Ingredient Contains A Phosphorus Atom Patents (Class 521/106)
  • Patent number: 6906110
    Abstract: In a process for producing polyurethanes by reacting at least one polyisocyanate with at least one compound containing at least two hydrogen atoms which are reactive toward isocyanate groups, the compound having at least two active hydrogen atoms which is used is at least one polyether alcohol prepared by addition of alkylene oxides onto H-functional initiator substances by means of multimetal cyanide catalysis and the reaction is carried out in the presence of at least one metal salt.
    Type: Grant
    Filed: November 4, 2000
    Date of Patent: June 14, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Reinhard Lorenz, Stephan Bauer, Dieter Junge, Eva Baum, Kathrin Harre, Jörg Erbes, Thomas Ostrowski, Georg Heinrich Grosch
  • Publication number: 20040171709
    Abstract: A flexible, flame-retarded, polyurethane foam comprising brominated and/or phosphorous flame retardants and an acid scavenger.
    Type: Application
    Filed: January 14, 2004
    Publication date: September 2, 2004
    Inventors: Stephen B. Falloon, Richard S. Rose, Mathew D. Phillips
  • Patent number: 6730713
    Abstract: The invention and formulation relates to methods, materials, and products for foam-in-place materials comprising a two-component foam-in-place structural material for producing a foamed product. A first component of the system includes an epoxy-based resin preferably formulated with a coated particles, such as a metal salt, a metal carbonate encapsulated within a wax, or a polymer, (e.g., Thermoset, thermoplastic, or mixture). The metal carbonate particle may be encapsulated within a wax, shell or skin that will change state to expose the core to chemically react for initiating the production of gas for blowing. The second component is an acid that is capable of initiating polymerization of the resin.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: May 4, 2004
    Assignee: L&L Products, Inc.
    Inventor: Michael J. Czaplicki
  • Patent number: 6706774
    Abstract: A two-component on-site foam system for producing an intumescing fire protection foam is described with a density of less than 200 kg/m3 and an increased fire resistance endurance, with a polyol component (A), which contains at least one polyol, one catalyst for the reaction between the polyol and the polyisocyanate, water or a blowing agent based on a compressed or liquefied gas as foam-forming agent and at least one intumescing material based on an acid-forming agent, a carbon-supplying compound and a gas-forming agent, and a polyisocyanate component (B), which contains at least one polyisocyanate, wherein the polyol component (A) contains at least one polyester polyol, at least one aminopolyol, at least one halogen-containing polyol, at least one acid-forming agent, expanding graphite and at least one ash crust stabilizer, the quantitative ratios of the polyols to the polyisocyanate or polyisocyanates being matched so that, when the polyol component (A) is mixed with the polyisocyanate component (B) as spe
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: March 16, 2004
    Assignee: Hilti Aktiengesellschaft
    Inventors: Herbert Münzenberger, Franz Heimpel, Stefan Rump, Christian Förg, Wolfgang Lieberth
  • Patent number: 6706844
    Abstract: A method for the production of polyurethane products using very low unsaturation polyether polyols prepared in the presence of aluminum phosphonate catalysts is disclosed. Reaction products of the process include various polyurethane products including foams, coatings, adhesives, sealants and elastomers. The aluminum phosphonate catalyst preferably has a general structure of RPO-(OAlR′R″)2, wherein O represents oxygen, P represents pentavalent phosphorous, Al represents aluminum, R comprises a hydrogen, an alkyl group, or an aryl group, and R′ and R″ independently comprise a halide, an alkyl group, an alkoxy group, an aryl group, or an aryloxy group.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: March 16, 2004
    Assignee: BASF Corporation
    Inventor: Edward M. Dexheimer
  • Patent number: 6660780
    Abstract: A method of making a molecularly imprinted porous structure makes use of a surfactant analog of the molecule to be imprinted that has the imprint molecule portion serving as the surfactant headgroup. The surfactant analog is allowed to self-assemble in a mixture to create at least one supramolecular structure having exposed imprint groups. The imprinted porous structure is formed by adding reactive monomers to the mixture and allowing the monomers to polymerize, with the supramolecular structure serving as a template. The resulting solid structure has a shape that is complementary to the shape of the supramolecular structure and has cavities that are the mirror image of the imprint group. Similarly, molecularly imprinted particles may be made by using the surfactant to create a water-in-oil microemulsion wherein the imprint groups are exposed to the water phase.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: December 9, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael A. Markowitz, Paul E. Schoen, Bruce P. Gaber, Banahalli R. Ratna, Paul R. Kust, David C. Turner, Douglas S. Clark, Jonathan S. Dordick
  • Patent number: 6620879
    Abstract: A description is given of pulverulent polymer compositions based on polyether carboxylates, which are characterized in that they comprise a) from 5 to 95% by weight of a water-soluble polymer made up of polyoxyalkylene-containing structural units, carboxylic acid and/or carboxylic anhydride monomers and, if desired, further monomers, and b) from 5 to 95% by weight of a finely divided mineral support material having a specific surface area of from 0.5 to 500 m2/g (determined by the BET method in accordance with DIN 66 131). These pulverulent polymer compositions, which can contain up to 90% by weight of polyether carboxylate, have a significantly increased sticking and caking resistance compared to spray-dried products and have further advantages when they are used in cement-containing building material mixtures.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: September 16, 2003
    Assignee: Degussa Construction Chemicals GmbH
    Inventors: Gerhard Albrecht, Hubert Leitner, Alfred Kern, Josef Weichmann
  • Patent number: 6610756
    Abstract: An inorganic/organic composite foam that has a foam structure obtained from a combination of a phosphoric acid compound and/or a sulfuric acid compound with a blowing agent therefor, has reduced brittleness due to a cured material of an urethane prepolymer having NCO groups, and contains a powdery boric acid compound, and a process for producing the same. The foam is not only reduced in brittleness but also improved in foam strength after combustion due to the incorporation of the powdery boric acid compound while retaining inherent foam properties and inherent low quantities of heat of combustion and smoking in combustion. It is used in exterior wall panels, heat insulating materials, sound insulating materials, fireproof covering materials, lightweight aggregates, filling materials for cavities, and the like, which are required to have fire-proofing performance.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: August 26, 2003
    Assignee: Sanyo Checmical Industries, Ltd.
    Inventors: Tomokazu Shimizu, Tadaaki Yamazaki, Shinzo Kaida, Tsuyoshi Tomosada
  • Publication number: 20030134921
    Abstract: A method for the production of polyurethane products using very low unsaturation polyether polyols prepared in the presence of aluminum phosphonate catalysts is disclosed. Reaction products of the process include various polyurethane products including foams, coatings, adhesives, sealants and elastomers. The aluminum phosphonate catalyst preferably has a general structure of RPO-(OAlR′R″)2, wherein O represents oxygen, P represents pentavalent phosphorous, Al represents aluminum, R comprises a hydrogen, an alkyl group, or an aryl group, and R′ and R″ independently comprise a halide, an alkyl group, an alkoxy group, an aryl group, or an aryloxy group.
    Type: Application
    Filed: December 21, 2001
    Publication date: July 17, 2003
    Inventor: Edward M. Dexheimer
  • Patent number: 6583191
    Abstract: A method of making a molecularly imprinted porous structure makes use of a surfactant analog of the molecule to be imprinted that has the imprint molecule portion serving as the surfactant headgroup. The surfactant analog is allowed to self-assemble in a mixture to create at least one supramolecular structure having exposed imprint groups. The imprinted porous structure is formed by adding reactive monomers to the mixture and allowing the monomers to polymerize, with the supramolecular structure serving as a template. The resulting solid structure has a shape that is complementary to the shape of the supramolecular structure and has cavities that are the mirror image of the imprint group. Similarly, molecularly imprinted particles may be made by using the surfactant to create a water-in-oil microemulsion wherein the imprint groups are exposed to the water phase.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: June 24, 2003
    Inventors: Michael A. Markowitz, Paul E. Schoen, Bruce P. Gaber, Banahalli R. Ratna, Paul R. Kust, David C. Turner, Douglas S. Clark, Jonathan S. Dordick
  • Patent number: 6451348
    Abstract: A method of manufacturing a porous matrix-type drug delivery system is provided. It comprises the steps of: dispersing, stirring, and emulsifying an aqueous solution of a drug in an organic solvent having a polymer compound and a surface active agent solved therein; thereafter forming it into a desirable matrix shape; lyophilizing or drying it at a low temperature or room temperature until the matrix surface is hardened; and drying it again in order to remove the water and the organic solvent.
    Type: Grant
    Filed: January 3, 2000
    Date of Patent: September 17, 2002
    Assignee: Korea Institute of Science and Technology
    Inventors: Seo Young Jeong, Kuiwon Choi, Ick-Chan Kwon, Yong-Hee Kim, Jae Bong Choi, Kyu Back Lee
  • Publication number: 20020115812
    Abstract: A flame retardant composition that is composed of red phosphorus and melamine or a derivative thereof in amounts satisfying a specified ratio for use in the production of polyurethanes. The polyurethanes produced with this flame retardant composition are particularly useful in the production of rail vehicles.
    Type: Application
    Filed: May 18, 1999
    Publication date: August 22, 2002
    Inventors: GEZA AVAR, THOMAS MUNZMAY, ANDREAS RUCKES, INGO ZAPPEL
  • Publication number: 20020065334
    Abstract: A method of making a molecularly imprinted porous structure makes use of a surfactant analog of the molecule to be imprinted that has the imprint molecule portion serving as the surfactant headgroup. The surfactant analog is allowed to self-assemble in a mixture to create at least one supramolecular structure having exposed imprint groups. The imprinted porous structure is formed by adding reactive monomers to the mixture and allowing the monomers to polymerize, with the supramolecular structure serving as a template. The resulting solid structure has a shape that is complementary to the shape of the supramolecular structure and has cavities that are the mirror image of the imprint group. Similarly, molecularly imprinted particles may be made by using the surfactant to create a water-in-oil microemulsion wherein the imprint groups are exposed to the water phase.
    Type: Application
    Filed: September 19, 2001
    Publication date: May 30, 2002
    Inventors: Michael A. Markowitz, Paul E. Schoen, Bruce P. Gaber, Banahalli R. Ratna, Paul R. Kust, David C. Turner, Douglas S. Clark, Jonathan S. Dordick
  • Patent number: 6380273
    Abstract: The invention relates to a process for the production of flame-resistant flexible polyurethane foams having a low susceptibility to core discoloration, which comprises using hydroxyalkyl phosphonates as halogen-free flame retardants and as core discoloration inhibitors. The invention furthermore relates to the use of hydroxyalkyl phosphonates as halogen-free flame retardants for the production of flame-resistant flexible polyurethane foams having a low susceptibility to core discoloration. Finally the invention also relates to a flame resistant flexible polyurethane foam having a low susceptibility to core discoloration which comprises hydroxyalkyl phosphonates as halogen-free flame retardants and as core discoloration inhibitor.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: April 30, 2002
    Assignee: Clariant GmbH
    Inventors: Christian Eilbracht, Martin Sicken
  • Patent number: 6313186
    Abstract: A inorganic-organic composite foam having a structure comprising phosphoric acids and a blowing agent for phosphoric acids, wherein the brittleness is improved by urethane prepolymer having NCO groups. The foam is produced by foaming and curing by mixing each component of phosphoric acids, a blowing agent for phosphoric acids, urethane prepolymer having NCO groups, water, and, if necessary, an inorganic filler. A foam of phosphoric acids is inherently brittle, but the brittleness is improved, and flexibility and rebound resilience can be provided. The foam of the present invention is effectively used for the applications, for example, heat insulating materials of external panel or internal panel which require the fire preventive property of train, automobile, housing, building etc.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: November 6, 2001
    Assignees: Sanyo Chemical Industries, Ltd., Sekisui House, Ltd.
    Inventors: Shinzou Kaida, Tomokazu Shimizu, Misao Okamoto
  • Patent number: 6310110
    Abstract: A method of making a molecularly imprinted porous structure makes use of a surfactant analog of the molecule to be imprinted that has the imprint molecule portion serving as the surfactant headgroup. The surfactant analog is allowed to self-assemble in a mixture to create at least one supramolecular structure having exposed imprint groups. The imprinted porous structure is formed by adding reactive monomers to the mixture and allowing the monomers to polymerize, with the supramolecular structure serving as a template. The resulting solid structure has a shape that is complementary to the shape of the supramolecular structure and has cavities that are the mirror image of the imprint group. Similarly, molecularly imprinted particles may be made by using the surfactant to create a water-in-oil microemulsion wherein the imprint groups are exposed to the water phase.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: October 30, 2001
    Inventors: Michael A. Markowitz, Paul E. Schoen, Bruce P. Gaber, Banahalli R. Ratna, Paul R. Kust, David C. Turner, Douglas S. Clark, Jonathan S. Dordick
  • Patent number: 6211259
    Abstract: The present invention includes new compositions for making polyurethane and polyurethane foam compositions. These compositions comprise the reaction product of an isocyanate A-Side and a B-Side comprising: (i) a polyol having a molecular weight of about 1000 g/mol or more, and having an average functionality of 2.0 or greater; (ii) a polyol having a Tg of about −80° C. or less, and having a molecular weight of about 1000 g/mol or more, and having an average functionality of 2.0 or greater; and(iii) a polyhydric alcohol having a molecular weight of about 90 g/mol or more, and having an average functionality of 3.0 or more. In the case of polyurethane foam compositions, the system also comprises water. The invention also includes processes for making the polyurethane and polyurethane foam compositions, as well as methods of adhering the same to cosmetic layers comprising thermoplastic, acrylic, and gel coat materials. The invention also includes articles made from these reinforced cosmetic layers.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: April 3, 2001
    Assignee: Aristech Acrylics LLC
    Inventors: Keith A. Borden, Robert E. Anderson, Jr., Kathleen M. Yusko, Randall S. Reynolds
  • Patent number: 6169124
    Abstract: In a process for producing self-releasing, compact or cellular moldings which comprise polyisocyanate polyaddition products and may contain reinforcing material by reacting a) organic and/or modified organic polyisocyanates with b) at least one compound containing at least two reactive hydrogen atoms and having a molecular weight of from 62 to 10,000 and, if desired, c) chain extenders and/or crosslinkers in the presence of d) internal mold release agents and in the presence of or absence of e) catalysts, f) blowing agents, g) reinforcing materials and h) auxiliaries in an open or closed mold, the internal mold release agents (d) used are diesters and/or monoesters of alkylsuccinic acids and/or diesters and/or monoesters of alkenylsuccinic acids.
    Type: Grant
    Filed: May 14, 1999
    Date of Patent: January 2, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Peter Horn, Dietrich Scherzer, Karl H{umlaut over (a)}berle, Ulrich Treuling, Georg Partusch, G{umlaut over (u)}nter T{umlaut over (a)}nny, Axel Kistenmacher
  • Patent number: 6096401
    Abstract: The present invention is a polyurethane carpet backing prepared from a polyurethane-forming composition wherein fly ash is included as a filler material. High loadings of fly ash can be obtained without detriment to the process for preparing a polyurethane carpet backing, or adverse effect to the physical properties of the carpet backing.
    Type: Grant
    Filed: August 28, 1996
    Date of Patent: August 1, 2000
    Assignee: The Dow Chemical Company
    Inventor: Randall C. Jenkines
  • Patent number: 6057377
    Abstract: A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: May 2, 2000
    Assignee: Sandia Corporation
    Inventors: Darryl Y. Sasaki, C. Jeffrey Brinker, Carol S. Ashley, Charles E. Daitch, Kenneth J. Shea, Daniel J. Rush
  • Patent number: 6013691
    Abstract: The present invention discloses a foam frothing alternative for blowing or frothing single component foams using gases which are incapable of being liquified within the limits of DOT aerosol cans, referred to herein as non-liquefiable gases. In this invention, it is demonstrated that non-liquefiable gases such as CO.sub.2 and N.sub.2 O can be used to provide foams using conventional single component foam chemical raw materials. The present invention provides an adhesive/sealant, expanded by a non-liquefiable gas propelled from a container initially and expanded by a blowing agent consisting primarily or exclusively of a non-liquefiable gas and formulated from a moisture curable polyurethane prepolymer using a low molecular weight isocyanate of two or more functionality. In one or more variations, the compositions of the present invention contain solubility enhancers for non-liquefiable gases such as CO.sub.
    Type: Grant
    Filed: May 21, 1996
    Date of Patent: January 11, 2000
    Assignee: Insta-Foam Products, Inc.
    Inventors: Robert Braun, Jess Garcia, Dawn Kissack, Gina Pietrzyk, Deborah Schutter
  • Patent number: 5981612
    Abstract: The flameproofed, rigid, isocyanate-based foams, in particular rigid polyurethane and polyisocyanurate foams, are produced by reactinga) organic and/or modified organic polyisocyanates withb) at least one relatively high-molecular-weight compound containing at least two reactive hydrogen atoms, and, if desired,c) low-molecular-weight chain extenders and/or crosslinking agents, in the presence ofd) blowing agents,e) catalysts,f) flameproofing agents, and, if desired,g) further auxiliaries and/or additives,wherein the flameproofing agent is a combination of at least one liquid flameproofing agent which is reactive toward isocyanates and at least one solid flameproofing agent.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: November 9, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Uwe Keppeler, Werner Hinz, Michael Reichelt
  • Patent number: 5834535
    Abstract: An intumescent thermoplastic elastomer molding composition is disclosed that includes high density polyethylene with chlorinated polyethylene and/or silicone rubber; a heat stabilizer for the thermoplastic elastomer material and an intumescent and fire-resistant additive for the thermoplastic elastomer, whereby moldings prepared from such mixture have good physical properties over a substantial range of ambient temperatures and display a resistance to flame and heat as characterized by the Intumescence Efficiency test of this specification.
    Type: Grant
    Filed: December 22, 1996
    Date of Patent: November 10, 1998
    Assignee: General Motors Corporation
    Inventors: Ismat Ali Abu-Isa, Craig Bryant Jaynes
  • Patent number: 5776992
    Abstract: The invention relates to a halogen-free, flame retardant rigid polyurethane foam based on polyether-polyols and polyisocyanates, which comprises, as the polyol component, mixtures of nitrogen-free and nitrogen-containing polyether-polyols and, as the flameproofing agent, ammonium polyphosphate.
    Type: Grant
    Filed: August 11, 1997
    Date of Patent: July 7, 1998
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Siegfried Jung, Horst Staendeke
  • Patent number: 5739173
    Abstract: A process for the preparation of flame-resistant soft polyurethane foams which produce less smoke in the event of fire involves reactinga) an organic polyisocyanate and/or a modified organic polyisocyanate withb) a high-molecular-weight compound containing at least two reactive hydrogen atoms and, if desired,c) a chain extender and/or crosslinking agent, in the presence ofd) a mixture of flameproofing agents which contains:di) melaminedii) expandable graphite and, if desired,diii) at least one further flameproofing agent, preferably a modified or unmodified ammonium polyphosphate,e) a blowing agent,f) a catalyst and, if desired,g) assistants and/or additives, and melamine/expandable graphite/polyether-polyol dispersions which are suitable for this purpose.
    Type: Grant
    Filed: September 20, 1995
    Date of Patent: April 14, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Heinz-Dieter Lutter, Ruth Zschiesche, Hans-Jurgen Gabbert, Volker Hasse, Karl Fimmel
  • Patent number: 5719200
    Abstract: The flame-resistant polyurea foam of the invention contains calcium sulfate dihydrate as filler and ammonium polyphosphate as flame retardant. Its bulk density is from 25 to 250 kg/m.sup.3 and the number of open cells is above 80% of all its cells. The polyurea has been formed from a reaction of prepolymers of diphenylmethane 4,4'-diisocyanate with water.The polyurea foam of the invention can be used as a block foam or on-site foam for sound and/or heat insulation.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: February 17, 1998
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Horst Staendeke, Reinhold Lagoda
  • Patent number: 5677357
    Abstract: An antistatic additive including a hexahalogenated ionic compound, and an antistatic additive composition for organic polymer compositions including an antistatically-effective amount of the hexahalogenated ionic compound, a solvent for the hexahalogenated ionic compound, and a diluent compatible with the hexahalogenated ionic compound, the solvent and the organic polymer composition. The hexahalogenated phosphate compound is preferably either potassium hexafluorophosphate, sodium hexafluorophosphate, and ammonium hexafluorophosphate. Organic polymer compositions containing the additive also are disclosed, as are methods of manufacturing both the additive and the polymer compositions.
    Type: Grant
    Filed: July 5, 1995
    Date of Patent: October 14, 1997
    Assignees: Cellular Technology International, Inc., Chemfoam International, Inc.
    Inventor: Dennis R. Spicher
  • Patent number: 5648401
    Abstract: A composition which cures and foams at room temperature contains a acid-catalyzed, polymerizable resin, an acid and a filler which liberates gas in an endothermic reaction with the acid. The acid serves the dual purpose of catalyzing the polymerization reaction and generating the foaming gas.
    Type: Grant
    Filed: October 9, 1996
    Date of Patent: July 15, 1997
    Assignee: L & L Products, Inc.
    Inventors: Michael Czaplicki, Thomas Guenther
  • Patent number: 5622999
    Abstract: The invention relates to novel polysilicic acid/polyisocyanate basic materials, binding materials and foams with improved mechanical properties as well as a higher resistance against heat and chemicals. It is characteristic of the new base materials that they are built up (composed) of______________________________________ 100 parts by mass of a polyisocyanate, 50-400 parts by mass of a polysilicic acid component, 0.5-70 parts by mass of phosphoric acid triesters and/or salts of phosphoric acid mono- and/or diesters formed with amines and/or alkaline metals, and optionally 0-5 parts by mass of a catalysts containing a tertiary amino group, 0-50 parts by mass of a reactive diluent, 0-10 parts by mass of tenside(s) ______________________________________as well as 0-400% by mass of fillers and optionally other auxiliaries, calculated for the total mass (=100%) of the components listed above.
    Type: Grant
    Filed: January 19, 1994
    Date of Patent: April 22, 1997
    Assignee: Polinvent Fejleszto, Kivitelezo es Ertekesito KFT
    Inventors: Gabor Nagy, Miklos Barothy, Margit Menyhart
  • Patent number: 5605721
    Abstract: The present invention is directed to an underlayment composition for an artificial playing surface comprised of a butadiene rubber, such as polybutadiene or styrene-butadiene that is commercially available as recycled polycord tires that have been granulized. An inorganic-base moisture-retaining agent such as vermiculite or perlite is also included in the composition in addition to a binder comprised of a mixture of isocyanate polyurethane and an inorganic acid. The present invention also provides a method of making the present composition. The method comprises the steps of mixing thoroughly granulized particles of butadiene rubber in a mixing container, mixing an inorganic-based moisture-retaining component with the butadiene rubber, mixing an acid having a pH .ltoreq.3 with the butadiene rubber and the inorganic-based moisture-retaining component, and mixing an isocyanate polyurethane with the butadiene rubber, the inorganic-based moisture-retaining component and the acid.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 25, 1997
    Inventor: Joseph W. Di Geronimo
  • Patent number: 5514722
    Abstract: The present invention is directed to an underlayment composition for an artificial playing surface comprised of a butadiene rubber, such as polybutadiene or styrene-butadiene that is commercially available as recycled polycord tires that have been granulized. An inorganic-base moisture-retaining agent such as vermiculite or perlite is also included in the composition in addition to a binder comprised of a mixture of isocyanate polyurethane and an inorganic acid. The present invention also provides a method of making the present composition. The method comprises the steps of mixing thoroughly granulized particles of butadiene rubber in a mixing container, mixing an inorganic-based moisture-retaining component with the butadiene rubber, mixing an acid having a pH.ltoreq.3 with the butadiene rubber and the inorganic-based moisture-retaining component, and mixing an isocyanate polyurethane with the butadiene rubber, the inorganic-based moisture-retaining component and the acid.
    Type: Grant
    Filed: August 12, 1994
    Date of Patent: May 7, 1996
    Assignee: Presidential Sports Systems, Inc.
    Inventor: Joseph W. Di Geronimo
  • Patent number: 5472987
    Abstract: Surfactants for conventional flexible polyurethane foam may be improved by the addition of a minor amount of an organic acid salt.
    Type: Grant
    Filed: June 25, 1991
    Date of Patent: December 5, 1995
    Assignee: OSi Specialties, Inc.
    Inventors: James D. Reedy, Richard T. Robertson
  • Patent number: 5391583
    Abstract: Flame-retardant poly (polyisocyanate-organic phosphorus) products are produced by mixing and reacting an organic phosphorus containing compound and a polyisocyanate compound in the presence of a polyisocyante catalyst. No other blowing agent is necessary.The flame-retardant polyurethane foam products may be used for thermal and sound-insulation, for cushioning, for molding useful objects and as a cavity filler.
    Type: Grant
    Filed: October 28, 1993
    Date of Patent: February 21, 1995
    Inventor: David H. Blount
  • Patent number: 5373028
    Abstract: In a method of preparing a poly-urethane and/or -urea foam from a formulation including (a) a polyisocyanate, (b) an isocyanate-reactive component, and (c) a visible emissions producing component, wherein (a), (b) and (e) are reacted under reaction conditions sufficient to form a poly-urethane and/or -urea foam and the foam is then cooled, whereby visible emissions are emitted during cooling, an improvement comprising including in the formulation a visible emissions reducing agent, such that the amount of the visible emissions is reduced as compared with the amount emitted by a foam prepared from a formulation which does not contain the visible emissions reducing agent but which is otherwise substantially similar. Foams prepared therefrom exhibit reduction in visible emissions during the cure period, which is particularly evident when the foams are mechanically cooled. They also exhibit generally good physical properties.
    Type: Grant
    Filed: October 15, 1993
    Date of Patent: December 13, 1994
    Assignee: The Dow Chemical Company
    Inventors: Carl D. McAfee, Richard G. Skorpenske, Don H. Ridgway, Stephen K. Lewis, Eugene P. Wiltz, Jr.
  • Patent number: 5268393
    Abstract: Flame-retardant polyurethane foam products are produced by mixing and reacting an organic phosphorus containing compound which will react with a polyisocyanate compound and produce a gaseous compound and a polyisocyanate compound in the presence of a polyurethane catalyst. No other blowing agent is necessary.The flame-retardant polyurethane foam products may be used for thermal and sound-insulation, for cushioning, for molding useful objects and as a cavity filler.
    Type: Grant
    Filed: July 17, 1992
    Date of Patent: December 7, 1993
    Inventor: David H. Blount
  • Patent number: 5234964
    Abstract: Microcellular polyurethane elastomers having nonpeelable skin surfaces having densities ranging from 0.1-1.1 gm/cm.sup.3 can be made from conventionally employed reactants using carbon dioxide gas as the sole source of blowing agent resulting from the H.sub.2 O/-NCO reaction when carried out in an admixture with nonhydratable particulate inorganic salts.
    Type: Grant
    Filed: January 28, 1992
    Date of Patent: August 10, 1993
    Assignee: Imperial Chemical Industries PLC
    Inventors: Nai W. Lin, Roland G. Jaber, Brian Fogg
  • Patent number: 5110834
    Abstract: Chlorofluorocarbon-free urethane-containing, soft-elastic moldings having a cellular core, a compacted peripheral zone and an essentially pore-free smooth surface are produced by reactinga) an organic and/or modified organic polyisocyanate withb) at least one relatively high-molecular-weight compound containing at least two reactive hydrogen atoms and, if desired,c) a low-molecular-weight chain extender and/or crosslinking agent,in the presence ofd) a blowing agent,e) a catalyst,f) a crystalline, microporous molecular sieve having a cavity diameter of less than 1.3 nm and comprising metal oxides or metal phosphates, and, if desired, further additives andg) assistants,in a closed mold with compaction, expediently by RIM.
    Type: Grant
    Filed: October 3, 1991
    Date of Patent: May 5, 1992
    Assignee: BASF Aktiengesellschaft
    Inventors: Peter Horn, Wolfgang Hoelderich, Rudolf Taddey, Dieter Tintelnot
  • Patent number: 5110840
    Abstract: Flame-retardant polyurethane foam is produced by mixing and reacting a polyol, a phosphorus acid and a compound containing two or more isocyanate radicals. The flame-retardant polyurethane foam may be used for cushioning, sound and thermal insulation, coating agent, molding agent, or as a cavity filler.
    Type: Grant
    Filed: January 2, 1990
    Date of Patent: May 5, 1992
    Inventor: David H. Blount
  • Patent number: 5096623
    Abstract: A flame retardant composition and process which is particular useful for rebounded foam products. The composition of the present invention includes a solid component of magnesium sulfate, boric acid, decabromodiphenylethylene oxide (DECA) and antimony trioxide and a liquid component of halogenated phosphorous. The present invention is based upon the discovery of the synergism between boric acid and DECA. The process, according to the present invention, includes the steps of forming a dispersion of the solid portion of the flame retardant composition along with a small amount of water based adhesive to a mass of foam chips. The treated chips are then dried to permit handling and storage. The dried foam chips subsequently are mixed with a conventional urethane prepolymer binder and the liquid halogenated phosphorous flame retardant compound. After mixing the foam mass is transferred to molds and steamed to allow the binder to cure.
    Type: Grant
    Filed: August 12, 1991
    Date of Patent: March 17, 1992
    Assignee: Triad-Fabco, Inc.
    Inventors: Robert W. Ward, Rogelio Tornero, Freeman J. Henderson
  • Patent number: 5089534
    Abstract: This invention relates to the use of phosphorus-containing compounds, specifically cyclic organophosphorus compounds, as carbodiimidization catalysts in the preparation of open-celled flexible polyurethane foam for the purpose of controlling foam density and providing softer foams. foams that are softer and of lower density can be prepared with significantly reduced quantities of blowing agents in comparison to foams prepared in the absence of such phosphorus-containing compounds. Additionally, use of such catalysts provides for a reduced reaction exotherm during the preparation of the foam thereby minimizing foam discoloration or scorching. Preferred phosphorus-containing compounds are the 1-alkyl-1-oxophospholenes, especially 1-methyl-1-oxophospholene.
    Type: Grant
    Filed: March 23, 1990
    Date of Patent: February 18, 1992
    Assignee: The Dow Chemical Company
    Inventors: Johan A. Thoen, Robert A. Sewell, Ulrich Muller
  • Patent number: 5034423
    Abstract: Inorganic organic flame-retardant polyols are produced by mixing and chemically reacting an epoxy compound with a compound containing reative hydrogens and acidic boron compound in the presence of an epoxy catalyst. These polyols may be utilized to produce polyester resinous products, polyamide resinous products and polyurethane solid and foamed products which may be utilized as coating agents, adhesives, sound and thermal insulation and molding agents.
    Type: Grant
    Filed: October 10, 1989
    Date of Patent: July 23, 1991
    Inventor: David H. Blount
  • Patent number: 5023280
    Abstract: The present invention relates to a process for the production of polyurethane foams by the reaction of 1) polyisocyanates with 2) polyesters, polycarbonates, polylactones, or polyamides having a molecular weight range of about 400 to about 10,000 and containing at least two isocyanate reactive hydrogen atoms, or mixtures thereof, in the presence of 3) water and/or organic blowing agents, 4) catalysts and 5) flame-retardants, and optionally in the presence of 6) compounds with molecular weights of from 32 to 399 containing at least two isocyanate reactive hydrogen atoms and 7) surface-active additives and other auxiliary agents known in the art. The flame-retardants consist of graphite which has been modified with inorganic expandable materials, either alone or in combination with an inorganic co-flame-retardant.
    Type: Grant
    Filed: April 7, 1989
    Date of Patent: June 11, 1991
    Assignee: Bayer Aktiengesellschaft
    Inventors: Peter Haas, Hans Hettel
  • Patent number: 5019599
    Abstract: A deodorizing urethane foam comprising a urethane foam substrate and a deodorizing component. The deodorizing component is composed of (A) a Diels-Alder reaction-type addition reaction product between an alpha,beta-unsaturated dicarboxylic anhydride and an olefin or a derivative of the reaction product and optionally (B) a copper compound. This urethane foam is produced by foaming a mixture of materials for the urethane foam substrate and the Diels-Alder reaction-type addition reaction product between an alpha,beta-unsaturated dicarboxylic anhydride and an olefin or its derivative of the reaction product and optionally the copper compound.
    Type: Grant
    Filed: March 22, 1989
    Date of Patent: May 28, 1991
    Assignee: Nippon Zeon Co., Ltd.
    Inventors: Yoshiaki Miki, Tsunehisa Ueda
  • Patent number: 4977194
    Abstract: The present invention relates to a process for the preparation of polyurethane foams comprising reacting polyisocyanates with dispersions of (i) polymer-containing relatively high molecular weight hydroxyl compounds that are prepared by reaction of mono- or polyisocyanates with NH-containing compounds selected from the group consisting of polyamines containing primary and/or secondary amino groups, hydrazines, hydrazides, and alkanolamines in (ii) a compound containing 1 to about 8 primary and/or secondary hydroxyl groups and having a molecular weight of about 400 to about 16,000, in the presence of water and/or organic blowing agents; catalysts; and flameproofing agents comprising an expandable graphite modified by inorganic expandable materials, alone or in combination with inorganic co-flameproofing agents.
    Type: Grant
    Filed: August 11, 1989
    Date of Patent: December 11, 1990
    Assignee: Bayer Aktiengesellschaft
    Inventors: Peter Haas, Hans Hettel
  • Patent number: 4968724
    Abstract: Novel polyurethane resin foam compositions are provided which are only water-blown and require no halocarbon blowing agents, yet suffer no degradation in physical properties. The formulations include a hydrated salt containing at least two hydrated salts that release water at a temperature above 80.degree. C. By using at least an acidic salt and a basic salt, the pH of the salt system may be balanced. A preferred hydrated salt system is a combination of borax (sodium tetraborate decahydrate) and alum (aluminum potassium sulfate dodecahydrate).
    Type: Grant
    Filed: May 31, 1990
    Date of Patent: November 6, 1990
    Assignee: Arco Chemical Technology, Inc.
    Inventor: Rocco L. Mascioli
  • Patent number: 4966920
    Abstract: The present invention provides a composition comprising a combustible material containing urethane linkages; and as a smoke and toxic gas suppressant, a polyester which has an acid value below 30 mg KOH/g, preferably below 10 mg KOH/g, and which is derived from:Ia.[A] a component which contains 4 carboxyl groups or anhydride thereof, and which is preferably an aromatic component, orIb. a mixture of [A] and [B]:[B] one or more components which contain 2 to 12, preferably 2 to 4, carboxyl groups or 1 to 6, preferably 1 or 2, carboxylic anhydride groups, selected from:[B.sub.1 ] an aliphatic carboxylic acid compnent containing 2-16 carbon atoms; [[B.sub.2 ] a cyclic non-aromatic carboxylic acid containing 7-17 carbon atoms; and[B.sub.3 ] an aromatic carboxylic acid containing 8-16 carbon atoms; andII.
    Type: Grant
    Filed: January 19, 1989
    Date of Patent: October 30, 1990
    Assignee: Ciba-Geigy Corporation
    Inventors: James Gainer, Robert L. Bentley
  • Patent number: 4960803
    Abstract: A method is provided for making a fire retardant rigid polyurethane foam. The method comprises reacting, in the presence of a non-metallic catalyst: (a) a polyol having a molecular weight between about 200 and about 6000; (b) polyisocyanate; (c) a foaming agent; (d) a surfactant; and (e) a single salt consisting of ammonium phosphate.
    Type: Grant
    Filed: July 29, 1988
    Date of Patent: October 2, 1990
    Inventors: Laszlo A. Muhl, Thomas I. Omori, John Milligan
  • Patent number: 4895879
    Abstract: Internal mold release compositions suitable for use in preparing polyurethane and polyurea moldings comprise a tertiary amine compound, a metal salt of a carboxylic acid, amidocarboxylic acid, phosphorus-containing acid or boron-containing acid. The metal is from Group IA, IB, IIA, or IIB metal or aluminum, chromium, molybdenum, iron, cobalt, nickel, tin, lead, antimony or bismuth.
    Type: Grant
    Filed: April 20, 1987
    Date of Patent: January 23, 1990
    Assignee: The Dow Chemical Company
    Inventors: Donald L. Nelson, Roney J. Matijega, Dennis P. Miller, deceased
  • Patent number: 4859713
    Abstract: Flame-retardant polyols are produced by chemically reacting an epoxy compound, a phosphorus-containing compound and a compound containing 1 or more active hydrogens to produce a phosphorus-containing polyol with acid radicals which are reacted with an alkali compound. The flame-retardant polyol will react with polyisocyanates to produce solid or foamed products which may be used as coating agents, adhesive or for insulation.
    Type: Grant
    Filed: December 4, 1987
    Date of Patent: August 22, 1989
    Inventor: David H. Blount
  • Patent number: 4780484
    Abstract: A molding material based on polyisocyanato-isocyanurates, polyols and flameproofing and fireproofing agents, as well as optionally polyisocyanates, fillers and promoters is described which is preferably in the form of a 2-component material and comprises 5 to 40% by weight of branched polyols, 20 to 40% by weight of the isocyanurate of 1,6-hexamethylene diisocyanate, 0 to 20% by weight of crude MDI and/or prepolymer of polyol and crude MDI and/or isophorone diisocyanate optionally in combination with further isocyanate groups containing compounds, 5 to 20% by weight of a fireproofing mixture mainly consisting of secondary ammonium phosphate, 0 to 50% by weight filler and 0 to 5% by weight promoter. This mass, which permits quick processing at room temperature or slighty increased temperatures, is useful as construction and repair material for many applications, especially in connection with the construction and repair of land, air and water vehicles.
    Type: Grant
    Filed: January 26, 1988
    Date of Patent: October 25, 1988
    Assignee: Mankiewicz Gebr. & Co. (GmbH & Co. KG)
    Inventors: Bernd Schubert, Klaus D. Rohardt, Michael O. Grau