Ingredient Contains A Carbon Atom Double Bonded To Oxygen, E.g., Carboxylic Acid, Etc. Patents (Class 521/130)
  • Patent number: 11285643
    Abstract: There is provided herein thermoset porous polymer composites a methods for producing such composites. The method comprises: preparing a mixture comprising a resin, optionally a curing agent, and dry ice; optionally casting the mixture; curing the mixture to obtain the porous composite; and optionally controlling at least one of a reaction rate and an expansion rate of the mixture during the curing.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: March 29, 2022
    Inventors: Gholamali Sharifishourabi, Denis Rodrigue
  • Patent number: 11186671
    Abstract: A method of forming a flexible polyurethane foam that passes BS 5852:2006 source V (Crib 5) test. The method includes providing a modified polyisocyanate polyaddition (PIPA) 5 polyol formed by contacting a PIPA polyol dispersion with at least one carboxylic acid having a melting point above zero degree Celsius and present in a carrier solvent. The PIPA polyol dispersion has a polyol liquid phase content of 60 wt. % to 90 wt. % and a solid particle phase content of 10 wt. % to 40 wt. % based on a total weight of the PIPA polyol dispersion. From 10 weight percent (wt. %) to 80 wt. % of the modified PIPA polyol is combined with 90 wt. % to 20 10 wt. % of at least another polyether polyol based on a total weight of a polyol blend of the PIPA polyol and the at least another polyether polyol, where the polyether polyol is formed with propylene oxide and ethylene oxide and has an equivalent weight of 1,000 to 2,000 and a functionality of 3 to 6.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: November 30, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Lucie Porcelli, Francois M. Casati, Paul Cookson
  • Patent number: 11104757
    Abstract: Tertiary amine catalysts having isocyanate reactive groups capable of forming thermally stable covalent bonds able to withstand temperatures from 120° C. and higher and up to 250° C. are disclosed. These catalyst can be used to produce polyurethane foam having the following desirable characteristics: a) very low chemical emissions over a wide range of environmental conditions and isocyanate indexes (e.g., indexes as low as 65 but higher than 60); b) sufficient hydrolytic stability to maintain the catalyst covalently bound to foam without leaching of tertiary amine catalyst when foam is exposed to water or aqueous solutions even at temperatures higher than ambient (temperature range 25° C. to 90° C.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: August 31, 2021
    Assignee: Evonik Operations GmbH
    Inventors: Juan Jesus Burdeniuc, Torsten Panitzsch, Renee Jo Keller
  • Patent number: 10933609
    Abstract: Composite materials having superior material properties useful as impact absorbing devices can be fabricated by embedding a lattice structure (e.g., polymer lattice structure) within a foam, so that the foam reinforces the lattice structure under impact. Materials and dimensions of the foam and the lattice structure may be selected to achieve composite materials having tailored impact absorbing elastic and/or viscoelastic responses over a wide range of temperatures.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: March 2, 2021
    Assignee: The Regents of the University of California
    Inventors: Vijay Gupta, Brian Jouse Ramirez, Utkarsh Misra
  • Patent number: 10793692
    Abstract: This invention relates to a process for preparing viscoelastic flexible polyurethane foam comprising reacting an isocyanate component with an isocyanate-reactive component that comprises a polyol blend having a hydroxyl number of 56 to 250 and an average functionality of greater than 2, and a hydroxyl-terminated prepolymer. The invention also relates to viscoelastic flexible polyurethane foams.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: October 6, 2020
    Assignee: Covestro LLC
    Inventors: Nigel Barksby, Brian L. Neal
  • Patent number: 10745535
    Abstract: A sponge for oil-water separation, which is prepared by reacting a polyol blend with a polyisocyanate and graphene, in the presence of a catalyst, a foaming agent and a foam stabilizer. The polyol blend includes: a first polyol component having a hydroxyl number of 33 to 60 mg KOH/g and an oxyethylene content of 50 to 80 mol %; a second polyol component having a hydroxyl number of 80 to 300 mg KOH/g and having an oxyethylene content of 50 to 80 mol %; a graft polyol component having a hydroxyl number of 20 to 40 mg KOH/g; a tetrafunctional polyol component having a hydroxyl number of 350 to 650 mg KOH/g; and glycerol.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: August 18, 2020
    Assignee: Chen Chi Hsiang Industry Limited
    Inventors: Yu-Hsiang Liu, Shih-Chung Chen
  • Patent number: 10723828
    Abstract: Described herein is a process for producing flexible polyurethane foams, in which (a) polyisocyanate prepolymer, is mixed with (b) polymeric compounds having groups reactive toward isocyanates, (c) optionally chain extenders and/or crosslinkers, (d) catalyst, (e) blowing agent comprising water and (f) optionally additives to give a reaction mixture and reacted to give a flexible polyurethane foam.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: July 28, 2020
    Assignee: BASF SE
    Inventors: Heinz-Dieter Lutter, Manuela Faehmel, Kirsten Simon, Claudio Petrini
  • Patent number: 10688760
    Abstract: Fire-retardant composites, methods of making fire-retardant composites, and use thereof are described. A fire-retardant composite can include at least two fire-retardant laminates, and a porous thermoplastic core material disposed between the at least two fire-retardant laminates. Each laminate can have one or more ply, each of the plies can include a plurality of fibers in a thermoplastic polymer matrix that includes a fire-retardant composition. The fire-retardant composite meets European fire-retardant standards for rail transportation.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: June 23, 2020
    Inventors: Goran Solenicki, Joris Wismans, Sandeep Chandrakant Kulkarni, Rein Mollerus Faber, Erik Schwartz
  • Patent number: 10421847
    Abstract: A nanoporous open-cell foam or wick structure and method for production are disclosed. The nanoporous foam or wick structures are produced from, for example, thermoplastic or thermoset polymer gels in which a gelation solvent is removed so as to preserve an expanded monolithic gel structure consisting of intertwined and or chemically crosslinked polymer molecular fibrils. The nanoporous foam or wick may encompass a stand-alone structure, or be incorporated in to microporous open cell foams or wick materials converting them in to nanoporous cellular materials having a bipore structure. Such produced nanoporous polymer materials have unique properties that may be exploited for making high performance capillary pump loop or heat pipe thermal management systems, low-boiloff slosh-less cryogen storage vessels and superior insulation materials for systems operating under ambient and elevated pressure conditions.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: September 24, 2019
    Inventor: John A. Starkovich
  • Patent number: 10253149
    Abstract: Pellets, beads, particles, or other pieces of a thermoplastic elastomer having a maximum size in at least one dimension of 10 mm or less (collectively, “pellets”) are infused with a supercritical fluid in a pressurized container, then rapidly depressurized and heated either by immersion in a heated fluid or with infrared or microwave radiation to foam the pellets The pellets are prepared with at least two different densities. Pellets with different densities, thermoplastic elastomer compositions, or foam response rates are placed in different areas of a mold. The mold is filled with pellets, then the pellets are molded into a part. The part has areas of different density as a result of the placement of pellets of different density.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: April 9, 2019
    Assignee: Nike, Inc.
    Inventors: Richard L. Watkins, Hossein Baghdadi, Charles Edwards, Yihua Chang
  • Patent number: 10087298
    Abstract: A bio-polyol composition and a bio-polyurethane foam material are provided. By using the modifier and applying the dispersing and grinding process, the modified lignin is uniformly dispersed in the polyol solution and a bio-polyol composition is obtained. The obtained bio-polyol composition may be used to prepare the bio-polyurethane foam material with a high lignin content, a high compression strength and superior flame-resistance.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: October 2, 2018
    Inventors: Wen-Pin Chuang, Yuung-Ching Sheen, Yun-Ya Huang, Yi-Che Su
  • Patent number: 9896558
    Abstract: The present invention relates to a process for producing rigid polyurethane foams by reaction of a) at least one organic polyisocyanate with b) at least one polyol component in the presence of a blowing agent mixture comprising water and halogenated alkenes, wherein the amount of water is at least 1.40 mol/kg of polyol component b) and the amount of halogenated alkene is at most 2.00 mol/kg of polyol component b), and also to the use of such a blowing agent mixture for producing corresponding rigid polyurethane foams and for increasing the adherence and reducing the thermal conductivity of corresponding rigid polyurethane foams. The present invention further relates to a rigid polyurethane foam obtainable by the process of the present invention.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: February 20, 2018
    Assignee: BASF SE
    Inventors: Christiane Giesker, Markus Schutte, Patrick Lax, Jörg Krogmann
  • Patent number: 9850360
    Abstract: The invention relates to highly elastic polyurethane foams which are suitable as functional materials having thermally insulating properties.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: December 26, 2017
    Assignee: BASF SE
    Inventors: Frank Prissok, Steffen Mayer, Tanja Aepker, Maike Grever, Daniela Kranzusch, Marlene Niemann, Florian Felix
  • Patent number: 9683071
    Abstract: A rigid polyurethane foam includes the reaction product of an isocyanate and an isocyanate reactive component in the presence of a blowing agent. The isocyanate reactive component includes an aromatic polyester polyol, a rigid polyol, and an aliphatic polyester polyol. The rigid polyurethane foam has a tensile adhesion of greater than 35 kPa (5 psi) when disposed on a metal substrate or a polyester, polyurethane, or epoxy coated metal substrate, each having a substrate temperature of greater than 41° C. (105° F.), and tested in accordance with ASTM D1623-09. A method of forming a composite article comprising a substrate and the rigid polyurethane foam includes the steps of combining the isocyanate reactive component and the isocyanate in the presence of the blowing agent to form a reaction mixture and applying the reaction mixture to the substrate having a substrate temperature of greater than 41° C. (105° F.) to form the composite article.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: June 20, 2017
    Assignee: BASF SE
    Inventor: Michael L. Jackson
  • Patent number: 9150716
    Abstract: There is provided a resin foam excellent in dustproof performance, particularly dustproof performance in a dynamic environment. The resin foam of the present invention has a thickness recovery ratio of 65% or more, wherein the thickness recovery ratio is defined as a ratio of a thickness 1 second after releasing a compressed state to an initial thickness, when the resin foam is compressed for 1 minute in the thickness direction so as to give a thickness equal to 20% of the initial thickness in a 23° C. atmosphere; and then the compressed state is released in a 23° C. atmosphere.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: October 6, 2015
    Inventors: Makoto Saitou, Itsuhiro Hatanaka, Kazumichi Kato, Kiyoaki Kodama
  • Patent number: 9023905
    Abstract: The present invention relates to a cleaning implement based on melamine formaldehyde foams comprising, abrasive particles and to a method of cleaning a hard surface with said cleaning implement.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: May 5, 2015
    Assignee: The procter & Gamble Company
    Inventors: David John Pung, Denis Alfred Gonzales, Tobias Heinz Steinke, Peter Nessel
  • Patent number: 9023908
    Abstract: The present invention relates to a method for adsorbing and/or absorbing oil, by bringing oil into contact with a polyurethane sponge with excellent mechanical properties.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: May 5, 2015
    Assignee: BASF SE
    Inventors: Nils Mohmeyer, Ralf Fritz, Bernd Bruchmann, Anna Cristadoro, Marcus Leberfinger, Antje van der Net
  • Patent number: 9006366
    Abstract: Processes for making water-absorbent cross-linked polymers, such as polyacrylic acids/polyacrylates, using supercritical medium; and water-absorbent polymers, e.g. particles thereof, obtained by such processes, where such particles may be porous.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: April 14, 2015
    Assignee: The Procter & Gamble Company
    Inventors: Thomas Tombuelt-Meyer, Axel Meyer, Torsten Lindner
  • Patent number: 8975306
    Abstract: A viscoelastic foam system is provided having an amine-based polyoxypropylene extended polyol to impart strength, recoverability and endurance to the foam, and an appropriately selected non-amine-based polyol to provide flexibility to the foam. The combination of amine-based propylene oxide extended polyol and non-amine-based polyol provides a viscoelastic semi-rigid foam with excellent impact and recovery properties, recovering to substantially 100% of its initial volume and shape following an impact, yet with sufficient rigidity and stiffness so that it is effective at absorbing multiple impacts. A method of making the above viscoelastic foam is also provided.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: March 10, 2015
    Assignee: Intellectual Property Holdings, LLC
    Inventor: Charles M. Milliren
  • Patent number: 8957123
    Abstract: A process for producing resilient, flexible polyurethane foams that function well in noise and vibration absorption applications for vehicle applications that are made from a blend of polyols (i) and an isocyanate (ii), wherein the blend of polyols (i) comprises a mixture of polyether polyols (i.a) that each has a hydroxyl equivalent weight of from 1200 to 3000 and at least 70% primary hydroxyl groups, from 5 to 80% by weight of the ethylene oxide-capped polypropylene oxides are nominally difunctional, from 0.5 to 20% by weight of the ethylene oxide-capped polypropylene oxides have a nominal functionality of four or higher, and the balance of the ethylene oxide-capped polypropylene oxides, but not less than 1.5% by weight thereof, are nominally trifunctional; an autocatalytic polyol (i.b) having a functionality in the range of 2 to 8 and a hydroxyl number in the range of 15 to 200, wherein said autocatalytic polyol compound comprising at least one tertiary amine group; and a low unsaturation polyol (i.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 17, 2015
    Assignee: Dow Global Technologies Inc
    Inventors: Issam Lazraq, Helmut Stegt, Allan James, Stephen R. Burks
  • Patent number: 8940803
    Abstract: The present invention relates to a rigid polyurethane foam which can be obtained by mixing (a) isocyanates, (b) compounds having groups which are reactive toward isocyanates, (c) blowing agents comprising water, (d) catalysts and optionally (e) further additives to form a reaction mixture, applying the reaction mixture to a reinforcing material and curing the reaction mixture, where the isocyanates (a) have a viscosity of not more than 500 mPas at 25° C. and the compounds (b) having groups which are reactive toward isocyanates comprise a polyetherol (b1) having a functionality of 4 or more and a viscosity at 25° C. of 10 000 mPas or less, a polyetherol (b2) having a functionality of 3.5 or less and a viscosity at 25° C. of 600 mPas or less, a polyesterol (b3) having a viscosity at 25° C. of 2000 mPas or less, chain extenders (b4) comprising at least 30% secondary OH groups and optionally a crosslinker (b5).
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: January 27, 2015
    Assignee: BASF SE
    Inventors: Marco Balbo Block, Cheul Hyeon Hwang
  • Patent number: 8937107
    Abstract: An embodiment of a closed-cell polymeric rigid foam may be made using a one-shot method and a reaction system that includes a hydrofluoroalkene physical blowing agent and a polyol mixture having an aminic polyol. The hydrofluoroalkene blowing agent has 3 to 5 carbon atoms and a boiling point between 10° C. and 40° C. at 1 atmosphere pressure. Embodiments of rigid foams may have high closed cell content and are particularly well suited for thermal insulation.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: January 20, 2015
    Assignee: Huntsman International LLC
    Inventors: Sachchida N. Singh, Jinhuang Wu, Alan J. Hamilton
  • Patent number: 8937108
    Abstract: A foam article for use in a seat cushion includes an open cell, polyurethane foam material that includes a base polyol; a crosslinker; an isocyanate; a surfactant; and water, that are reacted together to produce a seat cushion having dynamic and static performance specifications that are better than the performance characteristics for a traditional, high resilient material seat cushion, as well as other seating materials.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: January 20, 2015
    Assignee: Johnson Controls Technology Company
    Inventors: James T. McEvoy, Terrence M. McRoberts, Ryoko Yamasaki, William Li, Murray D. Metcalfe
  • Publication number: 20150004127
    Abstract: Porous resin particles are disclosed that comprise a polymer of a monomer mixture. The monomer mixture includes: a mono(meth)acrylate-based monomer in an amount of 3 wt % to 40 wt % containing: an ethylenic unsaturated group only in a (meth)acrylic acid residue; and a hydroxyl group and at least either an ether group or an ester group in an alcohol residue; another monofunctional vinyl-based monomer in an amount of 10 wt % to 69 wt % containing a single ethylenic unsaturated group; and a polyfunctional vinyl-based monomer in an amount of 30 wt % to 70 wt % containing two or more ethylenic unsaturated groups.
    Type: Application
    Filed: July 31, 2012
    Publication date: January 1, 2015
    Inventors: Fumitaka Ishimori, Ryosuke Harada
  • Patent number: 8912243
    Abstract: The disclosure provides a composition or set of compositions and method for producing cellular, foamed, or blown fluoropolymers such as perfluoropolymers and other thermoplastics to create a lower cost communications cable, conductor separator, conductor support-separator, jacketing, tape, wire insulation and in some cases a conduit tube as individual components or combined configurations that exhibit improved electrical, flammability and optical properties. Specifically, the foamable or blown perfluoropolymer cellular insulation composition comprises; talc and the selected fluoropolymers such as perfluoropolymers. Compounded pellets including inorganic and organic fillers resulting in products in cellular or foamable form with and without solid skin surfaces has also been realized by providing melt combinations within the pellets primarily comprising talc and a perfluoropolymer, and additives as needed to provide desired property differentiation.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: December 16, 2014
    Assignee: Cable Components Group, LLC
    Inventor: Charles A. Glew
  • Patent number: 8906975
    Abstract: A conventional flexible polyurethane foam, made using methylene diphenyl diisocyanate (MDI), having a bulk foam density in the range of 2.5 pounds per cubic foot or lower and having a foam hardness or IFD in the range of 10 to 90 lb/50 in2. The present invention is also directed to the method for the making thereof.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: December 9, 2014
    Assignee: Hickory Springs Manufacturing Company
    Inventors: Dimitrios V. Dounis, Dwayne Lewis Beard, Camden Eugene McLaughlin, Kimberly R. Fair
  • Patent number: 8901187
    Abstract: A high resilience flexible polyurethane foam, made using methylene diphenyl diisocyanate (MDI), having a bulk foam density in the range of 2.5 pounds per cubic foot or lower and having a foam hardness or IFD in the range of 10 to 40 lb/50 in2. The present invention is also directed to the method for the making thereof.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: December 2, 2014
    Assignee: Hickory Springs Manufacturing Company
    Inventors: Dimitrios V. Dounis, Dwayne Lewis Beard, Camden Eugene McLaughlin, Kimberly R. Fair
  • Patent number: 8901189
    Abstract: A foam article, for use in a seat such as a seat cushion, includes an open cell, polyurethane foam material that includes a plant oil-based polyol material content greater than five percent and is produced from the reaction of a base polyol formulation blend including at least a portion of a plant oil-based polyol, a copolymer polyol including at least a portion of a plant oil-based polyol, water, a cross-linking agent, a catalyst, cell opener and a surfactant that are reacted with an isocyanate material for producing the seat cushion having performance specifications that are equivalent or better than the performance characteristics for a traditional petroleum oil-based polyol material seat cushion.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: December 2, 2014
    Assignee: Johnsons Controls Technology Company
    Inventors: Patricia J. McClarren, Ryoko Yamasaki, James T. McEvoy, Terry M. McRoberts, William W. Li
  • Publication number: 20140336293
    Abstract: A blowing agent for thermosetting foams is disclosed. The blowing agent is the hydrofluoropropene HFO-1243zf in combination with a hydrochlorofluoroolefin (HCFO) selected from HCFO-1233zd, HCFO-1233xf and HCFO-1223. The blowing agent is effective as a blowing agent in the manufacture of thermosetting foams.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Applicant: Arkema Inc.
    Inventors: Benjamin Bin Chen, Joseph S. Costa, Brett L. Van Horn, Maher Y. Elsheikh, Philippe Bonnet
  • Patent number: 8859632
    Abstract: A foamed resin product having shape-formable properties, a method of using the same and a cushion material that is to be worn by the human body are provided. The foamed resin product (a flexible polyurethane foam, etc.) has a glass transition temperature, expressed as the temperature of the loss tangent peak, of 10° C. to 35° C., a loss tangent within this temperature range of 0.20 to 0.80, and, with respect to the storage elastic modulus (G?) within this temperature range, the ratio (G?max/G?min) of maximum value (G?max) to minimum value (G?min) of 3.0 to 30. The using method thereof has attaching a molded article made of the foamed resin product to the surface of the human body, and lowering the hardness of the molded article due to the heat transferred from the human body so as to deform the molded article by allowing to follow-up the shape of the body.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: October 14, 2014
    Assignee: INOAC Corporation
    Inventors: Mitsuru Omoto, Minoru Kawarabayashi, Shunichi Hayashi
  • Publication number: 20140295722
    Abstract: A lightweight foamed polymer concrete admixture for use in fabricating building components, the polymer concrete comprising a mixture of a polyol, an isocyanate, an aggregate, and water, wherein once mixed, the mixture releases carbon dioxide gas creating a foamed mixture that may be shaped to form a building component such as, but not limited to, lap siding, shake siding, trim boards, stone and stucco sheeting.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 2, 2014
    Applicant: Ply Gem Industries, Inc.
    Inventors: Jeremy E. Warren, Eric B. Dickey, Bryan K. Beasley
  • Patent number: 8816036
    Abstract: Catalysts, which are free of tin, are described which are useful in the reaction between an isocyanate and an alcohol, which is a key step for preparing polyurethane polymers. The catalyst is a metal complex or salt of formula (1): [Zn(L1)l1(L2)l2(Y)x]??(1) in which: l1?1 and l2=0 or 1; with l1+l2=2, x=1 or 2, the symbol L1 represents a ligand which is a ?-dicarbonylato anion or the enolate anion of a ?-dicarbonyl compound or an acetylacetato anion derived from a ?-ketoester, when l1=2, the symbols L1 are identical or different, the symbol L2 represents an anionic ligand which is different from L1, and the symbol Y represents a neutral ligand; where the metal complex or salt C of formula (1) is not zinc diacetylacetonate.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: August 26, 2014
    Assignee: Bluestar Silicones France SAS
    Inventors: Christian Maliverney, Laurent Saint-Jalmes
  • Patent number: 8802746
    Abstract: There is described an isocyanate-based polymer foam having improved anti-yellowing properties. The foam produced from a formulation comprising an isocyanate, a blowing agent, a first active hydrogen-containing compound and a second active hydrogen-containing compound different than the first active hydrogen-containing compound. The second active hydrogen-containing compound comprises an active hydrogen-containing phosphite compound. A process for producing such a foam is also described.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: August 12, 2014
    Assignee: Proprietect L.P.
    Inventors: Wen Wei Zhao, Mladen Vidakovic, Eugene Smeianu
  • Patent number: 8791168
    Abstract: A viscoelastic polyurethane foam is the reaction product of at least one natural oil derived polyol and at least one aromatic compound having an average of more than one isocyanate group. A viscoelastic polyurethane foam has an air flow of at least about 0.5 l/s, wherein the foam is formed in the substantial absence of copolymer polyol and has not (yet) been mechanically reticulated and is preferably prepared using at least one natural oil derived polyol, more preferably in an amount of at least about 20 weight percent of the polyols used. A process of preparing a viscoelastic foam, comprises steps of (A) forming a reaction mixture including at least one polyol, at least one polyisocyanate, water, at least one catalyst wherein a the polyol comprises at least one natural oil derived polyol; and (B) subjecting the reaction mixture to conditions sufficient to result in the reaction mixture to expand and cure to form a viscoelastic polyurethane foam.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: July 29, 2014
    Assignees: Dow Global Technologies, Dow Brasil Sudeste Industrial Ltda
    Inventors: David A. Babb, Bernard E. Obi, Robert E. O'Neill, Alvaro Pauperio-Neto
  • Patent number: 8785511
    Abstract: Low density silicone-containing polyurethane foams with excellent surface characteristics are prepared by reacting a foamable composition containing a siloxane of the formula and an isocyanate, in the presence of at least one blowing agent.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: July 22, 2014
    Assignee: Wacker Chemie AG
    Inventors: Jens Cremer, Steffen Jungermann
  • Patent number: 8779018
    Abstract: In the present invention, a catalyst composition comprising the following amine compounds of (A) and (B) and/or (C) is used and further, a raw material-blended composition further containing a polyol component and water is used. (A) A quaternary ammonium salt represented by the following general formula (1): wherein each of R1 to R3 represents a hydrocarbon group having 1 to 12 carbon atoms, R4 represents an alkyl group or an aromatic hydrocarbon group having 1 to 18 carbon atoms, and X represents an organic acid group having an acid dissociation constant (pKa) of 4.8 or less; (B) A hydrophobic amine compound; (C) A heterocyclic tertiary amine compound.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: July 15, 2014
    Assignee: Tosoh Corporation
    Inventors: Katsumi Tokumoto, Yutaka Tamano
  • Publication number: 20140171530
    Abstract: A method of making a foam from a polymerizable resin includes the following steps. A thermally-activated initiator having a temperature below the initiation temperature is combined with an elevated-temperature solution having the polymerizable resin and carbon dioxide at a temperature above a promoted temperature to create a resulting mixture having a temperature above the promoted temperature. The resulting mixture is expanded by decreasing the pressure of the mixture to create a froth having a plurality of cells formed by carbon dioxide that expanded out of solution. The polymerizable resin within the froth is cured to create a foam.
    Type: Application
    Filed: November 14, 2013
    Publication date: June 19, 2014
    Applicant: Sealed Air Corporation (US)
    Inventors: William J. Mahon, Henry J. Ruddy
  • Patent number: 8735458
    Abstract: Aqueous cold-cure flexible foam stabilizer including the following components: a) from ?0.1 to ?80% by weight of at least one water-insoluble polysiloxane compound having a molecular weight of from ?300 g/mol to ?10 000 g/mol, b) ?2% by weight of water, c) ?0.1% by weight of surfactant, d) from ?0 to 10% by weight of additives selected from the group consisting of thickeners, antifreezes, organic solvents and biocides, e) ?0% by weight of water-soluble siloxane(s), with the proportion by weight of the abovementioned components being selected so that the sum of the proportions by weight of the components is not more than 100% by weight, based on the aqueous cold-cure flexible foam stabilizer formulation.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: May 27, 2014
    Assignee: Evonik Goldschmidt GmbH
    Inventors: Martin Glos, William Bunting, Harald Modro, Mladen Vidakovic
  • Patent number: 8735460
    Abstract: The invention relates to a foamed isocyanate-based polymer derived from a reaction mixture comprising an isocyanate, an active hydrogen-containing compound, a blowing agent and a highly branched polysaccharide which is derivatized with at least two esters of different length. Further the invention relates to a mix and a process for the production of isocyanate-based polymer. The mix for the production of a foamed isocyanate-based polymer comprises a mixture of the derivatized polysaccharide of the invention and an active hydrogen-containing compound. The process for producing a foamed isocyanate-based polymer comprises the steps of: contacting an isocyanate, an active hydrogen-containing compound, the derivatized highly branched polysaccharide of the invention and a blowing agent to form a reaction mixture and expanding the reaction mixture to produce the foamed isocyanate-based polymer.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: May 27, 2014
    Assignee: Dupont Nutrition Bioscience APS
    Inventors: Kenneth Knoblock, Charles Nichols, James O'Connor
  • Patent number: 8729146
    Abstract: A catalyst composition including a solution of at least one member selected from the group consisting of an alkali metal carboxylate and an alkaline earth metal carboxylate in a solvent which is nonreactive with the isocyanate groups of a polyisocyanate.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: May 20, 2014
    Assignee: Momentive Performance Materials Inc.
    Inventor: Vittorio Bonapersona
  • Patent number: 8686058
    Abstract: Embodiments of the present invention disclose viscoelastic foams having a renewable natural resource contents of between about 1 and about 25 wt % of the foam. The foams may have a ratio of elastic modulus (E?) at 20° C. to 25% compression force deflection (CFD) of 25 to 125.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: April 1, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Bernard E. Obi, Alan K. Schrock, Rogelio R. Gamboa, Asjad Shafi
  • Patent number: 8673991
    Abstract: The two-part curable polyurethane foam resin composition uses little or no petroleum-derived raw materials but a plant-derived raw material so that the biomass ratio can be improved, the load on the environment can be reduced, and excellent physical characteristics can be exhibited. The two-part curable polyurethane foam resin composition includes a main agent that contains an isocyanate-terminated urethane prepolymer (A) and a curing agent that contains an isocyanate-reactive compound (B), water (C), and a catalyst (D), in which a polyol component used in (A) and (B) uses a castor oil polyol (b1) having 1.5 to 2.3 functional groups on average and a polyol (b2) prepared by addition polymerization of lactone to polytetramethylene glycol and/or polytetramethylene glycol (b3), the ratio (b1)/(b2) and/or (b3)=15/85 to 60/40 on a mass basis, and a content of the castor oil polyol (b1) is 10 to 45% by mass.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: March 18, 2014
    Assignee: DIC Corporation
    Inventors: Tomoaki Shinchi, Hiroshi Suzaki
  • Publication number: 20140066534
    Abstract: The invention relates to a method for producing a polyurethane foam, wherein a mixture having the following is discharged from a mixing head through a discharge line: A) a component reactive toward isocyanates; B) a surfactant component; C) a blowing agent component selected from the group comprising linear, branched, or cyclic C1 to C6 hydrocarbons, linear, branched, or cyclic C1 to C6 fluorocarbons, N2, O2, argon, and/or CO2, wherein the blowing agent C) is present in the supercritical or near-critical state; and D) a polyisocyanate component. The component A) has a hydroxyl value=100 mg KOH/g and =1000 mg KOH/g. The blowing agent component C) is present at least partially in the form of an emulsion, and means provided with an opening or several openings are arranged in the discharge line in order to increase the flow resistance during the discharge of the mixture comprising A), B), C), and D), wherein the cross-sectional area of the opening or the sum of the cross-sectional areas of all openings is =0.
    Type: Application
    Filed: April 24, 2012
    Publication date: March 6, 2014
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Dirk Steinmeister, Stephan Moers, Stefan Lindner, Wolfgang Friederichs, Juergen Straeter
  • Publication number: 20140066532
    Abstract: Polyurethane/polyisocyanurate foams having a NFPA 101 Class A rating (ASTM E-84) are produced from a foam-forming reaction mixture that includes: an organic polyisocyanate, an isocyanate-reactive composition that includes at least one polyether polyol or polyester polyol with a nominal hydroxyl functionality of at least 2.0, a blowing agent composition and at least one halogen-free flame retardant. The blowing agent composition includes: (1) up to 5% by weight, based on total weight of the foam-forming composition, of one or more hydrocarbons having an LEL less than 2% by volume in air; and/or (2) a hydrocarbon having an LEL greater than 2% by volume in air; and (3) up to 1% by weight, based on total weight of foam-forming composition, of water.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Applicant: Bayer MaterialScience LLC
    Inventors: George G. Combs, Susan C. Pigott
  • Patent number: 8658708
    Abstract: Foam-forming compositions containing azeotropic or azeotrope-like mixtures containing cis-1,1,1,4,4,4-hexafluoro-2-butene are disclosed. The foam-forming composition contains (a) an azeotropic or azeotrope-like mixture of cis-1,1,1,4,4,4-hexafluoro-2-butene with methyl formate, 1,1,1,3,3-pentafluorobutane, trans-1,2-dichloroethylene, pentane, isopentane, cyclopentane, HFC-245fa, or dimethoxymethane; and (b) an active hydrogen-containing compound having two or more active hydrogens. Also disclosed is a closed-cell polyurethane or polyisocyanurate polymer foam prepared from reaction of an effective amount of the foam-forming composition with a suitable polyisocyanate. Also disclosed is a process for producing a closed-cell polyurethane or polyisocyanurate polymer foam by reacting an effective amount of the foam-forming composition with a suitable polyisocyanate.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: February 25, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Gary Loh, Mark L. Robin, Joseph Anthony Creazzo
  • Publication number: 20140039078
    Abstract: The invention is directed to polyurethane foams which are flotation resistant with sufficient strength and density to provide stability and inhibit erosion at pipeline trench sites, and other uses, wherein at least 50% of the foam is open cell and has a density of approximately 1.3 lbs/ft3 to 3.5 lbs/ft3.
    Type: Application
    Filed: September 25, 2013
    Publication date: February 6, 2014
    Applicant: Foam Supplies, Inc.
    Inventors: Timothy T. Kalinowski, David G. Keske, Victor B. Matimba, David L. Modray, Mark Schulte, Donald C. Keim
  • Patent number: 8642670
    Abstract: The present invention relates to an open-cell polyurethane foam comprising polyester and polyether structures and having a density of 70 to 300 g/L, 1 to 20 cells/cm, a rebound intensity greater than 30%, an elongation at break of greater than 200%, a tear propagation resistance of greater than 1.2 N/mm and a tensile strength of greater than 200 kPa. The present invention further relates to a process for producing inventive open-cell polyurethane sponges and to the use thereof as a pipe cleaning sponge.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: February 4, 2014
    Assignee: BASF SE
    Inventors: Nils Mohmeyer, Ralf Fritz, Annika Habicht, Daniela Tepe, Frank Prissok, Michael Harms, Bernd Bruchmann, Daniel Schoenfelder, Daniel Freidank, Andreas Emge, Andrea Eisenhardt
  • Patent number: 8637584
    Abstract: An isocyanate reactive composition for making a polyurethane foam includes a tertiary amine urethane catalyst comprising a di(C1-C4)alkyl fatty alkyl amine and a polyester polyol. The use of one or more of fatty alkyl tertiary amine serves to reduce hydrolysis of the polyester polyol in the isocyanate reactive composition.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: January 28, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gary Dale Andrew, Juan Jesus Burdeniuc, Goran Zarkov
  • Patent number: 8623933
    Abstract: A process for producing a polyether polyol which can form low viscosity rigid foamed synthetic resins excellent in strength, dimensional stability and flame retardancy, can give a low viscosity polyol system solution containing water instead of HFCs as a blowing agent with good miscibility with isocyanate compounds and can form good rigid foamed synthetic resins by spraying, which polyether polyol is produced by reacting a phenol component (molar ratio 1) selected from phenol and phenol derivatives having a hydrogen atom at one or more ortho-positions to the phenolic hydroxyl group, an aldehyde component (molar ratio 0.3 to 0.9) selected from formaldehyde and acetoaldehyde and an alkanolamine component (molar ratio 1.5 to 3.5) selected from monoethanolamine, diethanolamine and 1-amino-2-propanol and then adding an alkylene oxide to the resulting reaction product.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: January 7, 2014
    Assignee: Asahi Glass Company, Limited
    Inventors: Katsuhiko Shimizu, Tomohiro Hayashi, Hiroshi Wada, Yoshinori Toyota
  • Publication number: 20130337208
    Abstract: The invention relates to foams of high thermal stability, to the production thereof from organic polyisocyanates and polyepoxides, and to the use of the foams.
    Type: Application
    Filed: December 12, 2011
    Publication date: December 19, 2013
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Dirk Wegener, Stephan Reiter, Harald Rasselnberg, Marcel Schornstein, Hans-Detlef Arntz, Dirk Brüning