The Material Primarily Contains Compound Containing Silicon Covalently Bonded To Oxygen (e.g., Aluminum Silicate, Clay) Patents (Class 516/79)
  • Patent number: 10730756
    Abstract: Colloidal compositions and methods of preparing same are provided. The colloidal compositions include a silicate and a metal dispersed therein. The colloidal compositions can further include a stabilizer, such as a quaternary amine, to enhance the and dispersion of the metal loading within the silicate. The colloidal compositions can be made such that the metal is dispersed within the silicate in a controlled manner.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: August 4, 2020
    Assignee: ECOLAB USA INC.
    Inventors: Brian T. Holland, Francois Batllo, Carmen Y. Ortiz, Dennis L. MacDonald
  • Patent number: 10544048
    Abstract: Disclosed is a water-dispersed aerogel, having an eco-friendly composition that contains an organic solvent in a decreased amount while increasing ease of use of aerogel microparticles in a liquid phase and a method of manufacturing the water-dispersed aerogel is also provided.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: January 28, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Young-In Yang, Young-Sam Kim, Kyoung-Shil Oh, Ye-Hon Kim
  • Patent number: 9944798
    Abstract: The present invention relates to composites, comprising inorganic and/or organic pigments and/or fillers in the form of microparticles, the surface of which is coated at least partially with finely divided nano-dolomite with the help of binders based on copolymers comprising as monomers one or more dicarboxylic acids and one or more monomers from the group of diamines, triamines, dialkanolamines or trialkanolamines, a method for producing such composites, aqueous slurries thereof, their use, and the use of the inventive binders for coating the microparticles with nano-dolomite.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: April 17, 2018
    Assignee: Omya International AG
    Inventors: Matthias Buri, Patrick A. C. Gane, René Vinzenz Blum
  • Patent number: 9630865
    Abstract: A method of treating wastewater includes removing BOD and ammonium from the wastewater. The wastewater is directed into a tank where it is mixed with mixed liquor or activated sludge from an activated sludge wastewater treatment system. The mixture of wastewater and mixed liquor or activated sludge forms a mixed liquor stream. The mixed liquor stream is directed to a ballasted flocculation system where suspended solids is removed from the wastewater. This produces a clarified effluent that is directed to a zeolite tank. Clarified wastewater from the ballasted flocculation system is directed into the zeolite tank and mixed with zeolite. Zeolite is effective to remove ammonium from the wastewater. Thus, the process as a whole is effective in removing suspended solids, soluble BOD as a result of mixing the mixed liquor or activated sludge with the wastewater, and ammonium.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: April 25, 2017
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Richard W. DiMassimo, Michael L. Gutshall, Abdelkader Gaid, Sandra Bernard
  • Patent number: 9074118
    Abstract: An aqueous chemical-mechanical polishing composition for polishing metal containing substrates comprising an abrasive particle consisting essentially of a primary particle modified with an aluminosilicate layer, and wherein the abrasive particle has a zeta potential measured at pH 2.3 of about ?5 mV to about ?100 mV. The composition can be used to polish the surface of a tungsten containing substrate.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: July 7, 2015
    Assignee: Cabot Microelectronics Corporation
    Inventors: Robert Vacassy, Renjie Zhou
  • Patent number: 9048512
    Abstract: The present invention relates to a nanosized electrochemical dispersion comprising essentially modified silica sol and at least one additive; also a process of preparing nanosized electrochemical dispersion, wherein the process comprises step of loading at least one additive to metalate modified silica sol to obtain the dispersion; in addition a rechargeable alkaline storage zinc battery comprising nanosized electrochemical dispersion consisting of essentially modified silica sol and at least one additive; further a method of manufacturing a rechargeable alkaline storage zinc battery, wherein the method comprises steps of adding a nanosized electrochemical dispersion consisting essentially modified silica sol and at least one additive into a conventional alkaline storage zinc battery to obtain a rechargeable alkaline storage zinc battery; and further a process to prevent dissolution of zinc in a battery, wherein the process comprises addition of nanosized aqueous electrochemical dispersion comprising essentia
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: June 2, 2015
    Inventor: Thothathri Sampath Kumar
  • Patent number: 8882901
    Abstract: Aqueous dispersion comprising hydrophobized silicon dioxide particles, comprising a. 50%-80% by weight of water, b. 10%-30% by weight of hydrophobized silicon dioxide particles, c. 5%-15% by weight of at least one alcohol alkoxylate of the general formula R1O((CH2)mO)nH, where R1 is a branched or unbranched alkyl or alkenyl radical having 10-25 C atoms, m is 2 or 3 and n is 10-50, d. 0.5%-5% by weight of at least one amine and/or amino alcohol having a molecular weight of less than 500 and e. 0%-1% by weight of N-methylpyrrolidone, all figures for weight percentages being based on the dispersion. Paint formulation comprising the dispersion.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: November 11, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Günther Michael, Wolfgang Lortz, Thorsten Ladwig, Tina Gross
  • Patent number: 8835515
    Abstract: An aqueous sol containing silica-based particles which sol has a specific surface area of at least 115 m2/g aqueous sol and a pH of at least 10.5, and an S-value within the range of from 10 to 45% and/or contains silica-based particles having a specific surface area of at least 550 and less than about 1200 m2/g SiO2, and wherein the sol is substantially free from aluminium.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: September 16, 2014
    Assignee: Akzo Nobel, N.V.
    Inventors: Michael Persson, Marek Tokarz, Maj-Lis Dahlgren, Hans Erik Johansson-Vestin
  • Publication number: 20140251562
    Abstract: An aqueous colloidal silica product, a method of using the aqueous colloidal silica product, and a method of producing an aqueous colloidal silica product, are disclosed. The method of producing the aqueous colloidal silica product incorporates semi-batch addition of alkali metal silicate, which is capable of achieving an aqueous colloidal silica product having desirable physical and chemical characteristics. The aqueous colloidal silica product has been found to be particularly useful as an additive in a papermaking process.
    Type: Application
    Filed: November 25, 2013
    Publication date: September 11, 2014
    Applicant: Ecolab USA Inc.
    Inventors: Minghua Li, Jane Wong Shing, Raymond D. Miller, JR.
  • Patent number: 8309615
    Abstract: An aqueous silica dispersion containing silica particles dispersed in an aqueous medium is provided. The surfaces of the silica particles are treated with reacted aminosilane compound. The aqueous silica dispersion also contains anionic polymeric dispersing agent. The dispersion of the silica particles into an aqueous medium containing both anionic polymeric dispersing agent and aminosilane compound allows the preparation of aqueous silica dispersions at higher solids and/or low viscosities than aqueous silica dispersions that are prepared without either the anionic polymeric dispersing agent or the aminosilane compound. The aqueous silica dispersion is combinable with aqueous emulsion polymers to modify the physical or appearance properties of articles formed from the emulsion polymer.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 13, 2012
    Assignee: Rohm and Haas Company
    Inventor: Joseph Michael Hoefler
  • Patent number: 8308985
    Abstract: The instant invention relates to a process for the preparation of an aqueous suspension of anionic colloidal silica having a neutral pH which is stable over time and comprises individualized particles of colloidal silica which are not bound to one another by siloxane bonds. The instant suspensions show high storage stability and are particularly useful for the clarification of beer, for the preparation of cosmetic formulations, for the production of ink for printers, for paints and for anticorrosive treatments.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: November 13, 2012
    Assignee: AZ Electronic Materials USA Corp.
    Inventors: Eric Jacquinot, Marie-Laure Perard, Uwe Falk, Torsten Henning
  • Patent number: 8153107
    Abstract: The instant invention relates to a process for the preparation of an aqueous suspension of anionic colloidal silica having a neutral pH which is stable over time and comprises individualized particles of colloidal silica which are not bound to one another by siloxane bonds. The instant suspensions show high storage stability and are particularly useful for the clarification of beer, for the preparation of cosmetic formulations, for the production of ink for printers, for paints and for anticorrosive treatments.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: April 10, 2012
    Assignee: AZ Electronic Materials USA Corp.
    Inventors: Eric Jacquinot, Marie-Laure Perard, Uwe Falk, Torsten Henning
  • Patent number: 8148434
    Abstract: A process for producing an aqueous silica-based sol is disclosed wherein a cationic ion exchange resin having part of its ion exchange capacity in hydrogen form is contacted with an aqueous alkali metal silicate to form a slurry having a pH from 5.0 to 11.5 and/or having particle aggregation or microgel formation corresponding to a S value up to 45%; adjusting the pH using a material comprising an aluminum compound; and separating the resin from the slurry. Silica-based sols having an S value from 15 to 25%, mole ratio Si:Al from 20:1 to 50:1, mole ratio Si:X, where X=alkali metal, from 5:1 to 17:1, SiO2 content of at least 5% by weight and containing silica-based particles having a specific surface area of at least 300 m2/g, as well as the use of such silica-based sols in producing paper are disclosed.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: April 3, 2012
    Assignee: Akzo Nobel N.V.
    Inventors: Johan Nyander, Glenn Mankin
  • Patent number: 8133535
    Abstract: An antipenetrating agent is to be added to a solvent ink for preventing penetration of the solvent ink into a medium to be printed. The antipenetrating agent includes inorganic fine particles and a resin soluble in an organic solvent.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: March 13, 2012
    Assignee: Mimaki Engineering Co., Ltd.
    Inventors: Tomotaka Furuhata, Satoshi Takezawa, Isao Tabayashi
  • Patent number: 8118898
    Abstract: The present invention provides a sol of spinous silica-based particles in which silica-based particles having peculiar forms, spinous forms are dispersed in a solvent. The spinous silica-based particles have verrucous projections formed on surfaces of spherical silica-based particles. In the spinous particles, a value of the surface roughness (SA1/SA2, SA1 indicating a specific surface area measured by the BET method or the Sears method and SA2 indicating a specific surface area converted from an average particle diameter (D2) measured by the image analysis method) is in the range from 1.7 to 10. Furthermore the average diameter (D2) measured by the image analysis method is in the range from 7 to 150 nm.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: February 21, 2012
    Assignee: JGC Catalysts and Chemicals Ltd.
    Inventors: Yoshinori Wakamiya, Hiroyasu Nishida, Yuji Tawarazako, Kazuaki Inoue, Osamu Yoshida, Akira Nakashima
  • Patent number: 8063265
    Abstract: A hydrogel having a floatability where from 40% to 90% of a solution and/or suspension to be thickened are thickened starting from the surface of the liquid and the rest of the solution and/or suspension to be thickened is thickened starting from the bottom of the container, a process for preparing the hydrogel and also its use for absorbing blood and/or body fluids, especially in hygiene articles, or for thickening aqueous solutions and/or suspensions, especially for thickening medical wastes.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: November 22, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Martin Beck, Volker Frenz, Anna Kowalski, Elisabeth Selzer, Ernst Jürgen Bauer, Harald Keller, Bernhard Steinmetz
  • Patent number: 7959800
    Abstract: A process is disclosed for the production of acidic solutions of activated silica for water treatment. Activated silica is formed during the process of acidifying a sodium silicate solution to below pH 2 with sulfuric acid.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: June 14, 2011
    Inventor: Antonio T. Robles
  • Patent number: 7919535
    Abstract: The invention relates to an aqueous sol containing silica-based particles which sol has a specific surface area of at least 115 m2/g aqueous sol and an S-value within the range of from 10 to 45% or contains silica-based particles having a specific surface area of at least 550 m2/g and less than 1000 m2/g SiO2. The invention further relates to processes for the production of said aqueous sol and the use of the aqueous sol containing silica-based particles as a drainage and retention aid in the production of paper as well as a process for the production of paper from an aqueous suspension containing cellulosic fibres, and optional filler, in which silica-based particles and at least one charged organic polymer are added to the cellulosic suspension.
    Type: Grant
    Filed: January 8, 2005
    Date of Patent: April 5, 2011
    Assignee: Akzo Nobel N.V.
    Inventors: Michael Persson, Marek Tokarz, Maj-Lis Dahlgren, Hans Johansson-Vestin
  • Patent number: 7914617
    Abstract: Nanoparticle dispersions, inks, pastes, lotions and methods of their manufacture are disclosed. Multifunctional, nanocomposite, hollow nanoparticles, and coated nanoparticle dispersions are also discussed.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: March 29, 2011
    Inventor: Tapesh Yadav
  • Patent number: 7893114
    Abstract: The invention relates to a process for producing aqueous silica-based sols which comprises providing a cationic ion exchange resin having at least part of its ion exchange capacity in hydrogen form; bringing said ion exchange resin in contact with an aqueous alkali metal silicate to form an aqueous slurry; adjusting the pH of the aqueous slurry and separating the ion exchange resin from the aqueous slurry, as well as the silica-based sols obtained by the process; the invention also relates to silica-based sols obtained by the process, as well as a process for producing paper which comprises providing an aqueous suspension comprising cellulosic fibres; adding to the suspension one or more drainage and retention aids comprising a silica-based sol according to the invention; and dewatering the obtained suspension to provide a sheet or web of paper.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: February 22, 2011
    Assignee: Akzo Nobel N.V.
    Inventors: Glenn Mankin, Marek Tokarz, Freddie Hansson
  • Publication number: 20100331431
    Abstract: The present invention relates to a method for forming a silica-based particle or composite consisting of a silica-based material, an active, with or without a surface modification, and the related composition. The silica-based particle is illustrated by the formula (SiO2)x(OH)yRzSt, whereby R is an active or actives such as an organic or inorganic molecule that includes markers, amines, thiols, epoxies, organosilicones, organosilanes, and water soluble agents and, optionally, a surface modifier, S, which may be either organic, polymeric, or inorganic. Examples of a surface modifying material are inorganic salts of aluminum and boron or organic materials such as organosilanes or low molecular weight polymers. As such, the particle can be used in a variety of applications including any of a variety of high temperature, at acidic, neutral, or basic pH, or pressure environments.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventors: Bruce A. Keiser, Timothy S. Keizer, James H. Adair
  • Patent number: 7851513
    Abstract: A process for producing aqueous silica-based sols, having an S value from 15 to 25%, mole ratio Si:Al from 20:1 to 50:1, mole ratio Si:X, where X=alkali metal, from 5:1 to 17:1, SiO2 content of at least 5% by weight and containing silica-based particles having a specific surface area of at least 300 m2/g, are disclosed wherein a cationic ion exchange resin having part of its ion exchange capacity in hydrogen form is contacted with an aqueous alkali metal silicate to form a slurry having a pH from 5.0 to 11.5 and/or having particle aggregation or microgel formation corresponding to a S value up to 45%; adjusting the pH using a material comprising an aluminium compound; and separating the resin from the slurry. Further, the use of such silica-based sols in producing paper is disclosed.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: December 14, 2010
    Assignee: Akzo Nobel N.V.
    Inventors: Johan Nyander, Glenn Mankin
  • Patent number: 7732495
    Abstract: The invention relates to a process for producing aqueous silica-based sols which comprises providing a cationic ion exchange resin having at least part of its ion exchange capacity in hydrogen form; bringing said ion exchange resin in contact with an aqueous alkali metal silicate to form an aqueous slurry; adjusting the pH of the aqueous slurry and separating the ion exchange resin from the aqueous slurry, as well as the silica-based sols obtained by the process. The invention also relates to silica-based sols obtained by the process, as well as a process for producing paper which comprises providing an aqueous suspension comprising cellulosic fibres; adding to the suspension one or more drainage and retention aids comprising a silica-based sol according to the invention; and dewatering the obtained suspension to provide a sheet or web of paper.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: June 8, 2010
    Assignee: Akzo Nobel N.V.
    Inventors: Glenn Mankin, Marek Tokarz, Freddie Hansson
  • Patent number: 7704315
    Abstract: Aqueous dispersion containing a metal oxide powder with a fine fraction and a coarse fraction, in which—the metal oxide powder is silicon dioxide, aluminum oxide, titanium dioxide, zirconium dioxide, cerium oxide or a mixed oxide of two or more of the aforementioned metal oxides,—the fine fraction is present in aggregated form and has a mean aggregate diameter in the dispersion of less than 200 nm,—the coarse fraction consists of particles with a mean diameter of 1 to 20 ?m, —the ratio of fine fraction to coarse fraction is 2:98 to 30:70, and—the content of metal oxide powder is 50 to 85 wt. %, referred to the total amount of the dispersion. The aqueous dispersion is produced by a process comprising the steps:—production of a fine fraction dispersion by dispersing the pulverulent fine fraction in water by means of an energy input of at least 200 KJ/m3?, and—introducing the coarse fraction in the form of a powder into the fine fraction dispersion under dispersing conditions at a low energy input.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: April 27, 2010
    Assignee: Degussa AG
    Inventors: Monika Oswald, Corinna Kissner, Roland Weiss, Andreas Lauer
  • Patent number: 7683098
    Abstract: Methods for manufacturing nanomaterial dispersions, such as nanomaterial concentrates, and related nanotechnology are provided. The nanomaterial concentrates provided can be more cheaply stored and transported compared to non-concentrate nanomaterial forms.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: March 23, 2010
    Assignee: PPG Industries Ohio, Inc.
    Inventor: Tapesh Yadav
  • Patent number: 7674374
    Abstract: A process is disclosed for the production of acidic solutions of activated silica for water treatment. Activated silica is formed during the process of acidifying a sodium silicate solution to below pH 4 with sulfuric acid. A polyvalent metal salt is then added to stabilize the acidified activated silica.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: March 9, 2010
    Inventor: Antonio T. Robles
  • Patent number: 7659315
    Abstract: A method of use of polyaminomethylenephosphonates as dispersing, wetting, and/or stabilizing agents in formulations for cements, detergents, ceramic materials, dyes, synthetic resins, rubbers, drilling fluids, and for reverse osmosis includes the step of adding a polyaminomethylenephosphonate having the formula: wherein n is an integer higher than 2, M is an alkaline metal or the ammonium ion, and R is: —CH2PO3M2; —CH2Z, wherein Z is —CH2OH, —CHOHCH3, —CHOHCH2Cl, or —CHOHCH2OH; —(CH2)mSO3M, m being 3 or 4; —CH2CH2T, wherein T is —CONH2, —CONH2, —CHO, —COOQ, —COOX, CN, wherein Q is —CH3 or —C2H5 and X is an alkaline metal ion or the ammonium ion; and wherein the polyaminomethylenephosphonate is present in a weight quantity of over 0.01% with respect to the total weight of the formulation.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: February 9, 2010
    Assignee: Giovanni Bozzetto S.p.A.
    Inventors: Massimo Paladini, Francesco Spini, Alessandro Scalvedi, Maurizio Bellotto, Jean Claude Valle
  • Patent number: 7629392
    Abstract: A process for producing an aqueous silica-based soils disclosed wherein a cationic ion exchange resin having part of its ion exchange capacity in hydrogen form is contacted with an aqueous alkali metal silicate to form a slurry having a pH from 5.0 to 11.5 and/or having particle aggregation or microgel formation corresponding to a S value up to 45%; adjusting the pH using a material comprising an aluminum compound; and separating the resin from the slurry. Silica-based sols having an S value from 15 to 25%, mole ratio Si:Al from 20:1 to 50:1, mole ratio Si:X, where X=alkali metal, from 5:1 to 17:1, SiO2 content of at least 5% by weight and containing silica-based particles having a specific surface area of at least 300 m2/g, as well as the use of such silica-based sols in producing paper are also disclosed.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: December 8, 2009
    Assignee: Akzo Nobel N.V.
    Inventors: Johan Nyander, Glenn Mankin
  • Patent number: 7608644
    Abstract: The present invention refers to a process for the production of paper from a suspension containing cellulosic fibers, and optionally fillers, comprising adding to the suspension at least one cationic organic polymer and an aqueous silica-containing composition comprising an anionic naphthalene sulphonate formaldehyde condensate and anionic silica-based particles, the composition having a weight ratio of naphthalene sulphonate formaldehyde condensate to silica-based particles within the range of from 0.2:1 to 99:1, and containing naphthalene sulphonate formaldehyde condensate and silica-based particles in an amount of at least 0.01% by weight, based on the total weight of the aqueous silica-containing composition, and with the proviso that the composition contains substantially no cellulose-reactive sizing agent. The invention also encompasses an aqueous silica-containing composition and a method for preparation of an aqueous silica-containing compound.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: October 27, 2009
    Assignee: Akzo Nobel N.V.
    Inventors: Johan Nyander, Hans Johansson-Vestin, Jan Nordin, Annika Viola Pal
  • Publication number: 20090253813
    Abstract: A colloidal silica comprising, silica particles inside of which or on the surface of which a nitrogen containing alkaline compound is fixed, wherein said silica particles are prepared by forming and growing colloid particles using the nitrogen containing alkaline compound. Said colloidal silica can be prepared by preparing active silicic acid aqueous solution contacting silicate alkali aqueous solution with cation exchange resin, adding the nitrogen containing alkaline compound and heating, and then growing up particles by build-up method.
    Type: Application
    Filed: January 30, 2009
    Publication date: October 8, 2009
    Inventors: Yuko Ishiguri, Kunio Ohkubo, Yukiyo Saito, Masahiro Izumi, Masaru Nakajo, Kuniaki Maejima, Hiroaki Tanaka
  • Publication number: 20090149592
    Abstract: The present invention provides a method for reducing metal ions (for example, silver ions) and stably dispersing metal nanoparticles by nanosilicate platelets. An organic dispersant, nanosilicate platelets and a metal ionic solution are mixed to perform a reductive reaction, wherein the organic dispersant is tri-sodium citrate dihydrate (SCD), chitosan or polyvinyl pyrrolidone (PVP), to produce a mixture of stably dispersed metal nanoparticles.
    Type: Application
    Filed: October 25, 2008
    Publication date: June 11, 2009
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jiang-Jen Lin, Yi-Lin Liao, Chien-Chia Chu, Chih-Wei Chiu
  • Patent number: 7503963
    Abstract: A water in oil emulsion wax composition composed of natural and synthetic waxes, surfactants, suspending agents, and aluminum oxide particles of high purity of 0.20 micrometer or less containing no magnesium oxide and being agglomerate free together with a aliphatic hydrocarbon solvent producing a wax having cleaning properties and an enhanced high gloss surface from a single application.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: March 17, 2009
    Assignee: Ashland Licensing And Intellectual Property LLC
    Inventors: Elsie A. Jordan, Wen-Chen Su, Hida Hasinovic, Michael A. Dituro, Frances E. Lockwood
  • Publication number: 20090023837
    Abstract: An emulsion coagulant for coagulating a tire puncture sealant containing emulsion particles includes a mineral which induces aggregation of the emulsion particles by one or both of weakening of surface charge of the emulsion particles and formation of hydrogen bond between the mineral and the emulsion particles, and a gelation agent. The emulsion coagulant enables easy recovery of the tire puncture sealant from a tire as well as easy disposal of the recovered sealant.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 22, 2009
    Applicant: The Yokohama Rubber Co., Ltd.
    Inventors: Takahiro Okamatsu, Kazushi Kimura
  • Patent number: 7470346
    Abstract: A process of preparing an aqueous composition comprising a polysilicate, wherein the composition is a substantially uniform liquid when measured at 25° C., comprising the steps of, i) providing an aqueous liquid having a source of silicate, ii) adjusting the pH of the liquid to between about 2 and about 10.5, thereby causing polymerisation of the silicate, iii) allowing sufficient time for the polymerisation to proceed to substantial completion and thereby forming a product comprising gelled material, iv) subjecting the gelled material to sufficient shear to form a substantially uniform liquid. The novel aqueous composition made by this process is useful in the manufacture of paper and paperboard either as a mineral filler or as a retention/drainage aid.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: December 30, 2008
    Assignee: Ciba Specialty Chemicals Water Treatments Ltd.
    Inventors: Simon Donnelly, Laurence Rys, Philip Ford
  • Patent number: 7452849
    Abstract: A silicone MQ resin based composition provides the oil industry with Fluid Loss Control (FLC) additives for water based drilling muds which are non-damaging. The composition is capable of achieving zero fluid seepage through filter cake, and a short build time for the initial filter cake, while not reducing the return flow of oil from producing formations. The composition is stable in saturated salt at 120° C. and elevated pressures. The composition comprises solid particles of silicone resin with a glass transition temperature more than 70° C., and it contains solid particles of silicone resin with a particle size distribution in which ( ) at least 90 volume percent of solid particles of silicone resin have an average major axis diameter of 40 ?m or less than 40 ?m, and (ii) at least 10 volume percent of solid particles of silicone resin have an average major axis diameter of 2 ?m or less.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: November 18, 2008
    Assignee: Dow Corning Corporation
    Inventors: Vicki Lynn Berry, Julie Lyn Cook, Susan J. Gelderbloom, Diane Marie Kosal, Donald Taylor Liles, Charles W. Olsen, Jr., Christian Francis C. Rome
  • Publication number: 20080188574
    Abstract: This invention provides a disperse system having fine powder-typed inorganic metal oxide dispersed in water and preparing method for the same and more particularly, it provides a method for preparing a disperse system having fine powder-typed inorganic metal oxide dispersed in water characterized in that a) a hydrophobically treated fine powder-typed inorganic metal oxide; b) a sulfosuccinate or sulfosuccinamate or an alkoxylated alcohol dispersant; and c) water are mixed and dispersed by a high-speed bead mill and a disperse system having fine powder-typed inorganic metal oxide dispersed in water prepared by the same. The disperse system having fine powder-typed inorganic metal oxide dispersed in water of the present invention has excellent characteristics in that it has high transparency in the visible ray spectrum, it has excellent UV protection ability when applied to cosmetics, it provides better feelings than oil dispersions, and it has better water-proof property than existing water dispersions.
    Type: Application
    Filed: May 21, 2007
    Publication date: August 7, 2008
    Applicants: SUNJIN CHEMICAL Co., Ltd., RANCO CO., Ltd.
    Inventors: Sung-Ho Lee, Woo-Kyu Kang
  • Publication number: 20080131571
    Abstract: The present invention provides a sol of spinous inorganic oxide particles not containing coarse particles, in which particles having extremely homogeneous particles are dispersed in a solvent. An acidic silicic acid is added to a dispersion liquid of core particles to grow core particles, and then again the acidic silicic acid is added at the addition rate 1.2 to 1.8 higher than that in the previous step to prepare a sol of spinous inorganic oxide particles. Then the sol is subjected to centrifugation to remove coarse particles having the diameter of 800 nm or more, thus spinous inorganic oxide particles having peculiar form such as a spinous one being obtained.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 5, 2008
    Applicant: CATALYSTS& CHEMICALS INDUSTRIES CO., LTD
    Inventors: Kazuhiro Nakayama, Mami Tokunaga, Akira Nakashima, Kazuaki Inoue, Osamu Yoshida, Yoshinori Wakamiya, Hiroyasu Nishida
  • Publication number: 20080086951
    Abstract: The present invention provides a sol of spinous silica-based particles in which silica-based particles having peculiar forms, spinous forms are dispersed in a solvent. The spinous silica-based particles have verrucous projections formed on surfaces of spherical silica-based particles. In the spinous particles, a value of the surface roughness (SA1/SA2, SA1 indicating a specific surface area measured by the BET method or the Sears method and SA2 indicating a specific surface area converted from an average particle diameter (D2) measured by the image analysis method) is in the range from 1.7 to 10. Furthermore the average diameter (D2) measured by the image analysis method is in the range from 7 to 150 nm.
    Type: Application
    Filed: October 11, 2007
    Publication date: April 17, 2008
    Applicant: CATALYSTS & CHEMICALS INDUSTRIES CO., LTD
    Inventors: Yoshinori Wakamiya, Hiroyasu Nishida, Yuji Tawarazako, Kazuaki Inoue, Osamu Yoshida, Akira Nakashima
  • Patent number: 7169261
    Abstract: An aqueous sol containing silica-based particles which has an S-value within the range of from 10 to 45%, a viscosity within the range of from 5 to 40 cP, and a molar ratio of SiO2 to M2O, where M is alkali metal or ammonium, within the range of from 10:1 to 40:1, or a silica content of at least 10% by weight. The invention further relates to a process for the production of silica-based particles comprising the steps of: (a) acidifying an aqueous silicate solution to a pH of from 1 to 4 to form an acid sol; (b) alkalising the acid sol at an SiO2 content within the range of from 4.5 to 8% by weight to; (c) allowing particle growth of the alkalised sol for at least 10 minutes, or heat-treating the alkalised sol at a temperature of a least 30° C.; and then (d) alkalising the obtained sol to a pH of at least 10.0.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: January 30, 2007
    Assignee: Akzo Nobel N.V.
    Inventors: Michael Persson, Marek Tokarz, Maj-Lis Dahlgren
  • Patent number: 7163358
    Abstract: The invention relates to the use of a composition for injection grouting obtainable by mixing an alkali metal silicate or an organic silicate, colloidal silica particles, and at least one gelling agent, wherein the weight ratio of colloidal silica to silicate is from about 2:1 to about 100:1. The invention also relates to a method of sealing a leaking part or cavity, and method of cutting off a liquid flow in a leaking part or cavity. The invention further relates to a composition for injection grouting and a method for preparing such composition.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: January 16, 2007
    Assignee: Akzo Nobel N.V.
    Inventors: Peter Greenwood, Inger Jansson, Ulf Skarp
  • Patent number: 7053125
    Abstract: Comb polymers are used as dispersants to increase the stability of colloidal suspensions containing multivalent or high concentrations of monovalent ions. Stabilized colloidal suspensions and methods of forming stabilized colloidal suspensions are described, including suspensions containing ceramic precursors or bioactive agents useful in forming ceramic substrates or pharmaceutical compositions, respectively.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: May 30, 2006
    Assignees: The Board of Trustees of the University of Illinois, W.R. Grace & Co.-Conn.
    Inventors: Jennifer A. Lewis, Glen Kirby, Josephine Ho-Wah Cheung, Ara Avedis Jeknavorian
  • Patent number: 6884753
    Abstract: The present invention provides a method for producing a ceramic dispersion composition, the method comprising the step of heating a mixture of a ceramic powder having a photocatalytic activity, a dispersant and a solvent at a temperature of about 70° C. or higher without substantially letting the solvent out of the reaction system. The ceramic dispersion composition can be used for providing a film showing a high hydrophilicity by light irradiation.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: April 26, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yoshiaki Sakatani, Kensen Okusako, Hironobu Koike
  • Patent number: 6869256
    Abstract: A method for sealing rock or soil comprising inserting a sealing composition obtained by mixing a silica sol and at least one gelling agent, wherein the silica sol has an S-value higher than about 72%, a method for preparing the sealing composition and the composition obtained from the method.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: March 22, 2005
    Assignee: Akzo Nobel N.V.
    Inventors: Peter Greenwood, Inger Jansson, Ulf Skarp
  • Patent number: 6857824
    Abstract: The present invention relates to a method for sealing rock or soil comprising inserting a sealing composition obtained by mixing a silica sol and at least one gelling agent, wherein the silica sol has an S-value higher than about 72%, a method for preparing the sealing composition and the composition obtained from the method.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: February 22, 2005
    Assignee: Akzo Nobel N.V.
    Inventors: Peter Greenwood, Inger Jansson, Ulf Skarp
  • Publication number: 20040247895
    Abstract: A process for making a glass matrix containing an active substance or component by charging a carrier molecule with one or more active substances or components and executing a sol/gel process the presence of the charged carrier molecule to form a gel matrix containing the active substances or components. Films, coverings, layers, and/or coatings composed of porous sol/gel glass matrices based on polysilicic acids, silicates, borates, and/or aluminates, the matrix incorporating carrier molecules charged with one or more active substances and/or components. Porous glass matrices based on silicates, polysilicic acids, borates, and/or aluminates, having incorporated therein carrier molecules charged with at least one active substance and/or component.
    Type: Application
    Filed: December 1, 2003
    Publication date: December 9, 2004
    Inventors: Michael Dreja, Wolfgang Von Rybinski
  • Patent number: 6808769
    Abstract: The present invention provides an aqueous dispersion containing at least two powder types selected from one or more metal oxide powders and/or one or more non-metal oxide powder. The present invention also provides a coating composition containing this dispersion, an inkjet recording medium containing the coating composition, and methods of making the same.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: October 26, 2004
    Assignee: Degussa AG
    Inventors: Christoph Batz-Sohn, Thomas Scharfe, Wolfgang Lortz
  • Patent number: 6780920
    Abstract: Formulations comprising novel porous metal oxide particles and binder are particularly suitable for ink receptive coatings, e.g., for ink jet papers and films. The metal oxide particles used in this application have a porous structure that differs significantly from the nonporous silica colloids. The particles have a median particle size in the range of about 0.05 to about 3 microns and porosity such that when an aqueous dispersion of the particles is dried at least 0.5 cc/g of pore volume is from pores having a pore size of 600 Å or less. The particles also have a viscosity derived pore volume of at least 0.5 cc/g. Formulations comprising particles having a zeta potential of +20 mV are also disclosed.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: August 24, 2004
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: David Monroe Chapman, Demetrius Michos
  • Patent number: 6774147
    Abstract: An aqueous titanium oxide-dispersed sol comprising titanium oxide particles dispersed in water, said sol comprising chloride ions in an amount of 50 to 10,000 ppm by weight as the chlorine element. Titanium tetrachloride is hydrolyzed to form an aqueous titanium oxide-dispersed sol and the chloride ion concentration thereof is controlled. Another aqueous titanium oxide-dispersed sol comprising brookite-type titanium oxide particles dispersed in water, said titanium oxide particles having an average particle size of not more than 0.5 &mgr;m and a specific surface area of not less than 20 m2/g. Addition of titanium tetrachloride to hot water at 75 to 100° C. followed by hydrolysis at 75° C. to the boiling point of the mixture.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: August 10, 2004
    Assignee: Showa Denko K.K.
    Inventors: Masahiro Ohmori, Tadashi Hamanaka, Hidenori Nakamura
  • Publication number: 20040102529
    Abstract: A composition is provided in the present invention comprising functionalized colloidal silica. The colloidal silica is functionalized with at least one organoalkoxysilane functionalization agent and subsequently functionalized with at least one capping agent. Further embodiments of the present invention include dispersions comprising the functionalized colloidal silica and methods for making.
    Type: Application
    Filed: November 22, 2002
    Publication date: May 27, 2004
    Inventors: John Robert Campbell, Slawomir Rubinsztajn, Joseph Michael Anostario
  • Publication number: 20040063796
    Abstract: A pseudo-plastic or thixotropic carrier having anti-malodorous components dissolved or suspended therein is sprayed on the internal surfaces of an ostomy bag or pouch. The viscoelastic properties of the carrier allow the composition to be conveniently dispensed from a spray bottle into the ostomy bag and retained on the inner walls thereof without being displaced therefrom by incoming waste during use of the ostomy bag. This allows the composition to continue to deodorize the ostomy bag headspace even after waste material begins to fill the bag.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Inventors: Anthony E. Winston, Willie J. Carter