And Group Viii (iron Group Or Platinum Group) Containing Patents (Class 502/74)
  • Patent number: 8840779
    Abstract: A supported catalyst comprises a zeolite having a silica to alumina molar ratio of 500 or less, a first metal oxide binder having a crystallite size greater than 200 ? and a second metal oxide binder having a crystallite size less than 100 ?, wherein the second metal oxide binder is present in an amount less than 15 wt % of the total weight of the catalyst.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: September 23, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Wenyih F. Lai, Darryl Donald Lacy, Robert Ellis Kay
  • Publication number: 20140274666
    Abstract: A structurally promoted, precipitated, Fischer-Tropsch catalyst that exhibits an RCAI-10 of 0-2.8 and/or produces less than 6 wt % fines after 5 hours ASTM Air Jet Attrition testing, due to formation via: preparing a nitrate solution by forming at least one metal slurry and combining the at least one metal slurry with a nitric acid solution; combining the nitrate solution with a basic solution to form a precipitate; structurally promoting the precipitate with at least one source of silicon to form a promoted mixture, wherein promoting comprises combining the precipitate with (a) silicic acid and one or more component selected from the group consisting of non-crystalline silicas, crystalline silicas, and sources of kaolin or (b) a component selected from the group consisting of non-crystalline silicas and sources of kaolin, in the absence of silicic acid; and spray drying the promoted mixture to produce catalyst having a desired particle size.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: RENTECH, INC.
    Inventors: Dawid J. DUVENHAGE, Belma DEMIREL
  • Publication number: 20140271426
    Abstract: Provided is a catalyst composition having an aluminosilicate molecular sieve having an AEI structure and a mole ratio of silica-to-alumina of about 20 to about 30 loaded with about 1 to about 5 weight percent of a promoter metal, based on the total weight of the molecular sieve material. Also provided are method, articles, and systems utilizing the catalyst composition.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Johnson Matthey Public Limited Company
    Inventors: John Leonello CASCI, Janet Mary FISHER, Lucia GABEROVA
  • Publication number: 20140271428
    Abstract: Described are catalyst compositions, catalytic articles, exhaust gas treatment systems and methods that utilize the catalytic articles. The catalyst composition comprises a washcoat including a zeolite, refractory metal oxide support particles, and a platinum group metal supported on the refractory metal oxide support particles. Greater than 90% of the refractory metal oxide particles supporting PGM have a particle size greater than 1 ?m and a d50 less than 40 microns.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: BASF Corporation
    Inventors: Olga Gerlach, Andreas Sundermann, Jeffrey B. Hoke
  • Publication number: 20140274665
    Abstract: Described are SCR catalyst systems comprising a first SCR catalyst composition and a second SCR catalyst composition arranged in the system, the first SCR catalyst composition having a faster DeNOx response time when exposed to ammonia than the second catalyst composition and the second SCR catalyst composition has a higher steady state DeNOx performance than the first catalyst composition. The SCR catalyst systems are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: BASF Corporation
    Inventors: Marius Vaarkamp, Edgar V. Huennekes, Arne Kuhlmann, Stefan Kah
  • Publication number: 20140274664
    Abstract: Provided are catalysts including: a zeolite component selected from zeolites having 10-member ring pores, zeolites having 12-member ring pores and a combination thereof, 0.1 to 5 weight % of a hydrogenation component selected from Pt, Pd, Ag, Ni, Co, Mo, W, Rh, Re, Ru, Ir and a mixture thereof, and a hydrothermally stable binder component selected from tantalum oxide, tungsten oxide, molybdenum oxide, vanadium oxide, magnesium oxide, calcium oxide, yttrium oxide, lanthanum oxide, cerium oxide, niobium oxide, tungstated zirconia, cobalt molybdenum oxide, cobalt molybdenum sulfide, nickel molybdenum oxide, nickel molybdenum sulfide, nickel tungsten oxide, nickel tungsten sulfide, cobalt tungsten oxide, cobalt tungsten sulfide, nickel molybdenum tungsten oxide and nickel molybdenum tungsten sulfide, cobalt molybdenum tungsten oxide and cobalt molybdenum tungsten sulfide, wherein the weight ratio of the zeolite to the hydrothermally stable binder is 85:15 to 25:75.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 18, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Scott J. Weigel, Joseph Emmanuel Gatt, Darryl Donald Lacy, Randall D. Partidge, Kun Wang, Lei Zhang, Christine Nicole Elia
  • Patent number: 8835341
    Abstract: A method for removing tightly bound sodium from a zeolitic support comprising contacting the support with a sodium specific removal agent to produce a treated support. A method comprising providing an aromatization catalyst comprising a treated support, and contacting the aromatization catalyst with a hydrocarbon feed in a reaction zone under conditions suitable for the production of an aromatic product. A catalyst support comprising an L-zeolite having less than 0.35 wt. % sodium.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: September 16, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Gyanesh P. Khare
  • Patent number: 8828900
    Abstract: The exhaust gas purification catalyst according to the present invention has a substrate 54, a lower layer 57 disposed on this substrate 54, and an upper layer 58 disposed on this lower layer 57. The upper layer 58 is provided with a first catalyst and a second catalyst, and the lower layer 57 is provided with a first catalyst. This first catalyst has Al2O3 as a carrier and Pt and Pd as noble metals supported on the Al2O3, while the second catalyst typically has an Al2O3—ZrO2—TiO2 complex oxide as a carrier and has Pd as a noble metal supported on the Al2O3—ZrO2—TiO2 complex oxide. Moreover, the upper layer 58 has a hydrocarbon adsorbent 68.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: September 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobuyuki Takagi, Yuichi Sobue, Hanae Ikeda, Masaya Kamada, Ryoichi Inde
  • Publication number: 20140243568
    Abstract: A method to make a phosphorus modified zeolite can include providing a zeolite including at least one ten member ring in the structure steaming the zeolite, mixing the zeolite with one or more binders and shaping additives, and then shaping the mixture. The method can include making a ion-exchange. The shaped mixture can be steamed. Phosphorous can be introduced on the catalyst to introduce at least 0.1 wt % of phosphorus, such as be dry impregnation or chemical vapor deposition. A metal, such as calcium, can be introduced. The catalyst can be washed, calcinated, and then steamed. The steaming severity (X) can be at least about 2. The catalyst can be steamed at a temperature above 625° C., such as a temperature ranging from 700 to 800° C. The catalyst can be used in alcohol dehydration, olefin cracking, MTO processes, and alkylation of aromatics by alcohols with olefins and/or alcohols.
    Type: Application
    Filed: July 25, 2012
    Publication date: August 28, 2014
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Nikolai Nesterenko, Delphine Minoux, Cindy Adam, Jean-Pierre Dath
  • Patent number: 8815763
    Abstract: A method of manufacturing a catalyst body which includes: soaking at least part of a fired zeolite-based body in a transition metal oxide solution; removing the body from the transition metal oxide solution; exposing the body to a humidified atmosphere at one or more temperatures above 20° C.; then drying the body; and calcining the body.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: August 26, 2014
    Assignee: Corning Incorporated
    Inventors: Steven Bruce Dawes, Steven Bolaji Ogunwumi
  • Patent number: 8809218
    Abstract: There is provided a substance having much higher catalytic activity for a Suzuki-Miyaura coupling reaction than conventional heterogenous catalysts. The present invention provides a zeolite-palladium complex including USY-zeolite and Pd supported on the USY-zeolite, the Pd having a Pd—Pd coordination number of 4 or less and an oxidation number of 0.5 or less.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: August 19, 2014
    Assignee: National University Corporation Tottori University
    Inventors: Kazu Okumura, Miki Niwa, Hirosuke Matsui, Yoshinori Enmi, Takuya Tomiyama, Shizuyo Okuda
  • Patent number: 8809217
    Abstract: A catalyst for selective catalytic reduction of NOx having one or more transition metals selected from Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir, Pt, and mixtures thereof supported on a support, wherein the support has a molecular sieve having at least one intergrowth phase having at least two different small-pore, three-dimensional framework structures.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: August 19, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul J. Andersen, John Leonello Casci, Hai-Ying Chen, Joseph M. Fedeyko
  • Patent number: 8802582
    Abstract: A catalyst and a method for selectively reducing nitrogen oxides (“NOx”) with ammonia are provided. The catalyst includes a first component comprising a zeolite or mixture of zeolites selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-zeolites, mordenite, faujasite, ferrierite, zeolite beta, and mixtures thereof; a second component comprising at least one member selected from the group consisting of cerium, iron, copper, gallium, manganese, chromium, cobalt, molybdenum, tin, rhenium, tantalum, osmium, barium, boron, calcium, strontium, potassium, vanadium, nickel, tungsten, an actinide, mixtures of actinides, a lanthanide, mixtures of lanthanides, and mixtures thereof; optionally an oxygen storage material and optionally an inorganic oxide. The catalyst selectively reduces nitrogen oxides to nitrogen with ammonia at high temperatures. The catalyst has high hydrothermal stability. The catalyst has high activity for conversion of low levels of nitrogen oxides in exhaust streams.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: August 12, 2014
    Assignee: Catalytic Solutions, Inc.
    Inventors: Rajashekharam Malyala, Svetlana Iretskaya, Stephen J. Golden
  • Publication number: 20140219879
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Applicant: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 8795617
    Abstract: An exhaust system, and a catalyzed substrate for use in an exhaust system, is disclosed. The exhaust system comprises a lean NOx trap and the catalyzed substrate. The catalyzed substrate has a first zone, having a platinum group metal loaded on a support, and a second zone, having copper or iron loaded on a zeolite. The first zone or second zone additionally comprises a base metal oxide or a base metal loaded on an inorganic oxide. Also provided are methods for treating an exhaust gas from an internal combustion engine using the exhaust system. The exhaust system is capable of storing NH3 generated in rich purging, reacting the NH3 with slip NOx, controlling H2S released from NOx trap desulfation, and oxidizing slip hydrocarbons and carbon monoxide. When the catalyzed substrate is a filter substrate, it is also capable of removing soot from exhaust system.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: August 5, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Daniel Swallow, Andrew Francis Chiffey, Paul Richard Phillips
  • Publication number: 20140213670
    Abstract: Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt and ZSM-48 zeolite. The hybrid Fischer-Tropsch catalysts can contain cobalt deposited on ZSM-48 extrudate supports. Alternatively, the Fischer-Tropsch catalysts can contain cobalt deposited on supports mixed with ZSM-48 particles. It has surprisingly been found that the use of hybrid Fischer-Tropsch catalysts containing ZSM-48 zeolite in synthesis gas conversion reactions results in improved C5+ productivity and catalyst activity, as well as a desirable product distribution including low formation of methane and C21+.
    Type: Application
    Filed: January 25, 2013
    Publication date: July 31, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: Kandaswamy Jothimurugesan, Robert James Saxton
  • Publication number: 20140209506
    Abstract: A hydrocarbon conversion catalyst composition which comprises dealuminated ZSM-48 and/or EU-2 zeolite and a refractory oxide binder essentially free of alumina, processes for preparing such composition and processes for converting hydrocarbon feedstock with the help of such compositions.
    Type: Application
    Filed: October 20, 2011
    Publication date: July 31, 2014
    Inventors: László Domokos, Laurent Georges Huve, Hermanus Jongkind, Aan Hendrik Klazinga, Marcello Stefano Rigutto
  • Patent number: 8791041
    Abstract: A method of producing a Fischer-Tropsch catalyst by preparing a nitrate solution, wherein preparing comprises forming at least one metal slurry and combining the at least one metal slurry with a nitric acid solution; combining the nitrate solution with a basic solution to form a precipitate; promoting the precipitate to form a promoted mixture, wherein promoting comprises combining the precipitate with (a) silicic acid and one or more selected from the group consisting of non-crystalline silicas, crystalline silicas, and sources of kaolin or (b) at least one selected from non-crystalline silicas and sources of kaolin, in the absence of silicic acid; and spray drying the promoted mixture to produce catalyst having a desired particle size. Catalyst produced by the disclosed method is also described.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 29, 2014
    Assignee: RENTECH, Inc.
    Inventors: Dawid J. Duvenhage, Belma Demirel
  • Patent number: 8790507
    Abstract: Processes and catalyst systems are provided for dewaxing a hydrocarbon feedstock to form a lubricant base oil. A layered catalyst system of the present invention may comprise a first hydroisomerization dewaxing catalyst disposed upstream from a second hydroisomerization dewaxing catalyst. Each of the first and second hydroisomerization dewaxing catalysts may be selective for the isomerization of n-paraffins. The first hydroisomerization catalyst may have a higher level of selectivity for the isomerization of n-paraffins than the second hydroisomerization dewaxing catalyst. At least one of the first and second hydroisomerization dewaxing catalysts comprises small crystallite zeolite SSZ-32x.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: July 29, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Kamala Krishna, Guan-Dao Lei
  • Patent number: 8785707
    Abstract: A catalyst that comprises at least one binder and at least one crystallized material with hierarchized and organized porosity in the fields of microporosity and mesoporosity is described, whereby said crystallized material consists of at least two elementary spherical particles, each of said particles comprising a mesostructured silicon-oxide-based matrix that has a mesopore diameter of between 1.5 and 30 nm and that has microporous and crystallized walls with a thickness of between 1 and 60 nm, whereby said elementary spherical particles have a maximum diameter of 200 microns. Said catalyst is used in a process for oligomerization of an olefinic feedstock that contains hydrocarbon molecules that have 2 to 12 carbon atoms per molecule.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: July 22, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Amandine Cabiac, Alexandra Chaumonnot, Laurent Simon
  • Patent number: 8772193
    Abstract: The present invention relates to a bifunctional catalyst for a hydrodewaxing process with improved isomerization selectivity, and to a method for manufacturing the same, and more particularly to a bifunctional catalyst and to a method for manufacturing same, which is characterized in that EU-2 zeolite with a controlled degree of phase transformation is used as a catalyst support having an acid site. The EU-2 zeolite, the degree of phase transformation of which is controlled, includes, by controlling synthesis parameters of EU-2, predetermined amounts of materials that are phase-transformed from EU-2 crystals such as cristobalite and quartz. The metal loaded bifunctional catalyst according to the present invention improves selectivity of the isomerization process, rather than a cracking reaction, during a hydroisomerization reaction of n-hexadecane. Therefore, the bifunctional catalyst can be widely used as a catalyst for a dewaxing process such as lubricant base oil and diesel oil.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: July 8, 2014
    Assignee: SK Innovation Co., Ltd.
    Inventors: Tae Jin Kim, Seung Woo Lee, Yoon Kyung Lee, Seung Hoon Oh, Jae Suk Choi
  • Patent number: 8771624
    Abstract: An Object of the patent is to remove highly reducing hydrocarbon exhausted during acceleration period, and to remove efficiently hydrocarbon even after contacting with highly reducing hydrocarbon. By using a catalyst having a higher proportion of palladium having surface charge of 2-valence or 4-valence supported than that of 0-valence by supporting palladium together with magnesium oxide, hydrocarbon exhausted from an internal combustion engine especially during acceleration period can be efficiently removed.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: July 8, 2014
    Assignees: Umicore Shokubai Japan Co., Ltd, Umicore Shokubai USA Inc.
    Inventors: Masanori Ikeda, Hideki Goto, Kosuke Mikita
  • Patent number: 8765625
    Abstract: An emission control catalyst includes copper-ceria to boost low temperature CO oxidation performance, generate exothermic heat during the process, and reduce HC and NOx emissions. As a result, system performance is boosted at equal catalyst cost or maintained at a reduced catalyst cost. In one embodiment, an engine exhaust catalyst includes a first washcoat layer having at least one of a platinum-based catalyst, a palladium-based catalyst, and combinations thereof; and a second washcoat layer having copper-ceria.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: July 1, 2014
    Assignee: Shubin, Inc.
    Inventors: Xianghong Hao, Juan Cai
  • Publication number: 20140179969
    Abstract: A process for preparing an alkylaromatics isomerisation catalyst comprising at least 0.01% wt of platinum on a carrier comprising of from 1 to 9 wt % of ZSM-12 and inorganic binder, which process comprises treating the carrier with an impregnation solution comprising a cationic platinum compound and having a pH of more than 9, and subsequently drying and calcining the impregnated carrier at a temperature of from 200 to 420° C.; and a process for the isomerisation of alkylaromatics with the help of catalyst thus obtained.
    Type: Application
    Filed: November 16, 2011
    Publication date: June 26, 2014
    Inventors: Nicoleta Cristina Nenu, Pelgrim Bart
  • Patent number: 8758596
    Abstract: A first hydroisomerization catalyst contains a support being a extruded product prepared by calcination having a thermal treatment that includes thermally treating at 350° C. or more and at least one metal supported on the support and selected from the group consisting of metals belonging to Groups 8 to 10 of the periodic table, molybdenum and tungsten, wherein the support contains (a1) a calcined zeolite prepared by calcination having a thermal treatment that includes thermally treating at 350° C. or more of an ion-exchanged zeolite obtained by ion exchange of an organic template-containing zeolite containing an organic template and having a 10-membered ring one-dimensional porous structure in a solution containing ammonium ions and/or protons, and (b1) a calcined inorganic oxide prepared by calcination having a thermal treatment that includes thermally treating at 350° C.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: June 24, 2014
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Kazuaki Hayasaka, Motoya Okazaki, Mayumi Yokoi
  • Publication number: 20140170045
    Abstract: Provided are catalysts comprising a small pore molecular sieve embedded with platinum group metal (PGM) and methods for treating lean burn exhaust gas using the same.
    Type: Application
    Filed: June 5, 2012
    Publication date: June 19, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Joseph Michael Fedeyko, Hai-Ying Chen, Paul Joseph Andersen
  • Publication number: 20140171292
    Abstract: A honeycomb structure includes at least one honeycomb unit having a plurality of through holes defined by partition walls extending along a longitudinal direction of the honeycomb unit. The honeycomb unit includes zeolite, an inorganic binder, and a noble metal catalyst. The zeolite is ion-exchanged with Cu and/or Fe to reduce NOx on the zeolite by providing ammonia or its precursor. The noble metal catalyst is supported only in a region of the honeycomb unit. The region extends from one end portion of the honeycomb unit in the longitudinal direction over approximately 1.5% or more to approximately 20% or less of an overall length of the honeycomb unit in the longitudinal direction. The region is provided on a downstream side of the honeycomb unit in a direction in which an exhaust gas is configured to flow through the honeycomb unit.
    Type: Application
    Filed: February 19, 2014
    Publication date: June 19, 2014
    Applicant: IBIDEN CO., LTD.
    Inventors: Masafumi KUNIEDA, Ken YOSHIMURA, Toshiyuki MIYASHITA
  • Publication number: 20140170043
    Abstract: Described are catalyst compositions, catalytic articles, methods of manufacturing catalytic articles and exhaust gas treatment systems and methods that utilize the catalytic articles. The catalytic articles include a washcoat of platinum group metal on refractory oxide support particles, and further including a molecular sieve wherein greater than 90% of the molecular sieve particles have a particle size greater than 1 ?m.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 19, 2014
    Applicant: BASF Corporation
    Inventors: Jeffrey B. Hoke, Ahmad Moini, Marcus Hilgendorff
  • Publication number: 20140157987
    Abstract: To provide an Fe(II)-substituted beta type zeolite which has been ion-exchanged with Fe(II) ions and can effectively adsorb and remove nitrogen monoxide or hydrocarbon contained in gas to be cleaned, even if oxygen is present in the gas at a high concentration or the temperature of the gas is low. In the Fe(II)-substituted beta type zeolite, a ratio of SiO2/Al2O3 is preferably 10 to 18, a BET specific surface area is preferably 400 m2/g to 700 m2/g, a micropore specific surface area is preferably 290 m2/g to 500 m2/g, and a micropore volume is preferably 0.15 cm3/g to 0.25 cm3/g. The amount of Fe(II) supported is preferably 0.01% by mass to 6.5% by mass based on the Fe(II)-substituted beta type zeolite.
    Type: Application
    Filed: January 17, 2012
    Publication date: June 12, 2014
    Applicants: THE UNIVERSITY OF TOKYO, NIPPON CHEMICAL INDUSTRIAL CO., LTD.
    Inventors: Masaru Ogura, Keiji Itabashi, Tatsuya Okubo, Shanmugam Palani Elangovan
  • Publication number: 20140161695
    Abstract: The present invention relates to a diesel oxidation catalyst comprising a carrier substrate, and a first washcoat layer disposed on the substrate, the first washcoat layer comprising palladium supported on a support material comprising a metal oxide, gold supported on a support material comprising a metal oxide, and a ceria comprising compound, as well as a process for the preparation of such catalyst.
    Type: Application
    Filed: November 27, 2013
    Publication date: June 12, 2014
    Applicants: BASF Corporation, BASF SE
    Inventors: Marcus Hilgendorff, Alfred H. Punke, Torsten W. Müller-Stach, Gerd Grubert, Torsten Neubauer, Jeffrey B. Hoke
  • Patent number: 8747652
    Abstract: The present invention concerns a catalyst comprising at least one crystalline material comprising silicon with a hierarchical and organized porosity and at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and/or group VIII of the periodic table of the elements. Said crystalline material comprising silicon with a hierarchical and organized porosity is constituted by at least two spherical elementary particles, each of said particles comprising a matrix based on oxide of silicon, which is mesostructured, with a mesopore diameter in the range 1.5 to 30 nm and having microporous and crystalline walls with a thickness in the range 1.5 to 60 nm, said elementary spherical particles having a maximum diameter of 200 microns. The invention also concerns hydrocracking/hydroconversion and hydrotreatment processes employing said catalyst.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: June 10, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Audrey Bonduelle, Alexandra Chaumonnot
  • Publication number: 20140154160
    Abstract: An emission control catalyst composition comprising a supported bimetallic catalyst consisting of gold and a metal selected from the group consisting of platinum, rhodium, ruthenium, copper and nickel is disclosed. Also disclosed is a catalytic convertor comprising a substrate monolith coated with the emission control catalyst composition and a lean burn internal combustion engine exhaust gas emission treatment system comprising the catalytic convertor. A variety of processes for preparing the catalyst composition are claimed.
    Type: Application
    Filed: November 6, 2013
    Publication date: June 5, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Janet Mary FISHER, David THOMPSETT
  • Publication number: 20140151265
    Abstract: A catalyst composition is provided for use in the conversion of carbon oxide(s) to saturated hydrocarbons. The catalyst composition comprises a carbon oxide(s) conversion catalyst; and a dehydration/hydrogenation catalyst comprising a silicoalumino phosphate (SAPO) molecular sieve and a metal M, for example Pd. In one embodiment, the target saturated hydrocarbons include LPG, the SAPO comprises SAPO-5 and/or SAPO-37.
    Type: Application
    Filed: April 21, 2011
    Publication date: June 5, 2014
    Applicants: BP p.l.c., DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qingjie Ge, Xiangang Ma, Hengyong Xu
  • Patent number: 8742189
    Abstract: The present invention relates to a catalyst for dehydroaromatizing C1-C4-aliphatics, said catalyst being obtainable by twice treating a zeolite from the group of MFI and MWW with NH4-containing mixtures, in each case with subsequent drying and calcination. The catalyst comprises molybdenum and, if appropriate, as further elements, Cu, Ni, Fe, Co, Mn, Cr, Nb, Ta, Zr, V, Zn and/or Ga. The present invention further provides a process for dehydroaromatizing a mixture comprising C1-C4-aliphatics by conversion in the presence of the catalyst.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: June 3, 2014
    Assignee: BASF SE
    Inventors: Frank Kiesslich, Joana Coelho Tsou, Bilge Yilmaz, Sebastian Ahrens, Thomas Heidemann, Veronika Will, Christian Bechtold
  • Publication number: 20140148632
    Abstract: A process and catalyst for improving the yield of propylene from residual oil feedstock includes obtaining residual oil feedstock from a vacuum distillation tower. The residual oil feedstock has contaminant metals such as sodium or vanadium. The residual oil feedstock is contacted with a cracking catalyst in a catalytic cracking zone to make products. A ZSM-5 zeolite, a binder, a filler and a metal trap are components of the cracking catalyst. The metal trap has a trapping agent in an outer shell of the catalyst, a trapping agent in the ZSM-5 binder or combinations thereof. After reacting, the cracking catalyst is separated from the products in a separator zone, then regenerated by combusting coke deposited on a surface of the cracking catalyst in an oxygen-containing environment. The cracking catalyst is returned to the catalytic cracking zone. The catalyst with the metal trap is also disclosed.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: UOP LLC
    Inventors: Robert L. Mehlberg, Erick D. Gamas-Castellanos, Chad R. Huovie, Christopher P. Nicholas
  • Patent number: 8735311
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: May 27, 2014
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 8734743
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Publication number: 20140142329
    Abstract: An amorphous catalyst support comprising at least a first oxide selected from the group consisting of: silica, germanium oxide, titanium oxide, zirconium oxide or mixtures thereof, preferably silica gel beads or diatomaceous earth; a group 3 metal oxide; and anions in an amount not greater than 10% by weight of the catalyst support; wherein the group 3 metal oxide is incorporated in the first oxide structure at the molecular level. The catalyst support is prepared by (a) mixing the first oxide, with an anhydrous source of the group 3 metal oxide, and water, at a pH above 11, thus forming a suspension, (b) washing the catalyst support with water, (c) separating the catalyst support from the water, and (d) optionally drying and/or calcining the catalyst support. A catalyst based on such a support has improved catalytic properties.
    Type: Application
    Filed: October 10, 2013
    Publication date: May 22, 2014
    Applicant: Solvay (Societe Anonyme)
    Inventors: Jean-Pierre Ganhy, Armin T. Liebens
  • Publication number: 20140141963
    Abstract: According to the invention there is provided a zeolite having a porous structure produced by forming the zeolite on a porous carbon substrate which has been substantially or completely removed, wherein (i) the zeolite was formed on the substrate at a loading of at least 8% by weight and/or (ii) the zeolite has a reinforcing layer.
    Type: Application
    Filed: June 27, 2012
    Publication date: May 22, 2014
    Inventors: Susan Jones, Paul Sermon
  • Patent number: 8722560
    Abstract: A subject for the invention is to provide a highly heat-resistant SCR catalyst which has an NOx reduction percentage of 40% or higher at 200° C. after a hydrothermal durability treatment. The invention relates to use of ?-type zeolite which has an SiO2/Al2O3 molar ratio of 20 or higher but less than 30 and a crystallite diameter before a hydrothermal durability treatment of 20 nm or larger, shows a change in crystallite through the hydrothermal durability treatment of less than 10%, and has a fluorine content lower than 0.1%. The ?-type zeolite can be crystallized from a liquid reaction mixture containing a secondary and/or a tertiary alkylamine having 5 or more carbon atoms.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: May 13, 2014
    Assignee: Tosoh Corporation
    Inventors: Yasuyuki Takamitsu, Yukio Ito
  • Publication number: 20140128248
    Abstract: There is disclosed a highly crystalline, small crystal, ferrierite zeolite prepared from a gel containing a source of silica, alumina, alkali metal and a combination of two templating agents. The resulting material includes ferrierite crystals having a particle size of about or less than about 200 nm. The desired crystal size can be achieved by using a specific composition of the gel. The purity of the material and the crystal size was determined by using X-ray powder diffraction and scanning electron microscopy. The material has excellent surface area and micropore volume as determined by nitrogen adsorption.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 8, 2014
    Applicant: PQ Corporation
    Inventors: Anton PETUSHKOV, Hong-Xin Li, William E. Cormier
  • Publication number: 20140127087
    Abstract: An object of the invention is to provide composite particles that have excellent NOx purification performance and can suppress water adsorption-caused contraction and water desorption-caused expansion and to provide a honeycomb structure that has excellent NOx purification performance and can suppress the breakage of the honeycomb unit due to the adsorption or desorption of water, a method for manufacturing the honeycomb structure, and an exhaust gas purifying apparatus including the honeycomb structure. The composite particles of the invention are composite particles having a metallic oxide attached to silicoaluminophosphate particles with a ratio of an amount of Si to a sum of amounts of Al and P in a range of 0.16 to 0.33, in which a specific surface area is in a range of 250 m2/g to 450 m2/g, and an external surface area is in a range of 30 m2/g to 90 m2/g.
    Type: Application
    Filed: August 18, 2011
    Publication date: May 8, 2014
    Applicant: IBIDEN CO., LTD.
    Inventors: Yoshitoyo Nishio, Takunari Murakami
  • Publication number: 20140128247
    Abstract: A process for making styrene including providing a C1 source to a reactor containing a catalyst and reacting toluene with the C1 source in the presence of the catalyst to form a product stream comprising ethylbenzene and styrene. The C1 source can be selected from the group of methanol, formaldehyde, formalin, trioxane, methylformcel, paraformaldehyde, methylal, dimethyl ether, and combinations thereof, and wherein the catalyst contains a nitrogen-substituted zeolite.
    Type: Application
    Filed: January 15, 2014
    Publication date: May 8, 2014
    Applicant: FINA TECHNOLOGY, INC.
    Inventor: Sivadinarayana Chinta
  • Publication number: 20140128246
    Abstract: Compositions and methods for preparing a catalyst composition containing mesoporous materials are described herein. In particular, various embodiments described herein relate to the preparation of catalytic compositions containing a mesoporous zeolite and one or more catalytic nanoparticles dispersed therein. In various embodiments described herein, such catalyst compositions can be used in various catalytic conversion processes, such as hydrocracking.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 8, 2014
    Applicant: Rive Technology, Inc.
    Inventor: Javier Garcia-Martinez
  • Publication number: 20140124411
    Abstract: The hydrocracking catalyst of the present invention is a hydrocracking catalyst comprising a catalyst support comprising a zeolite and an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the hydrocracking catalyst contains a carbonaceous substance comprising a carbon atom, and the content of the carbonaceous substance in the hydrocracking catalyst is 0.05 to 1% by mass in terms of the carbon atom.
    Type: Application
    Filed: March 26, 2012
    Publication date: May 8, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yuichi Tanaka, Takuya Nitsuma, Kazuhiko Tasaka, Marie Iwama
  • Patent number: 8716163
    Abstract: A hydrocarbon conversion catalyst, which comprises, based on the total weight of the catalyst, 1-60 wt % of a zeolite mixture, 5-99 wt % of a thermotolerant inorganic oxide and 0-70 wt % of clay, wherein said zeolite mixture comprises, based on the total weight of said zeolite mixture, 1-75 wt % of a zeolite beta modified with phosphorus and a transition metal M, 25-99 wt % of a zeolite having a MFI structure and 0-74 wt % of a large pore zeolite, wherein the anhydrous chemical formula of the zeolite beta modified with phosphorus and the transition metal M is represented in the mass percent of the oxides as (0-0.3)Na2O.(0.5-10)Al2O3.(1.3-10)P2O5.(0.7-15)MxOy.(64-97)SiO2, in which the transition metal M is one or more selected from the group consisting of Fe, Co, Ni, Cu, Mn, Zn and Sn; x represents the atom number of the transition metal M, and y represents a number needed for satisfying the oxidation state of the transition metal M.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: May 6, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Yujian Liu, Huiping Tian, Xingtian Shu, Jun Long, Yibin Luo, Chaogang Xie, Zhenyu Chen, Liuzhou Zhao, Yuxia Zhu, Youbao Lu
  • Publication number: 20140113981
    Abstract: Described is a process for the production of a pillared silicate. The process comprises (i) providing a layered silicate; (ii) interlayer expanding the layered silicate provided in step (i) comprising a step of treating the layered silicate with one or more swelling agents; (iii) treating the interlayer expanded silicate obtained in step (ii) with one or more hydrolyzable silicon containing compounds; (iv) treating the interlayer expanded compound obtained in step (iii) with an aqueous solution to obtain a pillared silicate; (v) removing at least a portion of the one or more swelling agents from the pillared silicate obtained in step (iv); and (vi) impregnating the pillared silicate obtained in step (v) with one or more elements selected from the group consisting of Fe, Ru, Ir, and combinations of two or more thereof. Also described is a pillared silicate optionally obtainable from said process and its use, in particular, in a process for the production of one or more olefins according to the invention.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 24, 2014
    Applicant: BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Xinhe Bao, Weiping Zhang, Dirk de Vos, Takashi Tatsumi, Feng-Shou Xiao, Hermann Gies, Hiroyuki Imai
  • Publication number: 20140112854
    Abstract: Described is a selective catalytic reduction catalyst comprising an iron-promoted 8-ring small pore molecular sieve. Systems and methods for using these iron-promoted 8-ring small molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are also described.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 24, 2014
    Applicant: BASF CORPORATION
    Inventors: Jaya L. Mohanan, Patrick Burk, Michael J. Breen, Barbara Slawski, Makato Nagata, Yasuyuki Banno, Eunseok Kim
  • Patent number: 8703636
    Abstract: A method of manufacturing a catalyst body which includes: combining one or more inorganic components with an inorganic binder, and optionally with an organic binder, to form a mixture, the one or more inorganic components comprising a primary phase material being zeolite, or CeO2—ZrO2, or a combination; forming the mixture into a shaped body; firing the shaped body to allow the inorganic binder to bind the one or more inorganic components; impregnating the shaped body with a source of a reducing or oxidizing element; and heating the impregnated shaped body to form a redox oxide from the source, the redox oxide being supported by the shaped body.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: April 22, 2014
    Assignee: Corning Incorporated
    Inventors: Steven Bolaji Ogunwumi, Mallanagouda Dyamanagouda Patil
  • Patent number: 8697593
    Abstract: The zeolite catalyst is provided for the alkylation of toluene with methanol to selectively produce styrene and ethylbenzene. The zeolite catalyst is an X-type zeolite modified sequentially, first by ion-exchange with alkali metals, such as cesium, to replace all exchangeable sodium from the zeolite, and then by mixing the modified zeolite with borate salts of a metal such as lanthanum, zirconium, copper, zinc or the like. The initial zeolite composition has a Si to Al molar ratio of approximately 1 to 10, and is preferably either zeolite X or zeolite 13X. The zeolite composition is ion-exchanged with cesium to replace at least 50% of the exchangeable sodium in the zeolite composition. The ion-exchanged zeolite composition is then mixed with a borate salt to form the zeolite catalyst for the alkylation of toluene with methanol for the selective production of styrene and ethylbenzene.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: April 15, 2014
    Assignees: King Fahd University of Petroleum and Minerals, King Abdulaziz City for Science and Technology
    Inventors: Sulaiman S. Al-Khattaf, Hideshi Hattori, Balkrishna B. Tope, Abdullah M. Aitani