Ingredient Contains A Phosphorus Atom Patents (Class 521/106)
  • Patent number: 10696777
    Abstract: A polyurethane composition comprising a mixture comprising at least two aldehyde scavengers, a polyurethane product, and a process for making polyurethane foam are disclosed. The mixture of scavenger compounds can reduce, if not eliminate, the emissions of aldehydes from polyurethane foams. The scavenger compounds comprise at least one member selected from the group consisting of: phenol or substituted phenol, a 1,3-dicarbonyl compound, a polyamine bearing a 1,3-propanediamino function, melamine, a 1,2-diaminocycloalkane, an ammonium salt, and aminosiloxane.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: June 30, 2020
    Assignee: Evonik Operations GmbH
    Inventors: Juan Jesus Burdeniuc, Gauri Sankar Lal, Jennifer Elizabeth Antoline Al-Rashid, Torsten Panitzsch
  • Patent number: 10683385
    Abstract: A polyurethane composition comprising an aldehyde scavenger, a polyurethane product, and a process for making polyurethane foam are disclosed. The scavenger compounds can reduce, if not eliminate, the emissions of aldehydes from polyurethane foams. The scavenger compounds comprise at least one member selected from the group consisting of: phenol or substituted phenol, a 1,3-dicarbonyl compound, a polyamine bearing a 1,3-propanediamino function, melamine, a 1,2-diaminocycloalkane, an ammonium salt; a compound containing the bisulfite anion, titanium dioxide and aminosiloxane.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: June 16, 2020
    Assignee: Evonik Operations GmbH
    Inventors: Sheng Su, Juan Jesus Burdeniuc, Gauri Sankar Lal, Jennifer Elizabeth Antoline Al-Rashid, Torsten Panitzsch
  • Patent number: 10457803
    Abstract: Orthopedic implants having a bone interface member and a water swellable IPN or semi-IPN with a stiffness, hydration, and/or compositional gradient from one side to the other and physically attached to the bone interface member. The invention also includes an orthopedic implant system including an implant that may conform to a bone surface and a joint capsule. The invention also includes orthopedic implants with water swellable IPN or semi-IPNs including a hydrophobic thermoset or thermoplastic polymer first network and an ionic polymer second network, joint capsules, labral components, and bone interface members. The invention also includes a method of inserting an orthopedic implant having a metal portion and a flexible polymer portion into a joint, including inserting the implant in a joint in a first shape and changing the implant from a first shape to a second shape to conform to a shape of a bone.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: October 29, 2019
    Assignee: Hyalex Orthopaedics, Inc.
    Inventors: David Myung, Michael J. Jaasma, Lampros Kourtis, Jeffrey G. Roberts, Vernon Hartdegen
  • Patent number: 10351687
    Abstract: The present invention relates to a composition suitable for production of rigid polyurethane or polyisocyanurate foams, said composition comprising at least one isocyanate component, at least one polyol component, at least one foam stabilizer, at least one urethane and/or isocyanurate catalyst, optionally water and/or blowing agent, and optionally at least one flame retardant and/or further additives, which comprises at least two different varieties 1 and 2 of polyether siloxanes as foam stabilizers, and to the use of this composition for production of foamed polyurethane or polyisocyanurate materials, preferably rigid foams.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: July 16, 2019
    Assignee: Evonik Degussa GmbH
    Inventors: Jorg Diendorf, Raymond M. Geiling, III, Christian Eilbracht, Michael Ferenz
  • Patent number: 10329398
    Abstract: A flexible polyurethane foam article exhibiting flame resistance comprises the reaction product of an isocyanate and an isocyanate-reactive component comprising a polyol reactive with the isocyanate. The isocyanate and the isocyanate-reactive component are reacted in the presence of a blowing agent and a phospholene oxide. A method of producing the flexible polyurethane foam article includes the step of reacting the isocyanate and the isocyanate-reactive component in the presence of the blowing agent and an effective amount of the phospholene oxide to form the flexible polyurethane foam article which is flame resistant.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: June 25, 2019
    Assignee: BASF SE
    Inventors: Steven E. Wujcik, Rajesh Kumar, Christopher J. Milantoni
  • Patent number: 10307515
    Abstract: Systems and methods related to polymer foams are generally described. Some embodiments relate to compositions and methods for the preparation of polymer foams, and methods for using the polymer foams. The polymer foams can be applied to a body cavity and placed in contact with, for example, tissue, injured tissue, internal organs, etc. In some embodiments, the polymer foams can be formed within a body cavity (i.e., in situ foam formation). In addition, the foamed polymers may be capable of exerting a pressure on an internal surface of a body cavity and preventing or limiting movement of a bodily fluid (e.g., blood, etc.).
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: June 4, 2019
    Assignee: Arsenal Medical Inc.
    Inventors: Upma Sharma, Irina Gitlin, Gregory T. Zugates, Adam Rago, Parisa Zamiri, Rany Busold, Robert J. Caulkins, Toby Freyman, Quynh Pham, Changcheng You, Jeffrey Carbeck
  • Patent number: 10167396
    Abstract: Embodiments of an optical fiber ribbon cable are provided. The optical fiber ribbon cable includes a cable jacket having an interior surface defining a central bore, at least one buffer tube located in the central bore of the cable jacket, and at least one optical fiber ribbon disposed within the at least one buffer tube. The at least one optical fiber ribbon includes a plurality of optical fibers, a polymer matrix surrounding the plurality of optical fibers, and a low-smoke, flame retardant (LSFR) coating surrounding the polymer matrix. The LSFR coating includes from 25 to 65% by weight of an inorganic, halogen-free flame retardant filler dispersed in a curable acrylate medium. Further, the inorganic, halogen-free flame retardant filler includes particles having, on average, a maximum outer dimension of 5 microns.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: January 1, 2019
    Assignee: Corning Incorporated
    Inventor: Yangbin Chen
  • Patent number: 10040890
    Abstract: The present invention provides a method for preparing a foam that includes a polyurethaneurea dispersion. These foams have enhanced flexibility and resistance to compressibility compared to convention polyurethane foam. These foams may also be made by a reaction injection molding process. The method includes preparing a shaped polyurethane foam article by: (a) providing a first composition comprising at least one polyol, a chain extender composition and a blowing agent; (b) providing a second composition comprising at least one of a diisocyanate, a capped glycol, and combinations thereof; (c) mixing the first composition and the second composition to form a reaction mixture into a heated mold; and (d) allowing the reaction mixture to form a polyurethane foam; wherein the first composition includes one of: (i) the chain extender composition includes at least one amine compound; (ii) the blowing agent includes a polyurethaneurea aqueous dispersion; and (iii) combinations of (i) and (ii).
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: August 7, 2018
    Assignee: INVISTA North America S.a r.l.
    Inventors: James Michael Lambert, Douglas K. Farmer, Achille Mayelle Bivigou Koumba
  • Publication number: 20150065592
    Abstract: A formulation for preparing a low density, full water blown polyurethane rigid foam includes an isocyanate component; an isocyanate-reactive component comprising from 30-50 wt % of a first polyether polyol having a functionality greater than 5 and an OH value from 350-550 mgKOH/g; from 5 to 25 wt % of a diol having an OH value from 100-300 mgKOH/g; and from 15 to 35 weight percent of a second polyether polyol having a functionality from 3 to 5; further including from 1.5 to 5 wt % of a catalyst selected from dimethylbenzylamine and/or 1,2-dimethyl-imidazole; from greater than 0 to 1 wt % of a trimerization catalyst selected from a glycine salt and/or tris(dimethyl aminomethyl) phenol; greater than 4.1 wt % water as a blowing agent; and any additional constituents selected such that the formulation, excluding the isocyanate component, totals 100 wt % and, the formulation absent the isocyanate component, has a dynamic viscosity from 540 to 864 mPa*s at 20° C.
    Type: Application
    Filed: March 3, 2013
    Publication date: March 5, 2015
    Applicant: Dow Global Technologies LLC
    Inventor: Cecilia Girotti
  • Publication number: 20150051305
    Abstract: The present disclosure relates to a bone cement composed of a hydrophilic component and a hydrophobic component, wherein biodegradable material is deposited in pores of the bone cement via the hydrophilic component.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 19, 2015
    Inventors: Christoph Sattig, Elvira Dingeldein
  • Patent number: 8916620
    Abstract: A method for improving the thermal stability of polyurethane-modified polyisocyanurate (PU-PIR) foams is provided. Moreover, a process for producing the PU-PIR foams exhibiting improved thermal stability is provided. The foams have incorporated therein a high molecular weight ammonium polyphosphate (APP). APP is employed as a partial or complete substitute for flame retardants conventionally employed in PU-PIR foams. The foams of the invention exhibit excellent and improved thermal stability characteristics as compared to foams to which no APP has been added.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: December 23, 2014
    Assignee: Stepan Company
    Inventors: Warren A. Kaplan, Angelo R. Gabbianelli, David J. Norberg
  • Publication number: 20140343180
    Abstract: Prepare a thermoset polyurethane foam containing a brominated polymer with aliphatic bromine as a flame retardant.
    Type: Application
    Filed: December 11, 2012
    Publication date: November 20, 2014
    Inventors: Steven P. Crain, William G. Stobby, Ted A. Morgan, Daniel T. Youmans
  • Publication number: 20140339723
    Abstract: The invention described herein generally pertains to the use of low boiling point, low vapor pressure blowing agents with froth polyurethane or polyisocyanurate foams to fill hollow cavities (particularly window lineals) and which have lowered exotherms, which prevent deformation of the hollow cavity (e.g., window lineal) and additional achieve filling of longer lengths of window lineals by increasing the foaming and gel times of the reaction.
    Type: Application
    Filed: May 14, 2013
    Publication date: November 20, 2014
    Applicant: FOMO PRODUCTS, INC.
    Inventors: Anthony J. Taylor, Timothy R. Kenworthy, Timothy C. Shoemaker, Derrick T. Hyde, Jeffrey B. Moore
  • Patent number: 8889754
    Abstract: The invention provides a cellular polyurethane foam composition for forming a cellular ceramic under fire conditions, the composition comprising: at least 40% by weight based on the total weight of the composition of a polyurethane; from 10% to 40% by weight based on the total weight of the composition of silicate mineral filler; from 5% to 20% by weight based on the total weight of the composition of at least one inorganic phosphate that forms a liquid phase at a temperature of no more than 800° C.; from 0.1% to 10% by weight based on the total weight of the composition of a heat expandable solid material; and wherein the total proportion of inorganic components constitutes in the range of from 20% to 60% by weight of the total composition.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: November 18, 2014
    Assignee: Polymers CRC Ltd
    Inventors: Pulahinge Don Dayananda Rodrigo, Susan Wan Yi Wong, Yi-Bing Cheng, Kevin William Thomson, Robert Arthur Shanks, Vanja Pasanovic-Zujo
  • Patent number: 8883915
    Abstract: A composition of matter comprising a hydrophobic or hydrophilic (or both) interpenetrating polymer network containing a non-ionic/ionic polymer and a hydrophobic thermoset or thermoplastic polymer, articles made from such composition and methods of preparing such articles. The invention also includes a process for preparing a hydrophobic/hydrophilic IPN or semi-IPN from a hydrophobic thermoset or thermoplastic polymer including the steps of placing an non-ionizable/ionizable monomer solution in contact with a hydrophobic thermoset or thermoplastic polymer; diffusing the monomer solution into the hydrophobic thermoset or thermoplastic polymer; and polymerizing the monomers to form a penetrating polymer inside the hydrophobic thermoset or thermoplastic polymer, thereby forming the IPN or semi-IPN.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: November 11, 2014
    Assignee: Biomimedica, Inc.
    Inventors: David Myung, Michael J. Jaasma, Lampros Kourtis, Daniel Chang, Curtis W. Frank
  • Publication number: 20140275301
    Abstract: A method of producing vinyl polymer particles by suspension polymerization comprising: combining an aqueous media and a tricalcium phosphate to a reaction vessel; adding a pH stabilizing agent to the reaction vessel; adding a vinyl monomer to the reaction vessel; adding a peroxide initiator, e.g., which also generates CO2 as a result of primary or secondary decomposition, to the reaction vessel; adding surfactant or a water soluble free radical initiator to generate surfactant in situ to the reaction vessel; maintaining the reactor contents at greater than or equal to 90° C. until a density of a dispersed phase becomes substantially equal to that of a continuous phase; adding a blowing agent to the reaction vessel; raising the temperature of the reaction vessel to greater than or equal to 100° C.; and collecting polymer particles having a particle size distribution.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Syed Mehmood Ahmed, Mohammed Hamdan
  • Patent number: 8759411
    Abstract: The use of at least one diphosphine of formula (I), wherein X is S or O; n is 0 or 1; R1, R2, R3, R4 are independently C1-C10-alkyl, C1-C10-hydroxyalkyl, C1-C10-alkoxy, C1-C10-hydroxyalkoxy, C3-C10-cycloalkyl, C3-C10-cycloalkoxy, C6-C10-aryl, C6-C10-aryloxy, C6-C10-aryl-C1-C4-alkyl, C6-C10-aryl-C1-C4-alkoxy, C6-C10-hydroxy-aryl, C6-C10-hydroxy-aryloxy, C1-C10-thioalkyl, C6-C10-thioaryl or C1-C4-thioalkyl-C6-C10-aryl, NR5R6, COR2, COOR5 or CONR5R6; R5, R6 are H, C1-C10-alkyl, C3-C10-cycloalkyl, C6-C10-aryl or C6-C10-aryl-C1-C4-alkyl; as a flame retardant in a polyurethane material is provided.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: June 24, 2014
    Assignee: BASF SE
    Inventors: Marco Balbo Block, Jens Ferbitz, Oliver Steffen Henze, Christoph Fleckenstein, Klemens Massonne
  • Publication number: 20140171525
    Abstract: Disclosed are polyol premix compositions, and foams formed therefrom, which comprise a combination of a hydrohaloolefin blowing agent, a polyol, a silicone surfactant, and a catalyst system that includes a bismuth-based metal catalyst. Such catalysts may be used alone or in combination with an amine catalyst and/or other non-amine catalysts.
    Type: Application
    Filed: February 24, 2014
    Publication date: June 19, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Bin Yu, David J. Williams
  • Publication number: 20140066532
    Abstract: Polyurethane/polyisocyanurate foams having a NFPA 101 Class A rating (ASTM E-84) are produced from a foam-forming reaction mixture that includes: an organic polyisocyanate, an isocyanate-reactive composition that includes at least one polyether polyol or polyester polyol with a nominal hydroxyl functionality of at least 2.0, a blowing agent composition and at least one halogen-free flame retardant. The blowing agent composition includes: (1) up to 5% by weight, based on total weight of the foam-forming composition, of one or more hydrocarbons having an LEL less than 2% by volume in air; and/or (2) a hydrocarbon having an LEL greater than 2% by volume in air; and (3) up to 1% by weight, based on total weight of foam-forming composition, of water.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Applicant: Bayer MaterialScience LLC
    Inventors: George G. Combs, Susan C. Pigott
  • Publication number: 20140024732
    Abstract: A door made of polyurethane, including a door body, the door body including a plurality of integrated plates stacked on one another for supporting. A method for preparing the door includes providing a mold, and spraying a parting agent inside the mold; heating the mold to a temperature of 30-70° C., spraying the parting agent, and placing a plurality of plates or a metal skeleton in the mold; mixing raw materials to obtain a mixture; injecting the mixture into the mold to cover the stacked plates, and curing for 30-90 min; demolding, transferring a product from the mold to a thermostatic chamber for shaping at a constant temperature; trimming uneven edges and surfaces of the product; and spraying a paint on the product.
    Type: Application
    Filed: January 29, 2013
    Publication date: January 23, 2014
    Inventor: Zhongping WANG
  • Publication number: 20130338248
    Abstract: The invention relates to a formulation suitable to provide polyurethane, the formulation comprising (a) at least one polyurethane forming mixture; (b) at least one phosphate component selected from the group consisting of ammonium polyphosphate (APP) and melamine phosphates, and mixtures thereof, and; (c) at least one metal or metalloid oxide particle having a maximum particle size of less than 300 ?m, wherein the metal or metalloid is selected from the group consisting of Mg, and Al, and wherein said at least one phosphate component is present in an amount ranging from 20 to 45% by weight based on 100% by weight of the formulation.
    Type: Application
    Filed: February 9, 2012
    Publication date: December 19, 2013
    Applicant: Huntsman International LLC
    Inventors: Serge Bourbigot, Sophie Duquesne, Fabienne Samyn, Maryska Muller, Chris Ian Lindsay, Rene Alexander Klein, Giacomo Giannini
  • Publication number: 20130316164
    Abstract: Combinations of gelatinous elastomer and polyurethane foam may be made by introducing a plasticized triblock copolymer resin and/or a diblock copolymer resin at least partially cured into gel particles into a mixture of polyurethane foam forming components including a polyol and an isocyanate. The plasticized copolymer resin is polymerized to form a cured gelatinous elastomer or gel, which is then reduced in size, for instance to give an average particle size of 10 millimeters or less. Polymerizing the polyol and the isocyanate forms polyurethane foam. The polyurethane reaction is exothermic and can generate sufficient temperature to at least partially melt the styrene-portion of the triblock copolymer resin thereby extending the crosslinking and in some cases integrating the triblock copolymer within the polyurethane polymer matrix. The gel component has higher heat capacity than polyurethane foam and thus has good thermal conductivity and acts as a heat sink.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Peterson Chemical Technology, Inc.
    Inventors: Bruce W. Peterson, Mark L. Crawford
  • Patent number: 8557946
    Abstract: A flexible polyurethane foam with improved resistance to discoloration from oxidation is disclosed. Such discoloration may be due to exposure to oxides of nitrogen, for example, the oxides commonly found in burnt gas fumes. The foam may be used for applications such as intimate apparel and other consumer products that need extended term color stability. The foam composition includes high levels of reactive and non-reactive phosphite esters that improve color stability without disadvantage to the foam's physical and aesthetic properties during and after production.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: October 15, 2013
    Assignee: Wm. T. Burnett IP, LLC
    Inventor: Scott Christopher Magness
  • Patent number: 8557887
    Abstract: The invention relates to a process for producing rigid polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups in the presence of c) blowing agents, wherein the compounds b) having at least two hydrogen atoms which are reactive toward isocyanate groups comprise at least one aromatic polyester alcohol bi), at least one polyether alcohol bii) having a functionality of from 4 to 8 and a hydroxyl number in the range from 300 to 600 mg KOH/g.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: October 15, 2013
    Assignee: BASF SE
    Inventors: Michael Koesters, Gunnar Kampf, Roland Fabisiak, Olaf Jacobmeier
  • Publication number: 20130225705
    Abstract: The present invention relates to a reactive formulation used to make a flame resistant flexible polyurethane foam which is particularly suited for use in under the hood vehicle applications which require sound deadening and vibration management and a process to make said foam.
    Type: Application
    Filed: November 4, 2011
    Publication date: August 29, 2013
    Applicant: Dow Global Technologies LLC
    Inventors: F. Michael Plaver, Reese E. Hetzner
  • Publication number: 20130197113
    Abstract: The present invention generally relates to polyurethane foam composition. In one embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of one or more liquid and/or solid fire-retardants. In another embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of one or more intumescent materials (e.g., expandable graphite (EG)). In still another embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of expandable graphite.
    Type: Application
    Filed: March 13, 2013
    Publication date: August 1, 2013
    Inventor: Preferred Solutions, Inc.
  • Patent number: 8318827
    Abstract: The invention described herein relates to an essentially closed-cell two-component polyurethane foam containing an pesticide, which upon curing provides a barrier to insect infestation.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: November 27, 2012
    Assignee: Fomo Products, Inc.
    Inventor: Anthony J. Taylor
  • Publication number: 20120214888
    Abstract: The invention relates to a process for preparing a polyurethane foam, wherein a polyether polyol and a polyisocyanate are reacted in the presence of: a blowing agent; of from 1 to 30 ppmw, based on the polyether polyol, of metals derived from a composite metal cyanide complex catalyst; and of from 0.5 to 100 ppmw, based on the polyether polyol, of a phosphoric acid compound comprising a phosphoric acid selected from orthophosphoric acid, polyphosphoric acid and polymetaphosphoric acid, and/or a partial ester of such a phosphoric acid.
    Type: Application
    Filed: September 7, 2010
    Publication date: August 23, 2012
    Inventors: Els Van Eetvelde, Michiel Barend Eleveld, Waltherus Petrus Casparus Mineur, Christophe Martin Swan, Tiew Imm Tan
  • Publication number: 20120201806
    Abstract: Disclosed are compositions-of-matter composed of a continuous elastomeric matrix and a liquid; the matrix entrapping the liquid therein in the form of closed-cell droplets dispersed throughout the matrix. The disclosed compositions-of-matter are characterized by a low tensile/compressive modulus and are capable of retaining the liquid for exceedingly long periods of time. Further disclosed are processes for forming the compositions-of-matter and uses thereof.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 9, 2012
    Applicant: Technion Research & Development Foundation Ltd.
    Inventors: Michael S. Silverstein, Inna Gurevitch
  • Publication number: 20120156469
    Abstract: The invention relates to a method for producing a flameproof polyurethane (PUR) spray foam, especially a rigid PUR spray foam, to a spray foam body so produced and to the use thereof for heat insulation.
    Type: Application
    Filed: August 17, 2010
    Publication date: June 21, 2012
    Applicant: BAYER MATERIALSCIENCE AG
    Inventors: Stephan Schleiermacher, Torsten Heinemann, Frithjof Hannig, Roger Scholz, Hans-Guido Wirtz, Heike Niederelz
  • Publication number: 20120108690
    Abstract: The subject-matter of the present invention relates to a process for the production of flame-retardant polyurethane foams, preferably for the production of flame-retardant flexible polyurethane foams, from A1 a filler-containing polyether polyol (component A1.1), wherein the filler is a reaction product of a di- or poly-isocyanate with a compound containing isocyanate-reactive hydrogen atoms, and optionally further compounds containing isocyanate-reactive hydrogen atoms and having a molecular weight of from 400 to 18,000 (component A1.
    Type: Application
    Filed: July 6, 2010
    Publication date: May 3, 2012
    Applicant: Bayer MaterialScience AG
    Inventors: Bert Klesczewski, Manduela Otten, Sven Meyer-Ahrens
  • Patent number: 8138235
    Abstract: A polyurethane foam is obtained by reacting, foaming, and curing raw material that includes a polyol, a polyisocyanate, a blowing agent, a catalyst, and an inorganic compound hydrate. The raw material includes, as the polyol, a polymeric polyol obtained by graft polymerization of a vinyl monomer onto a polyether polyol and a polyether polyol obtained by addition polymerization of an alkylene oxide to a polyhydric alcohol and having a mass average molecular weight of 400 to 1,000. The blending quantity of the inorganic compound hydrate is 10 to 80 parts by mass per 100 parts by mass of the polyol. Preferably, the raw material further includes, as the polyol, a polyether polyol obtained by addition polymerization of an alkylene oxide to a polyhydric alcohol and has a molecular weight of 2,000 to 4,000.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: March 20, 2012
    Assignee: INOAC Corporation
    Inventors: Tadashi Yano, Satoshi Iwase
  • Patent number: 8129457
    Abstract: A composition is disclosed that comprises an otherwise flammable flexible polyurethane foam and a multi-component flame retardant additive. The flame retardant additive includes an alkyl substituted aryl phosphate and an alkyl phosphate ester wherein the alkyl groups range from C4 to C20 and contain one to six oxygen atoms in the alkyl chain. Optionally, the flame retardant additive includes a halogenated flame retardant containing more than 30 wt. percent of bromine, chlorine, or a mixture thereof.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: March 6, 2012
    Assignee: Chemtura Corporation
    Inventors: Stephen B. Falloon, Matthew D. Phillips
  • Publication number: 20120029103
    Abstract: The invention provides a cellular polyurethane foam composition for forming a cellular ceramic under fire conditions, the composition comprising: at least 40% by weight based on the total weight of the composition of a polyurethane; from 10% to 40% by weight based on the total weight of the composition of silicate mineral filler; from 5% to 20% by weight based on the total weight of the composition of at least one inorganic phosphate that forms a liquid phase at a temperature of no more than 800° C.; from 0.1% to 10% by weight based on the total weight of the composition of a heat expandable solid material; and wherein the total proportion of inorganic components constitutes in the range of from 20% to 60% by weight of the total composition.
    Type: Application
    Filed: May 5, 2008
    Publication date: February 2, 2012
    Applicant: CERAM POLYMERIK PTY LTD
    Inventors: Pulahinge Don Dayananda Rodrigo, Susan Wan Yi Wong, Yi-Bing Cheng, Kevin William Thomson, Robert Arthur Shanks, Vanja Pasanovic-zujo
  • Publication number: 20120022176
    Abstract: The present invention generally relates to polyurethane foam composition. In one embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of one or more liquid and/or solid fire-retardants. In another embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of one or more intumescent materials (e.g., expandable graphite (EG)). In still another embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of expandable graphite.
    Type: Application
    Filed: September 14, 2009
    Publication date: January 26, 2012
    Applicant: PREFERRED SOLUTIONS, INC.
    Inventors: John A. Stahl, Jonathon S. Stahl
  • Publication number: 20110263736
    Abstract: The invention relates to a process for producing rigid polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups in the presence of c) blowing agents, wherein the compounds b) having at least two hydrogen atoms which are reactive toward isocyanate groups comprise at least one aromatic polyester alcohol bi), at least one polyether alcohol bii) having a functionality of from 4 to 8 and a hydroxyl number in the range from 300 to 600 mg KOH/g.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 27, 2011
    Applicant: BASF SE
    Inventors: Michael Kösters, Gunnar Kampf, Roland Fabisiak, Olaf Jacobmeier
  • Patent number: 8026292
    Abstract: The present invention concerns a polycyanurate foam with a structural element A and either terminal amino groups and/or at least one of the following structural elements B, C, or D: wherein the foam has closed pores that contain carbon dioxide. This foam can be produced in that a substance is worked into the starting material for the polycyanurate that releases water or alcohol approximately at the start of polymerization either spontaneously or thermally or catalytically induced. The water/alcohol reacts with free cyanate groups under cleavage of CO2. The resulting amino groups can react further in the polymerization.
    Type: Grant
    Filed: August 24, 2008
    Date of Patent: September 27, 2011
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Siegfried Vieth, Monika Bauer
  • Publication number: 20110218259
    Abstract: The invention relates to a process for preparing polyurethanes, which comprises reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms reactive with isocyanate groups, wherein said compounds having at least two hydrogen atoms reactive with isocyanate groups b) comprise at least one polyether alcohol b1) having a functionality of 2-8 and a hydroxyl number of 200-600 mgKOH/g, obtained by addition of an alkylene oxide b1b) onto a compound having at least two hydrogen atoms reactive with alkylene oxides by using an amine b1c) as catalyst.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 8, 2011
    Applicant: BASF SE
    Inventors: Berend ELING, Markus SCHÜTTE, Sirus ZARBAKHSH
  • Publication number: 20110124752
    Abstract: The object of the invention is a method for the production of foams on silicon basis from polymer mixtures (A) containing silicon, wherein at least one compound (V) is used that contributes to the formation of the polymer network, and which carries at least one alkoxy silyl group of the general formula [1a], [1b], or [1c] ?Si—O—(R1)(R2)(R3) [1a], ?Si(R5)—O—C(R1)(R2)(R3) [1b], ?Si—O—C(O)—U [1c], from which upon curing of the polymer mixtures (A) at least one molecule (XY) is split which is gaseous during processing and causes the formation of foam in the polymer mixture (A), and a catalyst (K) selected from a Brönstedt acid, Brönstedt base, Lewis acid, and Lewis base, where R1, R2, R3, R5, and U have the meanings as stated in claim 1, and where polymer mixtures (A) which form SiO2 during the cross-linking process are excluded.
    Type: Application
    Filed: July 14, 2009
    Publication date: May 26, 2011
    Applicant: WACKER CHEMIE AG
    Inventors: Christian Peschko, Johann Mueller
  • Patent number: 7919541
    Abstract: The present invention concerns a method of manufacturing flame-retardant polyethylene or polypropylene foam using a derivative of carboxylic acid of phenylphosphinic acid and the flame-retardant polymer foam made thereby. More specifically, this invention concerns a method of manufacturing highly expanded flame-retardant polymer foam prepared by mixing the above mentioned phosphorous flame retardant in a polymer resin and expanding the mixture with a volatile blowing agent or by applying a solution of an organic phosphorous compound to an already-made highly expanded foam and then drying the highly-expanded polymer foam, and the flame-retardant foam prepared thereby.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: April 5, 2011
    Inventor: Chung Poo Park
  • Publication number: 20100159232
    Abstract: A composition for a rigid polyurethane foam with reduced cell sizes contains a polyol, water, a catalyst, a blowing agent; and an ionic liquid. The rigid polyurethane foam is produced by adding an ionic liquid as an eco-friendly additive to a polyol composition so as to improve insulation efficiency thereof.
    Type: Application
    Filed: December 24, 2009
    Publication date: June 24, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kwang Hee KIM, Myung Dong CHO, Sang Ho PARK, Sung Woo HWANG
  • Patent number: 7423069
    Abstract: Flame retardant flexible polyurethane foam compositions, methods of flame retarding flexible polyurethane foam compositions, articles made therefrom and flame retardants that comprise blends of tetrahalophthalate esters and phosphorus-containing flame retardant having at least about 5 wt. % phosphorus additives. The combined weight of the tetrahalophthalate ester and the phosphorus-containing flame retardant comprises about 5 to about 20% by weight of the flexible polyurethane foam compositions or reaction mixtures. The ratio of the tetrahalophthalate ester to the phosphorus-containing flame retardant is from about 80:20 to about 20:80 percent by weight and preferably from about 60:40 to about 40:60 percent by weight.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: September 9, 2008
    Assignee: Crompton Corporation
    Inventors: David Buszard, Matthew D. Phillips, Richard S. Rose, Stephen B. Falloon
  • Publication number: 20080206297
    Abstract: Synthetic composite materials for use, for example, as orthopedic implants are described herein. In one example, a composite material for use as a scaffold includes a thermoplastic polymer forming a porous matrix that has continuous porosity and a plurality of pores. The porosity and the size of the pores are selectively formed during synthesis of the composite material. The example composite material also includes a plurality of a anisometric calcium phosphate particles integrally formed, embedded in, or exposed on a surface of the porous matrix. The calcium phosphate particles provide one or more of reinforcement, bioactivity, or bioresorption.
    Type: Application
    Filed: February 28, 2008
    Publication date: August 28, 2008
    Inventors: Ryan K. Roeder, Gabriel L. Converse, Stephen M. Smith
  • Patent number: 7393879
    Abstract: A method for producing a novel silicone foam by reaction of a polyisocyanate with a silicone oligomer having a plurality of functional end groups with active hydrogens, optionally in the presence of fire-retardants, under foam forming conditions which creates a new silicone foam for use in items such as residential upholstered furniture industry, seat cushions and bedding etc., and specifically for use in applications that require, high resilience and fire-retardant properties such as aircraft and surface transportation seat cushioning, military and shipboard mattresses etc.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: July 1, 2008
    Assignee: Chestnut Ridge Foam, Inc.
    Inventors: Jiri E. Kresta, David Munoz Rojas, Ramon Moliner, Chandrasiri Jayakody, Dan Myers
  • Publication number: 20080125503
    Abstract: The invention relates to a process for producing rigid polyurethane or polyisocyanurate foams by reacting an isocyanate with a polyol in the presence of urethane and/or isocyanurate catalysts, water, optionally further blowing agents, optionally flame retardants and optionally further additives (e.g. fillers, emulsifiers, purely organic stabilizers and surfactants, viscosity reducers, dyes, antioxidants, UV stabilizers, antistatics) using foam stabilizers of the general formula (I) R—Si(CH3)2—O—[—Si(CH3)2—O—]n—[—Si(CH3)(R)—O—]m—Si(CH3)2—R, where R=—(CH2)x—O—(CH2—CHR?—O)y—R?.
    Type: Application
    Filed: June 29, 2007
    Publication date: May 29, 2008
    Applicant: Goldschmidt GmbH
    Inventors: Frauke Henning, Manfred Klincke, Carsten Schiller
  • Patent number: 7114503
    Abstract: The invention relates to a foam for purifying and filtrating air, particularly filtrating toxic compounds, such as for instance tar and polycyclic aromatic hydrocarbons (PAHs) from tobacco smoke, and to a method to prepare this foam. The foam according to the invention is a foam comprising cavities and interstitial spaces situated outside of the cavities, the cavities being defined by walls, the walls of the cavities being composed of a crosslinked polymer and possible additives, the average largest dimension of the cavities being in the range of 30–350 ?m, a considerable part of the cavities comprising two or more perforations in their walls, the perforations having an average diameter in the range of 5–300 ?m, a considerable part of the perforations of adjacent cavities being positioned with respect to each other such that a continuous, non-linear path is formed, the foam having a porosity of at least 45 vol.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: October 3, 2006
    Assignee: B.V. Produkt Ontwikkeling Beheer
    Inventor: Joseph Engelbert Christiaan Vialle
  • Patent number: 7008973
    Abstract: A flexible, flame-retarded, polyurethane foam comprising brominated and/or phosphorous flame retardants and an acid scavenger.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: March 7, 2006
    Assignee: PABU Services, Inc.
    Inventors: Stephen B. Falloon, Richard S. Rose, Mathew D. Phillips
  • Patent number: 6967223
    Abstract: A fiber-free molding composition containing: (a) a binder selected from the group consisting of an epoxide, a polyisocyanate, a furane-resin-free phenolic resin, and mixtures thereof; and (b) a filler mixture containing: (i) an inorganic high-temperature-resistant filler; and (ii) a heat-activatable swelling agent.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: November 22, 2005
    Assignee: Cognis Deutschland GmbH & Co. KG
    Inventors: Robert Graf, Maria-Elisabeth Kaiser, Klaus Lehr, Wolfgang Six
  • Patent number: 6906110
    Abstract: In a process for producing polyurethanes by reacting at least one polyisocyanate with at least one compound containing at least two hydrogen atoms which are reactive toward isocyanate groups, the compound having at least two active hydrogen atoms which is used is at least one polyether alcohol prepared by addition of alkylene oxides onto H-functional initiator substances by means of multimetal cyanide catalysis and the reaction is carried out in the presence of at least one metal salt.
    Type: Grant
    Filed: November 4, 2000
    Date of Patent: June 14, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Reinhard Lorenz, Stephan Bauer, Dieter Junge, Eva Baum, Kathrin Harre, Jörg Erbes, Thomas Ostrowski, Georg Heinrich Grosch
  • Publication number: 20040171709
    Abstract: A flexible, flame-retarded, polyurethane foam comprising brominated and/or phosphorous flame retardants and an acid scavenger.
    Type: Application
    Filed: January 14, 2004
    Publication date: September 2, 2004
    Inventors: Stephen B. Falloon, Richard S. Rose, Mathew D. Phillips