Contains Organic Component Patents (Class 507/103)
  • Patent number: 9284798
    Abstract: Methods of treating a fluid loss zone in a wellbore in a subterranean formation including providing swellable particles having an initial unswelled volume, wherein the swellable particles upon swelling adopt a specific shape; introducing the swellable particles into the wellbore in the subterranean formation; and swelling the swellable particles so as to adopt a swelled volume beyond the initial unswelled volume; and sealing at least a portion of the fluid loss zone.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: March 15, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dale E. Jamison, Robert J. Murphy, Matthew L. Miller
  • Patent number: 9200190
    Abstract: Predicting subterranean formation damages from deformable additives in treatment fluids may include measuring exponential shear values for samples comprising a base fluid and at least one deformable additive. Then the relative pore plugging propensity of the deformable additives may be determined by comparing the exponential shear values or rheological values derived therefrom from either two or more deformable additives to each other or from one or more deformable additives to a pore plugging propensity scale.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: December 1, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jason Eric Maxey, Ryan Matthew Van Zanten
  • Publication number: 20150133355
    Abstract: A method is provided involving altering the viscosity of bio-derived paraffins to produce a paraffinic fluid, where the altering step includes chlorinating the bio-derived paraffins; the bio-derived paraffins include a hydrodeoxygenated product produced by hydrodeoxygenating a bio-based feed where the bio-based feed includes bio-derived fatty acids, fatty acid esters, or a combination thereof; the bio-derived paraffins include n-paraffins; and the n-paraffins have a biodegradability of at least 40% after about 23 days of exposure to microorganisms. Also provided are methods of protecting and/or cleaning a substance by applying the paraffinic fluid.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Inventors: Ramin Abhari, E. Gary Roth, Peter Z. Havlik, H. Lynn Tomlinson
  • Patent number: 8993488
    Abstract: A method and system remove hydrogen sulfide from a hydrocarbon containing fluid. In an embodiment, the method for removing hydrogen sulfide from a hydrocarbon containing fluid includes contacting a methylmorpholine-N-oxide solution with the hydrocarbon containing fluid. The method also includes allowing the methylmorpholine-N-oxide to react with the hydrogen sulfide to remove the hydrogen sulfide.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: March 31, 2015
    Assignee: United Laboratories International, LLC
    Inventors: Jack G. Frost, Stephen D. Matza, Martha T. Smith
  • Publication number: 20150087563
    Abstract: A treatment composition may contact an oil-based mud (OBM) filter cake formed over at least part of a wellbore for incorporating more oil and/or filter cake particles into the treatment composition as compared to an otherwise identical filter cake absent the treatment composition. The treatment composition may include, but is not limited to, a surfactant, an aqueous-based fluid, an agent, an optional second acid, and combinations thereof. The agent may be or include long chain alcohols, phenol derivatives, fatty esters, a first acid, and combinations thereof. The first acid may be or include citric acid, oleic acid, tartaric acid, stearic acid, linoleic acid, linolenic acid, aromatic dicarboxylic acids, oxalic acid, malonic acid, succinic acid, glutaric acid, boric acid, adipic acid, a diacid, a triacid, a tetraacid, and combinations thereof.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 26, 2015
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Jonathan J. Brege, Gianna A. Pietrangeli, Alexander J. McKellar, Lirio Qunitero, Ana Forgiarini, Jean-Louis Salager
  • Patent number: 8969259
    Abstract: A method is provided involving altering the viscosity of bio-derived paraffins to produce a paraffinic fluid, where the altering step includes oligomerizing bio-derived paraffins, unsaturating bio-derived paraffins, chlorinating bio-derived paraffins, or a combination of any two or more thereof; the bio-derived paraffins are produced by hydrodeoxygenating a bio-based feed; the bio-based feed comprises bio-derived fatty acids, fatty acid esters, or a combination thereof; the bio-derived paraffins comprise n-paraffins; and the n-paraffins have a biodegradability of at least 40% after about 23 days of exposure to microorganisms. Also provided are methods of protecting a substance by applying a paraffinic fluid and a method of producing an orifice in a substrate by at least injecting a paraffinic fluid into the substrate.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: March 3, 2015
    Assignee: Reg Synthetic Fuels, LLC
    Inventors: Ramin Abhari, E. Gary Roth, Peter Z. Havlik, H. Lynn Tomlinson
  • Patent number: 8969264
    Abstract: A treatment fluid comprises: a metal oxide, wherein the metal oxide is capable of forming a chelate complex or coordination complex with a ligand, wherein the chelate complex or coordination complex has a setting time of less than 90 minutes at a temperature of 71° F. and a pressure of 1 atmosphere. A method of treating a portion of a subterranean formation comprises: introducing the treatment fluid into the subterranean formation; allowing or causing a chelate complex or coordination complex to form between the metal oxide and a ligand; and allowing or causing the chelate complex or coordination complex to set.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: March 3, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dale E. Jamison, Donald L. Whitfill, Matthew L. Miller, Kay A. Morris
  • Publication number: 20150045260
    Abstract: Aqueous and substantially anhydrous fluids having particularly low thermal conductivities and variable densities are disclosed. The fluids include: one or more organic and/or inorganic salts and at least one aprotic polar organic solvent, a mixture of aprotic and protic polar organic solvents, and/or a polar organic solvent having both protic and aprotic polar functional group linkages. The fluids optionally include one or more viscosifying agents and are free of cross-linking agents. Methods for formulating and using the fluids are also disclosed.
    Type: Application
    Filed: October 23, 2014
    Publication date: February 12, 2015
    Inventors: Jeffrey McKennis, Marshall Chiasson, Mohammad Hossaini, Nam-Sook Bae
  • Patent number: 8912131
    Abstract: A method for drilling formations below the bottom of a body of water include mixing a selected amount of hagfish slime with water and drilling the formations using the slime-water mixture as a circulating drilling fluid.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: December 16, 2014
    Assignee: Gregg Drilling & Testing, Inc.
    Inventor: John Gregg
  • Publication number: 20140357533
    Abstract: Provided herein are drilling fluids comprising microbial-derived bio-organic compounds, a weighting agent and a viscosifier. In some embodiments, the microbial-derived bio-organic compounds comprise a famesane, a farnesene or a combination thereof. In certain embodiments, the drilling fluid comprises a continuous phase comprising a famesane, a farnesene or a combination thereof; and a discontinuous phase comprising water or an aqueous solution, an emulsifier, a weighting agent and a viscosifier. In other embodiments, the viscosifier is an organophillic clay.
    Type: Application
    Filed: December 6, 2012
    Publication date: December 4, 2014
    Applicant: AMYRIS, INC.
    Inventors: Jason Wells, Joseph G. Doolan
  • Publication number: 20140349894
    Abstract: Nanomaterial compositions are useful for applications in drilling and completion fluids as enhancers of electrical and thermal conductivity, emulsion stabilizers, wellbore strength improvers, drag reduction agents, wettability changers, corrosion coating compositions and the like These nanomaterials may be dispersed in the liquid phase in low volumetric fraction, particularly as compared to corresponding agents of larger size. Nanofluids (fluids containing nano-sized particles) may be used to drill at least part of the wellbore. Nanofluids for drilling and completion applications may be designed including nanoparticles such as carbon nanotubes. These fluids containing nanomaterials, such as carbon nanotubes, meet the required rheological and filtration properties for application in challenging HPHT drilling and completions operations.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: LIRIO QUINTERO, ANTONIA ENRIQUE CARDENAS, DAVID E. CLARK
  • Patent number: 8895476
    Abstract: Aqueous and substantially anhydrous fluids having particularly low thermal conductivities and variable densities are disclosed. The fluids include: one or more organic and/or inorganic salts and at least one aprotic polar organic solvent, a mixture of aprotic and protic polar organic solvents, and/or a polar organic solvent having both protic and aprotic polar functional group linkages. The fluids optionally include one or more viscosifying agents and are free of cross-linking agents. Methods for formulating and using the fluids are also disclosed.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: November 25, 2014
    Assignee: Tetra Technologies, Inc.
    Inventors: Jeffrey McKennis, Marshall Chiasson, Mohammad Hossaini, Nam-Sook Bae
  • Publication number: 20140342950
    Abstract: Methods of treating a subterranean formation including providing a treatment fluid comprising an oil-based fluid component and an oil-soluble weighting agent that comprises a metal, wherein the oil-soluble weighting agent has a density in the range of from about 1.1 g/cm3 to about 22 g/cm3; solubilizing the oil-soluble weighting agent in the oil-based fluid component of the treatment fluid, wherein the oil-soluble weighting agent increases the density of the oil-based fluid component of the treatment fluid; introducing the oil-based treatment fluid into a wellbore in a subterranean formation.
    Type: Application
    Filed: May 20, 2013
    Publication date: November 20, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Cato Russell McDaniel, Dale E. Jamison
  • Publication number: 20140303057
    Abstract: A method is provided involving altering the viscosity of bio-derived paraffins to produce a paraffinic fluid, where the altering step includes oligomerizing bio-derived paraffins, unsaturating bio-derived paraffins, chlorinating bio-derived paraffins, or a combination of any two or more thereof; the bio-derived paraffins are produced by hydrodeoxygenating a bio-based feed; the bio-based feed comprises bio-derived fatty acids, fatty acid esters, or a combination thereof; the bio-derived paraffins comprise n-paraffins; and the n-paraffins have a biodegradability of at least 40% after about 23 days of exposure to microorganisms. Also provided are methods of protecting a substance by applying a paraffinic fluid and a method of producing an orifice in a substrate by at least injecting a paraffinic fluid into the substrate.
    Type: Application
    Filed: April 26, 2013
    Publication date: October 9, 2014
    Applicant: Syntroleum Corporation
    Inventors: Ramin Abhari, E. Gary Roth, Peter Z. Havlik, H. Lynn Tomlinson
  • Patent number: 8835363
    Abstract: Drilling, drill-in and completion fluids containing nanoparticles for use in hydrocarbon drilling and recovery processes and methods related thereto are provided. The fluids also include a dual acting shield agent that shields the nanoparticles and also acts as a viscosifier. The fluids can be used in various types of hydrocarbon drilling and recovery processes, such as drilling, drill in, completion, and the like.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: September 16, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Md. Amanullah, Ziad Al-Abdullatif
  • Publication number: 20140256601
    Abstract: Herein disclosed is a method for producing a predispersed wax product comprising: operating a high shear device having at least one rotor/stator, configurable for a shear rate of at least 20,000 s?1; introducing wax and a carrier liquid into said high shear device; and forming a dispersion of wax in a carrier liquid, wherein the wax comprises globules with an average diameter less than 5 mm.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: H R D Corporation
    Inventors: Abbas HASSAN, Aziz HASSAN, Gregory G. BORSINGER
  • Patent number: 8822385
    Abstract: Nanoemulsions have been discovered to be useful to the oil field. More particularly water-in-oil (W/O), oil-in-water (O/W) and other classes of nanoemulsions have found beneficial application in drilling, completion, well remediation and other oil and gas industry related operations. Additionally, nanoemulsions may reduce friction pressure losses, as well as reduce subsidence of solid weight material during oil and gas operations. New preparation methods for nanoemulsions have also been discovered.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: September 2, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Lirio Quintero, David E. Clark, Alexander John McKellar
  • Publication number: 20140231145
    Abstract: A drilling fluid including a drilling fluid medium selected from the group consisting of water, air and water, air and foaming agent, a water based mud, an oil based mud, a synthetic based fluid, and a composition thereof. The drilling fluid also includes at least one intercalation compound of a metal chalcogenide having molecular formula MX2, where M is a metallic element such as tungsten (W), and X is a chalcogen element such as sulfur (S), wherein the intercalation compound has a fullerene-like hollow structure or tubular-like structure.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 21, 2014
    Applicant: Nanotech Industrial Solutions, Inc.
    Inventors: Eugene Kverel, George Diloyan
  • Publication number: 20140228257
    Abstract: A method for drilling formations below the bottom of a body of water include mixing a selected amount of hagfish slime with water and drilling the formations using the slime-water mixture as a circulating drilling fluid
    Type: Application
    Filed: October 10, 2012
    Publication date: August 14, 2014
    Applicant: GREGG DRILLING & TESTING, INC.
    Inventor: John Gregg
  • Patent number: 8778850
    Abstract: Formulation for a natural product as a replacement for the use of traditional acidic chemical stimulation methods for the emulsification, removal and release of paraffin and asphaltenes from low producing or pumped off wells and reservoirs with the use of traditional methodologies. Also a method of use of formulation for stimulating an oil well consisting of introducing into the wellbore a biodegradable, non-reactive fluid system containing a water-miscible fatty acid solvent, a solution of fatty acids, an amino alcohol, and at least one non-ionic surfactant. The fluid system may be further in the form of a nanoemulsion that is formed by combining a colloidal solution with one or more emulsifiers, an alcohol, and water. The fluid system may be used in well remediation and stimulation as well as additional, alternative applications such as the cleaning of surface and/or downhole equipment.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: July 15, 2014
    Assignee: Green Earth Technologies, Inc.
    Inventor: Paul Andrecola
  • Patent number: 8763724
    Abstract: The present invention relates to an emulsion, consisting of an oil phase and an aqueous phase and comprising as emulsion components (?1) 15 to 40% by weight of at least one water-immiscible organic solvent as solvent of the oil phase, (?2) 15 to 40% by weight of water as solvent of the aqueous phase, (?3) 10 to 40% by weight of at least one surfactant, (?4) 10 to 40% by weight of an alkoxylated fatty alcohol and (?5) 0 to 25% by weight of at least one other additive, wherein the quantities by weight of the components (?1) to (?5) are each relative to the total weight of the emulsion, and together add up to 100% by weight. The invention further relates to a method for producing an emulsion, to the emulsion which can be obtained from said method, to the use of an emulsion, to a method for cleaning the surfaces of well holes, drilling devices or drillings, to a method for producing a well bore, and to a method for producing an oil or a gas.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: July 1, 2014
    Assignee: Emery Oleochemicals GmbH
    Inventors: Heinz Müller, Diana Mäker
  • Publication number: 20140171346
    Abstract: A drilling fluid is provided which results in an enhanced rate of penetration, and more particularly, a drilling mud composition is provided with a reduced ester content which maintains an enhanced rate of penetration.
    Type: Application
    Filed: July 10, 2013
    Publication date: June 19, 2014
    Applicant: Suncor Energy Inc.
    Inventor: Michael Fefer
  • Patent number: 8748679
    Abstract: A method for producing synthetic fluids from TGFA's harvested from genetically modified seed crops in which all of the fatty acids in the TGFA's from the seeds of a crop have the same carbon atom chain length, preferably C12 or C14, and the synthetic fluids produced by the method. The TGFA's are hydroprocessed to cleave the fatty acids from the glycol backbone and to hydrodeoxygenate and isomerize the fatty acids to form single carbon chain length isoparaffins having a controlled degree of branching with minimum cracking. Controlled mixtures of hydrocarbon components, in which each hydrocarbon component of the mixture has a different single carbon atom chain length, are produced.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: June 10, 2014
    Assignee: Accelergy Corporation
    Inventor: Rocco A. Fiato
  • Publication number: 20140155300
    Abstract: A treatment fluid comprises: a metal oxide, wherein the metal oxide is capable of forming a chelate complex or coordination complex with a ligand, wherein the chelate complex or coordination complex has a setting time of less than 90 minutes at a temperature of 71° F. and a pressure of 1 atmosphere. A method of treating a portion of a subterranean formation comprises: introducing the treatment fluid into the subterranean formation; allowing or causing a chelate complex or coordination complex to form between the metal oxide and a ligand; and allowing or causing the chelate complex or coordination complex to set.
    Type: Application
    Filed: April 4, 2013
    Publication date: June 5, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Dale E. JAMISON, Donald L. WHITFILL, Matthew L. MILLER, Kay A. MORRIS
  • Publication number: 20140138160
    Abstract: A hydrocarbon-based or ester-based drilling fluid or mud is described wherein the drilling fluid contains cesium phosphate. The hydrocarbon-based or ester-based drilling fluid or mud can have, for example, an external phase that contains hydrocarbon fluid and an internal phase that contains cesium phosphate. The hydrocarbon-based drilling fluid or mud can further contain at least one emulsifier or surfactant, and optionally other ingredients. The present invention can permit hydrocarbon-based drilling fluids to be essentially solids-free and may be used without corrosion and/or formation damage problems, for example, due to the use of the cesium phosphate in an internal phase of the hydrocarbon-based or ester-based drilling fluid. The present invention also relates to hydrocarbon-based or ester-based fluids for completion, workover, suspension and packer operations which contain cesium phosphate.
    Type: Application
    Filed: June 21, 2012
    Publication date: May 22, 2014
    Inventors: Siv K. Howard, John Downs
  • Publication number: 20140142003
    Abstract: The present invention is directed to monoester-based drilling fluid compositions and the method of drilling a borehole with said compositions. In some embodiments, the methods for making such monoester-based lubricants utilize a biomass precursor and/or low value Fischer-Tropsch (FT) olefins and/or alcohols so as to produce high value monoester-based drilling fluids. In some embodiments, such monoester-based drilling fluids are derived from FT olefins and fatty acids. The fatty acids can be from a bio-based source (i.e., biomass, renewable source) or can be derived from FT alcohols via oxidation.
    Type: Application
    Filed: August 22, 2013
    Publication date: May 22, 2014
    Applicant: CHEVRON U.S.A INC.
    Inventors: Stephen Joseph Miller, Saleh Ali Elomari, Edward Malachosky, Edward Keith Morton, Ronald John Lenz, JR., Rithana Chea
  • Patent number: 8703656
    Abstract: According to one aspect of the invention, a method of converting an oxy halide salt into a halide dioxide in a reaction zone under certain conditions is provided. More specifically, the method includes generating chlorine dioxide from a stable composition comprising an oxy halide salt by introducing said composition to a reducing agent and minimum temperature within the reaction zone. According to another aspect of the invention, a composition for a stable chlorine dioxide precursor comprising an oxy halide salt is provided.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: April 22, 2014
    Assignee: Sabre Intellectual Property Holdings LLC
    Inventor: John Y. Mason
  • Publication number: 20140090896
    Abstract: A method for enhancing the rheology of drilling fluids that is effective for any mud weight “clay-free” invert emulsion drilling fluid, even when drilling at high temperatures. The improved rheology is effected with addition of a silicon oil to the drilling fluid. A nonlimiting example of such a rheology additive comprises polydimethylsiloxane.
    Type: Application
    Filed: September 30, 2012
    Publication date: April 3, 2014
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Vikrant Bhavanishankar Wagle, Sharath Savari, Sandeep D. Kulkarni
  • Publication number: 20140005079
    Abstract: A oil field production fluid, namely a drilling mud composition, comprising a mixture of: (a) at least one base oil component; and (b) an additive component comprising a blend of dibasic esters. The functional fluid can optionally comprise additional additive components. The blend of dibasic esters comprises two or more of dialkyl methylglutarate, dialkyl adipate, dialkyl ethylsuccinate, dialkyl succinate, dialkyl glutarate.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 2, 2014
    Applicant: RHODIA OPERATIONS
    Inventors: Manilal S. DAHANAYAKE, Subramanian KESAVAN, David FLUCK
  • Publication number: 20130344012
    Abstract: A metathesized natural oil composition comprising (i) a mixture olefins and/or esters, or (ii) a metathesized natural oil, is disclosed. The metathesized natural oil composition has a number average molecular weight in the range from about 100 g/mol to about 150,000 g/mol, a weight average molecular weight in the range from about 1,000 g/mol to about 100,000 g/mol, a z-average molecular weight in the range from about 5,000 g/mol to about 1,000,000 g/mol, and a polydispersity index of about 1 to about 20. The metathesized natural oil composition is metathesized at least once.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 26, 2013
    Inventors: Steven A. Cohen, M. Michelle Morie-Bebel, Alexander D. Ilseman, Benjamin Bergmann, Stephen A. DiBiase, S. Alexander Christensen
  • Patent number: 8609594
    Abstract: According to one aspect of the invention, a method of converting an oxy halide salt into a halide dioxide in a reaction zone under certain conditions is provided. More specifically, the method includes generating chlorine dioxide from a stable composition comprising an oxy halide salt by introducing said composition to a reducing agent and minimum temperature within the reaction zone. According to another aspect of the invention, a composition for a stable chlorine dioxide precursor comprising an oxy halide salt is provided.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: December 17, 2013
    Assignee: Sabre Intellectual Property Holdings LLC
    Inventor: John Y. Mason
  • Publication number: 20130316936
    Abstract: Drilling mud compositions and related methods are provided as embodiments of the present invention. The drilling mud compositions are water-based and contain volcanic ash. The compositions and methods of the present invention provide improved properties relative to tolerance of high salt content, cement, lime, and temperatures.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Saudi Arabian Oil Company
    Inventors: Md. Amanullah, Abdulaziz S. Bubshait, Omar A. Fuwaires
  • Publication number: 20130261030
    Abstract: A fluid may contain nanoparticles and a base fluid where the base fluid may be a non-aqueous fluid. The base fluid may be, but is not limited to a drilling fluid, a completion fluid, a production fluid, and/or a stimulation fluid. The fluid may have at least one property, such as but not limited to a dielectric constant ranging from about 5 to about 10,000, an electrical conductivity ranging from about 1×10?6 S/m to about 1 S/m, and combinations thereof. The non-aqueous fluid may be a brine-in-oil emulsion, or a water-in-oil emulsion, and combinations thereof. The addition of nanoparticles to the base fluid may modify the electrical properties of the fluid.
    Type: Application
    Filed: May 28, 2013
    Publication date: October 3, 2013
    Inventors: Othon Monteiro, Daniel R. Ellis
  • Patent number: 8544565
    Abstract: Compositions including relatively low reactivity acids and having a pH of from about 2 to about 5, mixed with viscoelastic surfactants (VESs) and internal breakers may serve as fluids, in a non-limiting embodiment as drilling fluids, to open underground hydrocarbon reservoirs with carbonate contents of 10 wt % or above. The fluids initially have low viscosities. After the fluid flows out of the drill bit, the acids react with carbonates in the formation thereby increasing the pH of the fluids causing the VES to gel the fluid at the bottom of the hole and within the formation rock. Even when the subterranean formation contains naturally-occurring fractures, the viscosified fluid will reduce fluid loss into the formation. After drilling through the targeted formation, internal breakers in the viscosified fluids will break down the fluids to permit their removal, and production of the well with very little or no near well bore damage.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 1, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews, David E. Clark
  • Publication number: 20130244910
    Abstract: A method of servicing a wellbore in contact with a subterranean formation, comprising placing a wellbore servicing fluid comprising a drilling fluid and lost circulation material into a lost circulation zone within the wellbore, wherein the lost circulation material comprises a polyelectrolyte multilayer material and a first counterion. A wellbore servicing fluid comprising a drilling fluid and a lost circulation material comprising a polyelectrolyte multilayer material and a counterion comprising a halide, wherein the LCM has a first state that is hydrophilic. A tunable lost circulation material comprising a base material, a polyelectrolyte multilayer on said base material, wherein the polyelectrolyte multilayer comprises a first electrolyte layer, a second electrolyte layer, and a charged surface, and a counterion, wherein wettability of the lost circulation material is a function of the counterion.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 19, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Philip Wayne LIVANEC, Matthew Lynn MILLER
  • Publication number: 20130213657
    Abstract: Disclosed are aqueous-based compositions and methods for treating a subterranean formation for inhibiting formation damage after the treatment. Compositions include an aqueous-based fluid, gelling agents, sparingly-soluble crosslinking agents, and one or more formation damage prevention agents, such as scale inhibitors, iron control agents, non-emulsifiers, clay stabilizers, or polymer breakers. The methods include performing a well treating operation, such as a hydraulic fracturing operation, using the compositions described and inhibiting formation damage, such as scale, iron formation, emulsions, or clay swelling within the subterranean formation. The inclusion of the formation damage preventing agents allows for long-term formation damage inhibition after the treatment.
    Type: Application
    Filed: February 22, 2013
    Publication date: August 22, 2013
    Applicant: TEXAS UNITED CHEMICAL COMPANY, LLC
    Inventor: Texas United Chemical Company, LLC
  • Patent number: 8469118
    Abstract: A viscoelastic drilling fluid for drilling in underground rock formations, comprising (a) an aqueous and/or organic liquid base, (b) at least one weighting agent, in particulate form, with a mass per unit volume of at least 2 g/cm3, preferably at least 4 g/cm3, in suspension in said liquid base, and (c) carbon nanotubes with a mean diameter of between 10 and 30 nm and a specific surface in excess of 200 m2/g, preferably of between 200 m2/g and 250 m2/g and a drilling method using such a fluid.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: June 25, 2013
    Assignees: Arkema France, Total SA
    Inventors: Nicolas Passade-Boupat, Cathy Rey, Mathieu Naegel
  • Publication number: 20130150267
    Abstract: Various compositions are provided herein that include a composition that includes a well bore treatment fluid and a magnetically-sensitive component that includes a subterranean fluid additive. In some instances, the magnetically-sensitive component may be a ferrogel. In some instances, the ferrogel may include a polymer matrix and a magnetic species.
    Type: Application
    Filed: February 13, 2013
    Publication date: June 13, 2013
    Applicant: Halliburton Energy Services, Inc.
    Inventor: Halliburton Energy Services, Inc.
  • Patent number: 8450251
    Abstract: A system for reducing pressure drop associated with the turbulent flow of asphaltenic crude oil through a conduit. The crude oil has a high asphaltene content and/or a low API gravity. Such reduction in pressure drop is achieved by treating the asphaltenic crude oil with a high molecular weight drag reducing polymer that can have a solubility parameter within about 20 percent of the solubility parameter of the heavy crude oil. The drag reducing polymer can also comprise the residues of monomers having at least one heteroatom.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: May 28, 2013
    Assignee: Phillips 66 Company
    Inventors: Stuart N. Milligan, Ray L. Johnston, Timothy L. Burden, Wayne R. Dreher, Kenneth W. Smith, William F. Harris
  • Patent number: 8450249
    Abstract: A method of introducing a drag reducing polymer into a pipeline such that the friction loss associated with the turbulent flow though the pipeline is reduced by suppressing the growth of turbulent eddies. The drag reducing polymer is introduced into a liquid hydrocarbon having an asphaltene content of at least 3 weight percent and an API gravity of less than about 26° to thereby produce a treated liquid hydrocarbon. The treated liquid hydrocarbon does not have a viscosity less than the viscosity of the liquid hydrocarbon prior to treatment with the drag reducing polymer. Additionally, the drag reducing polymer is added to the liquid hydrocarbon in the range from about 0.1 to about 500 ppmw.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: May 28, 2013
    Assignee: Phillips 66 Company
    Inventors: Stuart N. Milligan, Ray L. Johnston, Timothy L. Burden, Wayne R. Dreher, Kenneth W. Smith, William F. Harris
  • Patent number: 8450250
    Abstract: A method of preparing a drag reducing polymer wherein the drag reducing polymer is able to be injected into a pipeline, such that the friction loss associated with the turbulent flow through the pipeline is reduced by suppressing the growth of turbulent eddies. The drag reducing polymer is injected into a pipeline of liquid hydrocarbon hydrocarbon having an asphaltene content of at least 3 weight percent and an API gravity of less than about 26° to thereby produce a treated liquid hydrocarbon wherein the viscosity of the treated liquid hydrocarbon is not less than the viscosity of the liquid hydrocarbon prior to treatment with the drag reducing polymer. The drag reducing polymer has a solubility parameter within 4 MPa1/2 of the solubility parameter of the liquid hydrocarbon. The drag reducing polymer is also added to the liquid hydrocarbon in the range from about 0.1 to about 500 ppmw.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: May 28, 2013
    Assignee: Phillips 66 Company
    Inventors: Stuart N. Milligan, Ray L. Johnston, Timothy L. Burden, Wayne R. Dreher, Kenneth W. Smith, William F. Harris
  • Patent number: 8450539
    Abstract: A method and system for producing dispersed waxes, including a high shear mechanical device. In one embodiment, the method comprises forming a dispersion of wax globules in a carrier liquid in a high shear device prior to implementation in a waxy product. In another instance the system for producing waxy products comprises a high shear device for dispersing wax in a carrier liquid.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: May 28, 2013
    Assignee: H R D Corporation
    Inventors: Abbas Hassan, Aziz Hassan, Gregory G. Borsinger
  • Publication number: 20130130944
    Abstract: A fluid pressure transmission pill (FPTP) having an ultra-high viscosity for use in association with hydrocarbon drilling and exploration operations, particularly, managed pressure drilling (MPD) operations, is described. The ultra-high viscosity pill is a weighted pill composition that includes a hydrocarbon fluid, a thixotropic viscosifying agent, one or more activators, an emulsifier/wetting agent, a fluid loss control additive, and a weighting material. In accordance with selected aspects of the described fluid pressure transmission pill, the ratio of the amount of the thixotropic viscosifying agent to the activator is a ratio of about 7:1, and the weighting material is a barium-containing solid-phase material. Also described are methods of use of such FPTP products in subterranean operations, such as well killing operations during managed pressure drilling.
    Type: Application
    Filed: January 11, 2013
    Publication date: May 23, 2013
    Applicant: TEXAS UNITED CHEMICAL COMPANY, LLC
    Inventor: Texas United Chemical Company, LLC
  • Publication number: 20130112414
    Abstract: A method of wellbore strengthening may include providing a wellbore strengthening fluid comprising a drilling fluid, a particulate, and a fiber; introducing the wellbore strengthening fluid into a wellbore penetrating a subterranean formation; and forming a plug comprising the particulate and the fiber in a void near the wellbore, the plug being capable of maintaining integrity at about 1000 psi or greater overbalance pressure.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Inventors: Arunesh Kumar, Sharath Savari, Donald L. Whitfill, Dale E. Jamison
  • Publication number: 20130109763
    Abstract: The present invention relates to a process for the preparation of an ester in a reactor, wherein at least one of at least two different catalysts is an electron donor and a further catalyst is a sulphur-containing proton donor; a device, a process for the preparation of a thermoplastic composition comprising the ester prepared according to the invention, a process for the production of a shaped article comprising the ester according to the invention or the thermoplastic composition according to the invention, a process for the production of a packed product, a process for the production of an at least partly coated object, and uses of the esters according to the invention as an additive in various compositions.
    Type: Application
    Filed: December 30, 2010
    Publication date: May 2, 2013
    Inventors: Peter Daute, Martin Schäfer, Thomas Schweichler
  • Patent number: 8426498
    Abstract: A method of introducing a drag reducing polymer into a pipeline such that the friction loss associated with the turbulent flow though the pipeline is reduced by suppressing the growth of turbulent eddies. The drag reducing polymer is introduced into a liquid hydrocarbon having an asphaltene content of at least 3 weight percent and/or an API gravity of less than about 26° to thereby produce a treated liquid hydrocarbon. The treated liquid hydrocarbon does not have a viscosity less than the viscosity of the liquid hydrocarbon prior to treatment with the drag reducing polymer. Additionally, the drag reducing polymer is added to the liquid hydrocarbon in the range from about 0.1 to about 500 ppmw.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: April 23, 2013
    Assignee: Phillips 66 Company
    Inventors: Stuart N. Milligan, Ray L. Johnston, Timothy L. Burden, Wayne R. Dreher, Kenneth W. Smith, William F. Harris
  • Publication number: 20130045897
    Abstract: An amphiphilic nanoparticle comprises a nanoparticle having a hydrophilic region comprising a hydrophilic functional group bonded to a first portion of a surface of the nanoparticle, and a hydrophobic region of a surface of the nanoparticle. A downhole fluid comprises the amphiphilic nanoparticle, and a method of controlling an oil spill using the downhole fluid are also disclosed.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Soma Chakraborty, Gaurav Agrawal
  • Publication number: 20130036713
    Abstract: The present invention relates to a process for the preparation of an ester in a reactor, wherein at least a portion of the process components is led in a delivery stream outside the reactor over a heat transfer surface as a film, the ratio of the delivery stream to the heat transfer surface being in a range of from 0.25 to 3 m/h, a device, a process for the preparation of a thermoplastic composition comprising the ester prepared according to the invention, a process for the production of a shaped article comprising the ester according to the invention or the thermoplastic composition according to the invention, a process for the production of a packed product, a process for the production of an at least partly coated object, and uses of the esters according to the invention as an additive in various compositions.
    Type: Application
    Filed: December 30, 2010
    Publication date: February 14, 2013
    Inventors: Peter Daute, Wilhelm Reiners, Martin Schäfer, Udo Frerichs, Hinrich Hildebrandt, Joern Ellerbrake
  • Publication number: 20130020083
    Abstract: According to an embodiment, an invert emulsion drilling fluid comprises: an external phase, wherein the external phase of the drilling fluid comprises a hydrocarbon liquid; an internal phase, wherein the internal phase of the drilling fluid comprises a hygroscopic liquid; and a suspending agent, wherein the suspending agent is a polymer comprising urea linkages or urea and urethane linkages. According to certain embodiments, the hygroscopic liquid comprises a salt and a suitable solvent. According to other embodiments, the hygroscopic liquid comprises an alcohol. In certain embodiments, the drilling fluid does not contain an organophilic clay or organophilic lignite. According to another embodiment, a method of using the invert emulsion drilling fluid comprises: introducing the drilling fluid into at least a portion of a subterranean formation.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 24, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Vikrant Bhavanishankar Wagie, Shadaab Syed MAGHRABI
  • Patent number: 8357639
    Abstract: Nanoemulsions have been discovered to be useful to the oil field. More particularly water-in-oil (W/O), oil-in-water (O/W) and other classes of nanoemulsions have found beneficial application in drilling, completion, well remediation and other oil and gas industry related operations. Additionally, nanoemulsions may reduce friction pressure losses, as well as reduce subsidence of solid weight material during oil and gas operations. New preparation methods for nanoemulsions have also been discovered.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: January 22, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Lirio Quintero, David E. Clark, Alexander John McKellar