate of the length L extending between substrate ends a and b and a first washcoat zone, which comprises a) a zeolite, b) a redox active base metal compound and c) palladium in oxidic or metallic state which is fixed to the surface of a support oxide.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: December 1, 2020
    Assignee: UMICORE AG & CO. KG
    Inventors: John Nunan, David Moser, Chad Alltizer
  • Patent number: 10774018
    Abstract: A method of preparing a bound zeolite support comprising: contacting a zeolite powder with a binder and water to form a paste; shaping the paste to form an wet extruded base; removing excess water from the wet extruded base to form an extruded base; contacting the extruded base with a fluorine-containing compound to form a fluorinated extruded base; calcining the extruded base to form a calcined fluorinated extruded base; washing the calcined fluorinated extruded base to form a washed calcined fluorinated extruded base; drying the washed calcined fluorinated extruded base to form a dried washed calcined fluorinated extruded base; and calcining the dried washed calcined fluorinated extruded base to form a bound zeolite support.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: September 15, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: An-Hsiang Wu
  • Patent number: 10738246
    Abstract: The present invention relates to a process for producing monoaromatic hydrocarbons from a hydrocarbon feed comprising polyaromatics, the process comprising contacting said feed in the presence of hydrogen with a M/zeolite catalyst under hydrocracking process conditions.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: August 11, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Luis Aramburo, Emiel van Kimmenade, Dustin Farmer, Scott A. Stevenson
  • Patent number: 10723959
    Abstract: The present invention relates to a process for producing monoaromatic hydrocarbons from a hydrocarbon feed comprising polyaromatics, the process comprising contacting said feed in the presence of hydrogen with a M/A/zeolite catalyst under hydrocracking process conditions.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: July 28, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Luis Aramburo, Dustin Farmer, Scott A. Stevenson
  • Patent number: 10639617
    Abstract: A process comprising contacting said feed in the presence of hydrogen with a M/zeolite catalyst under hydrocracking process conditions.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: May 5, 2020
    Assignee: SABIC Global Technologies B.V.
    Inventors: Luis Aramburo, Maikel van Iersel, Dustin Farmer, Scott A. Stevenson, Emiel van Kimmenade
  • Patent number: 10611705
    Abstract: Disclosed is a process for the conversion of acyclic C5 feedstock to a product comprising cyclic C5 compounds, including cyclopentadiene, and formulated catalyst compositions for use in such process. The process comprises contacting the feedstock and, optionally, hydrogen under acyclic C5 conversion conditions in the presence of a catalyst composition to form the product. The catalyst composition comprises a microporous crystalline metallosilicate, a Group 10 metal or compound thereof, a binder, optionally, a metal selected from the group consisting of rare earth metals, metals of Groups 8, 9, or 11, mixtures or combinations thereof, or a compound thereof, in combination with a Group 1 alkali metal or a compound thereof and/or a Group 2 alkaline earth metal or a compound thereof.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: April 7, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Xiaoying Bao, Chuansheng Bai, Jeremy W. Bedard, Jocelyn A. Gilcrest, Wenyih F. Lai
  • Patent number: 10556228
    Abstract: Methods for producing supported catalysts containing a transition metal and a bound zeolite base are disclosed. These methods employ a step of impregnating the bound zeolite base with the transition metal, fluorine, and high loadings of chlorine. The resultant high chlorine content supported catalysts have improved catalyst activity in aromatization reactions.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: February 11, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Gabriela D. Alvez-Manoli
  • Patent number: 10557287
    Abstract: A casement/leaf arrangement having a casement/leaf of a window or door, with a frame profile of the casement/leaf. The frame profile having a C-shaped casement/leaf groove in the rebate, and with at least one fitting part, in particular a drive rod of a fitting, provided to be inserted into the casement/leaf groove. The casement/leaf groove has a first groove limb and a first groove portion and, located opposite, a second groove limb and a second groove portion. The fitting part has an elongate main body having a front side and a rear side. The main body has, on opposite longitudinal sides, a first peripheral region for engaging behind the first groove limb of the casement/leaf groove and a second peripheral region for engaging behind the second groove limb of the casement/leaf groove. The fitting part is pivotable into the casement/leaf groove with a peripheral region inserted into the groove portion.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: February 11, 2020
    Assignees: WILH. SCHLECHTENDAHL & SÖHNE GMBH & CO. KG (WSS), SAPA AS
    Inventor: Giovanni Zaccaria
  • Patent number: 10519387
    Abstract: Accordingly, the present invention provides a catalyst composition suitable for converting light naphtha comprising one or more of C5 to C8 carbon atoms to aromatic compounds ranging from C6 to C10 carbon atoms, said catalyst composition comprising: (a) a medium pore size zeolite; (b) 0.1 to 5.0 wt % of zinc; and (c) 0.1 to 5 wt % of gallium. Also, the present invention provides a process for converting light naphtha comprising one or more of C5 to C8 carbon atoms to aromatic compounds ranging from C6 to C10 carbon atoms, said process comprising the step of contacting a feedstock comprising the light naphtha with a catalyst composition comprising (a) a medium pore size zeolite; (b) 0.1 to 5.0 wt % of zinc; and (c) 0.1 to 5 wt % of gallium in presence of carrier gas at temperatures ranging from 400° to 600° C.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: December 31, 2019
    Assignee: HINDUSTAN PETROLEUM CORPORATION LTD.
    Inventors: Raman Ravishankar, Peddy Venkat Chalapathi Rao, Nettem Venkateswarlu Choudary, Ganapati V. Shanbhag, Hodala Lakshminarayan Janardhan, Anand B. Halgeri, Sriganesh Gandham
  • Patent number: 10301192
    Abstract: Techniques for reduction of copper from aqueous streams using an iron promoted activated alumina are disclosed. An adsorbent media composition that reduces copper levels in an aqueous feed stream includes an iron containing activated alumina. A process for reducing copper levels in an aqueous fluid using an iron promoted activated alumina sorption media includes contacting the aqueous fluid containing a copper contaminant with the iron promoted activated alumina to achieve reductions in copper from the aqueous fluid.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: May 28, 2019
    Assignee: The Frazer and Cruickshank Living Trust
    Inventors: Nancy S. Sherwood, Duane R. Steelman
  • Patent number: 10293332
    Abstract: The present invention relates to a hydrocracking catalyst for hydrocarbon oil comprising a support containing a framework-substituted zeolite-1 in which zirconium atoms and/or hafnium atoms form a part of a framework of an ultrastable y-type zeolite and a hydrogenative metal component carried thereon and a method for producing the same. The hydrocracking catalyst of the present invention makes it easy to diffuse heavy hydrocarbon oils such as VGO, DAO and the like into mesopores, is improved in a cracking activity and makes it possible to obtain a middle distillate at a high yield as compared with catalysts prepared by using zeolite comprising titanium and/or zirconium carried thereon.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: May 21, 2019
    Assignees: Saudi Arabian Oil Company, JGC Catalyst and Chemicals Ltd., Japan Cooperation Center, Petroleum
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji, Ali Mahmoud Al-Somali, Ali H. Al-Abdul'Al, Mishaal Al-Thukair, Masaru Ushio, Ryuzo Kuroda, Takashi Kameoka, Koji Nakano, Yuichi Takamori
  • Patent number: 10265689
    Abstract: The present invention relates to a zeolite comprising platinum. The invention furthermore relates to a method for producing said zeolite comprising platinum according to the invention, to the use of said zeolite as an oxidation catalyst and hydrocarbon reservoir and to a catalyst component comprising the zeolite according to the invention.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: April 23, 2019
    Assignee: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH
    Inventors: Olga Manoylova, Markus Hutt, Klaus Wanninger, Arno Tiβler
  • Patent number: 10232358
    Abstract: [Problem] The purpose of the present invention is to provide: a pentasil-type zeolite that combines a higher BET specific surface area and a higher acid amount than previously; and a method for manufacturing said pentasil-type zeolite. [Solution] A pentasil-type zeolite characterized in that the BET specific surface area thereof is 450 m2/g or more, and furthermore the acid amount thereof, measured by the ammonia-TPD method, is 0.38 mmol/g or more. This pentasil-type zeolite can be obtained by a manufacturing method which has a crystallization step for crystallizing a mixture containing tetrabutylphosphonium cations, a silica source, an alumina source, an alkali metal source, and water, and which is characterized in that the molar ratio of the alkali metal relative to the silica in the mixture is greater than 0.04 and less than 0.10.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: March 19, 2019
    Assignee: TOSOH CORPORATION
    Inventors: Satoshi Yoshida, Yukio Ito, Hidenori Yamada
  • Patent number: 10179321
    Abstract: The present invention provides a method (100) for removal of metals from aqueous solutions comprising the steps of treating (102) the aqueous solutions with an adsorbent, allowing (104) the aqueous solutions and the adsorbent to be in contact for a predetermined time to obtain treated aqueous solutions, collecting (106) the treated aqueous solutions, filtering (108) the treated aqueous solutions and discharging (110) the filtered aqueous solutions. The adsorbent comprising plurality of natural biomaterials. Further, the plurality of natural biomaterials are capable of adsorbing the metals from the aqueous solutions.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: January 15, 2019
    Assignee: DR. D. Y. PATIL VIDYAPEETH
    Inventors: Neelu Nawani, Prithviraj Desale, Balasaheb Kapadnis, Aminur Rahman, Noor Nahar, Abul Mandal
  • Patent number: 10155218
    Abstract: A TiO2-based catalyst precursor material in powder form includes TiO2 particles with the formula TiO(2-x)(OH)2x (x=0-1). The particles are coated with one or more auxiliary shaping agents and after coating and drying have a specific surface area of at least 150 m2/g. The material has a content of 1) 50-99.5% by weight of the titanium-oxygen compound with the general formula TiO(2-x)(OH)2x, wherein x=0 to 1, or mixtures thereof, wherein the crystalline phases of the titanium-oxygen compound are in the anatase form, and 2) 0.5-50% by weight of an auxiliary shaping agent or mixtures thereof, which evaporates, sublimates and/or decomposes upon heating to temperatures below the transformation temperature from anatase to rutile, wherein the % by weight are relative to the total weight of the dried catalyst precursor material.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: December 18, 2018
    Assignee: Huntsman P&A Germany GmbH
    Inventors: Sonja Grothe, Christian Spitzwieser
  • Patent number: 10125650
    Abstract: An engine exhaust gas purification apparatus includes a three way catalyst disposed on an exhaust line, and which transforms harmful materials in exhaust gas to harmless materials by an oxidation-reduction reaction. The three way catalyst includes a first catalyst layer, a second catalyst layer, and a third catalyst layer laminated from an upper portion on a cordierite carrier, and the first catalyst layer comprises at least one platinum group metal and an oxygen non-storage material.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: November 13, 2018
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventor: Jin Woo Choung
  • Patent number: 10086356
    Abstract: The present disclosure relates to a substrate containing passive NOx adsorption (PNA) materials for treatment of gases, and washcoats for use in preparing such a substrate. Also provided are methods of preparation of the PNA materials, as well as methods of preparation of the substrate containing the PNA materials. More specifically, the present disclosure relates to a coated substrate containing PNA materials for PNA systems, useful in the treatment of exhaust gases. Also disclosed are exhaust treatment systems, and vehicles, such as diesel or gasoline vehicles, particularly light-duty diesel or gasoline vehicles, using catalytic converters and exhaust treatment systems using the coated substrates.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: October 2, 2018
    Assignee: Umicore AG & Co. KG
    Inventors: Maximilian A. Biberger, Bryant Kearl, Qinghua Yin, Xiwang Qi
  • Patent number: 10081009
    Abstract: The present invention relates to a hydrocracking catalyst for hydrocarbon oil comprising a support containing a framework-substituted zeolite-1 in which zirconium atoms and/or hafnium atoms form a part of a framework of an ultrastable y-type zeolite and a hydrogenative metal component carried thereon and a method for producing the same. The hydrocracking catalyst of the present invention makes it easy to diffuse heavy hydrocarbon oils such as VGO, DAO and the like into mesopores, is improved in a cracking activity and makes it possible to obtain a middle distillate at a high yield as compared with catalysts prepared by using zeolite comprising titanium and/or zirconium carried thereon.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: September 25, 2018
    Assignees: Saudi Arabian Oil Company, JGC Catalyst and Chemical Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji, Ali Mahmoud Al-Somali, Ali H. Al-Abdul'al, Mishaal Al-Thukair, Masaru Ushio, Ryuzo Kuroda, Takashi Kameoka, Koji Nakano, Yuichi Takamori
  • Patent number: 9682369
    Abstract: Shaped articles and methods for forming shaped articles are provided. In one embodiment, a method for forming a shaped article includes providing a hydroxy metal oxide binder precursor in a solution of hydroxy metal oxide binder precursor. The method mixes a primary ion exchange composition with the solution of hydroxy metal oxide binder precursor. Further, the method mixes a solid with the solution of hydroxy metal oxide binder precursor. The method includes converting the hydroxy metal oxide binder precursor to a hydroxy metal oxide binder. Also, the method includes forming the shaped article from the primary ion exchange composition, the hydroxy metal oxide binder, and the solid.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: June 20, 2017
    Assignee: UOP LLC
    Inventor: Evgeny Todorov Kolev
  • Patent number: 9669396
    Abstract: This invention is directed to hydrocracking catalysts and hydrocracking processes employing a magnesium aluminosilicate clay and a zeolite. The magnesium aluminosilicate clay has a characteristic 29Si NMR spectrum. The magnesium aluminosilicate clay is the product of a series of specific reaction steps. The resulting magnesium aluminosilicate clay combines high surface area and activity for use in hydrocracking catalysts and processes.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: June 6, 2017
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Darren P. Fong
  • Patent number: 9643166
    Abstract: A process for preparing a catalyst is disclosed. The process generally comprises the steps of: (a) preparing a slurry comprising clay, zeolite, a sodium-free silica source, quasi-crystalline boehmite, and micro-crystalline boehmite, provided that the slurry does not comprise peptized quasi-crystalline boehmite; (b) adding a monovalent acid to the slurry; (c) adjusting the pH of the slurry to a value above about 3, and (d) shaping the slurry to form particles. This process results in attrition resistant catalysts with a good accessibility.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: May 9, 2017
    Assignee: Albemarle Netherlands B.V.
    Inventors: Dennis Stamires, Paul O'Connor, Erik Jeroen Laheij, Charles Vadovic
  • Patent number: 9637389
    Abstract: An activated carbon monolith catalyst comprising a finished self-supporting activated carbon monolith having at least one passage therethrough, and comprising a supporting matrix and substantially discontinuous activated carbon particles dispersed throughout the supporting matrix and at least one catalyst precursor on the finished self-supporting activated carbon monolith. A method for making, and a method for use, of such an activated carbon monolith catalyst in catalytic chemical reactions are also disclosed.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: May 2, 2017
    Assignee: Applied Technology Limited Partnership
    Inventors: Robert L. Mitchell, Sr., Lee M. Mitchell, Joseph H. Keller, Jack H. L'Amoreaux
  • Patent number: 9604203
    Abstract: Process for the preparation of a catalyst suitable for use in a naphtha reforming process, the process including providing a Y zeolite with an initial SiO2:Al2O3 molar ratio of at least 150, introducing the Y zeolite to a binder to form an intermediate composition, extruding the intermediate composition, reducing the alpha acidity of the extruded composition to provide a low acid composition, and introducing a noble metal to the low acid composition. Processes and systems of converting naphtha to a higher-octane hydrocarbon supply using catalysts, as prepared herein, are also disclosed.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: March 28, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jean W. Beeckman, Stephen J. McCarthy, Jane C. Cheng
  • Patent number: 9587540
    Abstract: The invention relates to a method for reactivating a system composed of an oxidation catalytic converter (5) followed by a possibly catalytically coated particle filter (6), and to a correspondingly adapted exhaust-gas purification system for lean-burn engines (1) with low pressure EGR (14). The present invention relates in particular to the reactivation of such a system during overrun operation of the engine.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: March 7, 2017
    Assignee: UMICORE AG & CO. KG
    Inventors: Stephan Eckhoff, Stefan Franoschek
  • Patent number: 9428695
    Abstract: A method of producing olefins and aromatic compounds from a feedstock is accomplished by introducing a hydrocarbon feedstock and a catalyst composition within a reactor. At least a portion of the reactor is at a reactor temperature of from 470° C. to 730° C. The catalyst composition is comprised of a fluidized catalytic cracking (FCC) catalyst and a ZSM-5 zeolite catalyst, wherein the amount of ZSM-5 zeolite catalyst makes up from greater than 0 wt. % of the total weight of the FCC catalyst and the ZSM-5 zeolite catalyst. At least a portion of the feedstock is converted to products of at least one of olefins and aromatic compounds within the reactor, with at least some of the products being contained in a liquid product stream. At least a portion of the liquid product stream is directed to different downstream processes to increase production of at least one of olefins and aromatic compounds.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: August 30, 2016
    Assignee: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Ravichander Narayanaswamy, Krishna Kumar Ramamurthy, P. S. Sreenivasan
  • Patent number: 9409785
    Abstract: The purpose of/problem addressed by the present invention is to provide: an Fe(II)-substituted MEL-type zeolite useful for the catalytic removal of a variety of gases; and a production method therefor. The SiO2/Al2O3 ratio in this Fe(II)-substituted MEL-type zeolite is in the range of 10-30 inclusive. This Fe(II)-substituted MEL-type zeolite is obtained by being subjected to ionic exchange with Fe(II) ions. It is preferable that the Fe(II) loading amount be in the range of 0.001-0.4 mmol/g of the Fe(II)-substituted MEL-type zeolite. It is preferable that the Fe(II)-substituted MEL-type zeolite be produced using a method in which an MEL-type zeolite having an SiO2/Al2O3 ratio in the range of 10-30 inclusive is dispersed in an Fe(II) water-soluble-compound aqueous solution, and then mixed and agitated to cause the MEL-type zeolite to carry Fe(II) ions.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: August 9, 2016
    Assignees: UniZeo Co., Ltd., THE UNIVERSITY OF TOKYO
    Inventors: Masaru Ogura, Keiji Itabashi, Tatsuya Okubo, Shanmugam Palani Elangovan
  • Patent number: 9387466
    Abstract: This invention reveals a method for synthesizing a hydrotreating catalyst wherein the support is prepared by mixing of peptized alumina with an amorphous silica or crystalline aluminum silicate as one component of the catalyst. The catalyst comprises a group VI metal and/or a group VIII metal of the periodic table. The catalyst exhibits improved hydrocracking, hydrodesulfurization and hydrodemetallization activities and has a relatively stable life with time on stream. Thus, the invention concerns a method for developing a catalyst for hydroprocessing of heavy hydrocarbon feedstocks which is characterized by two steps: the first step consists of the optimization of a catalyst formulation with respect to the textural properties, number of acid sites, active metal incorporation. The second step consists of the evaluation with real feedstock and catalyst stability with time-on-stream.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: July 12, 2016
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Mohan Singh Rana, Jorge Ancheyta Juarez, Zenaida Carolina Leyva Inzunza, Samir Kumar Maity, Léon Pablo Torres Mancera
  • Patent number: 9364818
    Abstract: A zeolite structure is provided which has partition walls composed of a zeolite ion-exchanged with a metal ion and forming a plurality of cells extending from one end face of the zeolite structure to its other end face and functioning as a passage of fluid and which has a honeycomb shape. The content per unit zeolite amount of the metal ion in the surface portion of the partition wall is larger than the content per unit zeolite amount of the metal ion in the inner portion of the partition wall and is preferably 1.1 to 5.0 times the content per unit zeolite amount of the metal ion in the inner portion of the partition wall.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: June 14, 2016
    Assignee: NGK Insulators, Ltd.
    Inventors: Akira Takahashi, Shogo Hirose, Eriko Kodama
  • Patent number: 9347006
    Abstract: The invention relates to a method for optimizing layered catalytic processes. This is accomplished by testing various catalysts with a compound found in a feedstock to be tested, to determine the facility of the catalyst in hydrogenating, hydrosulfurizing, or hydrodenitrogenating the molecule, and hence the feedstock. In a preferred embodiment, the Double Bond Equivalence of the feedstock and molecule are determined, and catalysts are pre-selected based upon their known ability to work with materials of this DBE value.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: May 24, 2016
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center, Petroleum
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji, Hendrik Muller, Masaru Ushio, Koji Nakano
  • Patent number: 9334211
    Abstract: The present invention provides a hydrocracking catalyst obtainable by mixing a metal compound (A) including any one metal of Groups 3 to 11 of the Periodic Table, a compound (B) including at least one compound selected from the group consisting of a ruthenium oxide compound (B1) and a high-valence compound (B2) including any metal of Groups 8 to 11 of the Periodic Table, and a metal oxide (C) including a metal of Group 5, Group 6 or Group 7 of the Periodic Table, and conducting reduction treatment.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: May 10, 2016
    Assignee: UBE INDUSTRIES, LTD.
    Inventors: Kiyotaka Yoshii, Atsushi Yamada
  • Patent number: 9303369
    Abstract: Methods for embedding photocatalytic titanium dioxide in asphalt surfaces to reduce pollutants via photocatalytic reactions include applying an amount of an asphalt surface treatment compound to an upper surface of the asphalt surface, the asphalt surface treatment compound including a mixture of a liquid carrier compound with a titanium dioxide (TiO2) photocatalyst.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: April 5, 2016
    Assignee: D&D Emulsions, Inc.
    Inventors: Colin Durante, Delbert L. Dawson
  • Patent number: 9272919
    Abstract: This invention relates to a process for producing aluminum silicates in the form of zeolite L, as well as the intermediate and end products of this process. The invention further relates to the use of these aluminum silicates for the conversion or adsorption of hydrocarbons.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: March 1, 2016
    Assignee: SUED-CHEMIE IP GMBH & CO. KG
    Inventors: Olivier Larlus, Martin Claus, Rainer Albert Rakoczy
  • Patent number: 9221036
    Abstract: The present invention relates to a hydrocracking catalyst for hydrocarbon oil comprising a support containing a framework-substituted zeolite-1 in which zirconium atoms and/or hafnium atoms form a part of a framework of an ultrastable y-type zeolite and a hydrogenative metal component carried thereon and a method for producing the same. The hydrocracking catalyst of the present invention makes it easy to diffuse heavy hydrocarbon oils such as VGO, DAO and the like into mesopores, is improved in a cracking activity and makes it possible to obtain a middle distillate at a high yield as compared with catalysts prepared by using zeolite comprising titanium and/or zirconium carried thereon.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: December 29, 2015
    Assignees: Saudi Arabian Oil Company, Japan Cooperation Center, Petroleum, JGC Catalysts and Chemicals Ltd.
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji, Ali Mahmood Al-Somali, Ali H. Al-Abdul'Al, Mishaal Al-Thukair, Masaru Ushio, Ryuzo Kuroda, Takashi Kameoka, Koji Nakano, Yuichi Takamori
  • Patent number: 9212105
    Abstract: A process for producing at least one light olefin comprising: (a) contacting a first raw material comprising methanol with a least one catalyst in a first reaction zone to produce at least one light olefin and at least one inactivated catalyst; (b) transporting the at least one inactivated catalyst to a first regeneration zone to produce at least one first regenerated catalyst, and transporting a portion of the at least one first regenerated catalyst to the first reaction zone; (c) transporting another portion of the at least one first regenerated catalyst to a second regeneration zone to obtain at least one second regenerated catalyst; and (d) transporting the at least one second regenerated catalyst to a second reaction zone, and contacting the at least one second regenerated catalyst with a second raw material comprising C4 olefins to produce a product stream II comprising at least one light olefin.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: December 15, 2015
    Assignees: Shanghai Research Institute of Petrochemical Technology, Sinopec, China Petroleum & Chemical Corporation
    Inventors: Guozhen Qi, Siqing Zhong, Hongtao Wang, Yongming Jin
  • Patent number: 9186649
    Abstract: An article for adsorbing volatile organic compounds (VOCs) derived from organic matter comprising adsorbing the VOCs onto palladium doped ZSM-5, optionally at ambient temperature. The organic matter can be perishable organic goods such as food, including fruit and/or vegetables, horticultural produce, including plants and/or cut flowers, or refuse. The palladium doped ZSM-5 has a Si:Al ratio of less than or equal to 100:1 and preferably has a palladium content of from 0.1 wt % to 10.0 wt % based on the total weight of the doped ZSM-5.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: November 17, 2015
    Assignee: Anglo Platinum Marketing Limited
    Inventors: Thomas Ilkenhans, Stephen Poulston, Andrew William John Smith
  • Publication number: 20150148215
    Abstract: The present disclosure relates to selecting the layer of applying ZPGM active phase in washcoat, or applying ZPGM active phase in overcoat, for achieving optimized performance and enhanced thermal stability. Applying ZPGM active phase catalyst in overcoat shows improvements compare to applying ZPGM active phase in washcoat. The selected active phase material may include a chemical composition that is substantially free from PGM, including a formulation of stoichiometric Cu—Mn spinel structure active phase deposited on Niobium-Zirconium support oxide. The selected active phase layer applied in overcoat may include a washcoat of alumina coated on a suitable ceramic substrate. The disclosed active phase may be applied in overcoat to maximize efficiency of catalyst systems, which may exhibit enhanced catalytic activity properties, which may stable after aging and under steady state and oscillating condition, showing optimized performance purifying gases in TWC condition.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Applicant: CLEAN DIESEL TECHNOLOGIES INC. (CDTI)
    Inventor: Zahra Nazarpoor
  • Patent number: 9034780
    Abstract: This disclosure relates to a catalyst system adapted for transalkylation a C9+ aromatic feedstock with a C6-C7 aromatic feedstock, comprising: (a) a first catalyst comprising a first molecular sieve having a Constraint Index in the range of 3-12 and 0.01 to 5 wt. % of at least one source of a first metal element of Groups 6-10; and (b) a second catalyst comprising a second molecular sieve having a Constraint Index less than 3 and 0 to 5 wt. % of at least one source of a second metal element of Groups 6-10, wherein the weight ratio of the first catalyst over the second catalyst is in the range of 5:95 to 75:25 and wherein the first catalyst is located in front of the second catalyst when they are brought into contacting with the C9+ aromatic feedstock and the C6-C7 aromatic feedstock in the present of hydrogen.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 19, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Doron Levin
  • Patent number: 9034269
    Abstract: The present invention relates to a diesel oxidation catalyst comprising a carrier substrate, and a first washcoat layer disposed on the substrate, the first washcoat layer comprising palladium supported on a support material comprising a metal oxide, gold supported on a support material comprising a metal oxide, and a ceria comprising compound, as well as a process for the preparation of such catalyst.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: May 19, 2015
    Assignee: BASF SE
    Inventors: Marcus Hilgendorff, Alfred H. Punke, Torsten W. Müller-Stach, Gerd Grubert, Torsten Neubauer, Jeffrey B. Hoke
  • Patent number: 9029283
    Abstract: A catalyst composition which comprises: a) a carrier which comprises at least 30 wt % of a binder selected from silica, zirconia and titania; at least 20 wt % of a pentasil zeolite, having a bulk silica to alumina ratio in the range of from 20 to 150 and being in its H+ form; and less than 10 wt % of other components, all percentages being on the basis of total carrier; b) platinum in an amount in the range of from 0.001 to 0.1 wt %, on the basis of total catalyst; and c) tin in an amount in the range of from 0.01 to 0.5 wt %, on the basis of total catalyst; its preparation and use; are provided.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: May 12, 2015
    Assignee: Shell Oil Company
    Inventors: Johanna Jacoba Berg-Slot, László Domokos, Ingrid Maria Van Vegchel
  • Publication number: 20150126791
    Abstract: A process for the preparation of a naphtha-selective hydrocracking catalyst comprising of from 3 to 4.8% wt of molybdenum, calculated as metal, and of from 1.5 to 3% wt of nickel, calculated as metal, which comprises loading a refractory oxide support comprising an alumina binder component and a zeolite Y component in a content of from 65 to 75 wt % based on the total weight of the catalyst, with nickel and molybdenum in the presence of citric acid, wherein the zeolite Y component has a unit cell size in the range of from 24.42 to 24.52 ?, a SAR in the range of from 8 to 15, and a surface area of from 850 to 1020 m2/g.
    Type: Application
    Filed: December 20, 2012
    Publication date: May 7, 2015
    Inventors: Wiebe Sjoerd Kijlstra, Ferry Winter
  • Patent number: 9024090
    Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 5, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Publication number: 20150118121
    Abstract: A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
    Type: Application
    Filed: December 31, 2014
    Publication date: April 30, 2015
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: HAI-YING CHEN, JOSEPH MICHAEL FEDEYKO, RODNEY KOK SHIN FOO, PAUL JOSEPH ANDERSEN, JILLIAN ELAINE COLLIER, JOHN LEONELLO CASCI, RAJ RAO RAJARAM
  • Patent number: 9018121
    Abstract: The invention is directed to a bimetallic catalyst system adapted for the manufacture of xylenes, a process for making said catalyst system, and to the process of manufacture of xylenes using said catalyst system, providing, in embodiments, improved selectivity by at least one of higher ethylene saturation and low xylene loss, decreased susceptibility to poisoning from feedstream impurities, and ability to operate at less severe conditions.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: April 28, 2015
    Assignee: ExxonMobil Chemicals Patents Inc.
    Inventors: April D. Ross, Jane C. Cheng
  • Publication number: 20150112098
    Abstract: Disclosed are a catalyst comprising (A) an aluminosilicate molecular sieve comprising a ferrierite phase and (B) a hydrogenation metal component, and a hydroalkylation process using the catalyst. The catalyst and the hydroalkylation process can be used in the production of phenol and/or cyclohexanone from benzene hydroalkylation.
    Type: Application
    Filed: September 26, 2014
    Publication date: April 23, 2015
    Inventors: Gabor Kiss, Thomas E. Green, Terry E. Helton, Tan-Jen Chen
  • Publication number: 20150112110
    Abstract: Disclosed herein is an activated EU-2 zeolite, including: pores having a diameter of 30 to 40 ? while maintaining the crystal structure of the EU-2 zeolite; and pores having a diameter of 40 to 200 ?, wherein the volume of the pores having a diameter of 30 to 40 ? is 0.01 to 0.06 cc/g, and the volume of the pores having a diameter of 40 to 200 ? is 0.07 to 0.4 cc/g.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 23, 2015
    Inventors: Yoon Kyung LEE, Seung Woo LEE, Jae Suk CHOI, Tae Jin Kim, Do Woan Kim, Seon Ju Lim
  • Patent number: 9011807
    Abstract: Described is a selective catalytic reduction catalyst comprising an iron-promoted 8-ring small pore molecular sieve. Systems and methods for using these iron-promoted 8-ring small molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are also described.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: April 21, 2015
    Assignees: BASF Corporation, N. E. Chemcat Corporation, Heesung Catalysts Corporation
    Inventors: Jaya L. Mohanan, Patrick Burk, Michael J. Breen, Barbara Slawski, Makoto Nagata, Yasuyuki Banno, Eunseok Kim
  • Patent number: 9011809
    Abstract: An ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O or NOx. The ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal on an inorganic base material including any of a composite oxide (A) having at least titania and silica as main components, alumina, and a composite oxide (B) consisting of alumina and silica; and a catalyst layer (upper layer) including a composite oxide (C) consisting of at least silica, tungsten oxide, ceria and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is silica: 20% by weight or less, tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: April 21, 2015
    Assignee: N.E. Chemcat Corporation
    Inventors: Tomoaki Ito, Toshinori Okajima, Takashi Hihara, Makoto Nagata
  • Publication number: 20150105236
    Abstract: Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt deposited on hybrid supports. The hybrid supports contain an acidic zeolite component and a silica-containing material. It has been found that the use of the hybrid Fischer-Tropsch catalysts in synthesis gas conversion reactions results in high C5+ productivity, high CO conversion rates and low olefin formation.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Kandaswamy Jothimurugesan, Robert James Saxton
  • Patent number: 9006130
    Abstract: The invention relates to a hydrodesulfurization nanocatalyst, use of the hydrodesulfurization nanocatalyst in a hydrodesulfurization process and a process for producing the hydrodesulfurization nanocatalyst. The hydrodesulfurization nanocatalyst can include a nanostructured alumina material, at least one metal selected from group VI B of the periodic table of elements, and at least one metal selected from group VIII B of the periodic table of elements.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: April 14, 2015
    Assignee: Research Institute of Petroleum Industry (RIPI)
    Inventors: Fereshteh Rashidi, Alimorad Rashidi, Kheirollah Jafari Jozani, Ali Nemati Kharat Ghaziani, Morteza Rezapour, Hamidreza Bozorgzadeh
  • Patent number: RE48220
    Abstract: Methods for embedding photocatalytic titanium dioxide in asphalt surfaces to reduce pollutants via photocatalytic reactions include applying an amount of an asphalt surface treatment compound to an upper surface of the asphalt surface, the asphalt surface treatment compound including a mixture of a liquid carrier compound with a titanium dioxide (TiO2) photocatalyst.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: September 22, 2020
    Assignee: D&D Emulsions, Inc.
    Inventors: Colin Durante, Delbert L. Dawson