Ingredient Contains Only Carbon And Hydrogen Atoms, Only C And Halogen Atoms, Or Only C, H, And Halogen Atoms Patents (Class 521/131)
  • Publication number: 20150080485
    Abstract: Disclosed herein are blowing agents comprising fluorocarbons and/or hydrofluorocarbons useful in foamable compositions. Also disclosed are methods for forming a foam comprising the aforementioned blowing agents.
    Type: Application
    Filed: November 25, 2014
    Publication date: March 19, 2015
    Inventors: Joseph Anthony Creazzo, Mario Joseph Nappa, Allen Capron Sievert, Ekaterina N Swearingen
  • Patent number: 8975306
    Abstract: A viscoelastic foam system is provided having an amine-based polyoxypropylene extended polyol to impart strength, recoverability and endurance to the foam, and an appropriately selected non-amine-based polyol to provide flexibility to the foam. The combination of amine-based propylene oxide extended polyol and non-amine-based polyol provides a viscoelastic semi-rigid foam with excellent impact and recovery properties, recovering to substantially 100% of its initial volume and shape following an impact, yet with sufficient rigidity and stiffness so that it is effective at absorbing multiple impacts. A method of making the above viscoelastic foam is also provided.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: March 10, 2015
    Assignee: Intellectual Property Holdings, LLC
    Inventor: Charles M. Milliren
  • Patent number: 8946312
    Abstract: An azeotrope-like mixture consisting essentially of chlorotrifluoropropene and at least one component selected from the group consisting of a C1-C3 alcohol, a C5-C6 hydrocarbon, a halogenated hydrocarbon, methylal, methyl acetone, water, nitromethane, and combinations thereof.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: February 3, 2015
    Assignee: Honeywell International Inc.
    Inventors: Rajat Basu, Leslie Bement, Kane Cook, Ryan Hulse, Gary Knopeck, Hang T. Pham, Rajiv R. Singh, David J. Williams
  • Publication number: 20150014606
    Abstract: Azeotrope-like compositions are disclosed. The azeotrope-like compositions are mixtures of Z-1,1,1,4,4,4-hexafluoro-2-butene and E-1,1,1,4,4,4-hexafluoro-2-butene. Also disclosed is a process of preparing a thermoplastic or thermoset foam by using such azeotrope-like compositions as blowing agents. Also disclosed is a process of producing refrigeration by using such azeotrope-like compositions. Also disclosed is a process of using such azeotrope-like compositions as solvents. Also disclosed is a process of producing an aerosol product by using such azeotrope-like compositions. Also disclosed is a process of using such azeotrope-like compositions as heat transfer media. Also disclosed is a process of extinguishing or suppressing a fire by using such azeotrope-like compositions. Also disclosed is a process of using such azeotrope-like compositions as dielectrics.
    Type: Application
    Filed: February 14, 2013
    Publication date: January 15, 2015
    Inventors: Mark L. Robin, Joseph Anthony Creazzo, Gary Loh
  • Patent number: 8926856
    Abstract: A heat transfer composition comprising trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), difluoromethane (R-32) and 1,1-difluoroethane (R-152a).
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: January 6, 2015
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Patent number: 8911641
    Abstract: A heat transfer composition comprising trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), carbon dioxide (R-744) and a third component selected from difluoromethane (R-32), 1,1-difluoroethane (R-152a), fluoroethane (R-161), 1,1,1,2-tetrafluoroethane (R-134a), propylene, propane and mixtures thereof.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: December 16, 2014
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Patent number: 8906974
    Abstract: A method for producing polyurethane foams by reacting at least one organic isocyanate moiety, at least one polyol, a blowing agent consisting of halogen-containing (fluorine-containing) olefins and at least a siloxane of Formula I b, c and d are defined herein, as well as compositions made by said method are described.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: December 9, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Martin Glos, Carsten Schiller, Christian Eilbracht
  • Publication number: 20140357747
    Abstract: A foam expansion agent composition is disclosed that includes Z-1,1,1,4,4,4-hexafluoro-2-butene and at least one high boiling point foam expansion agent present in an effective amount sufficient to produce a foam having a k-factor less than the k-factor of a foam produced using Z-1,1,1,4,4,4-hexafluoro-2-butene or the at least one high boiling point foam expansion agent alone at a given temperature. Also disclosed is a foam-forming composition that includes the foam expansion agent composition of this disclosure and an active hydrogen-containing compound having two or more active hydrogens. Also disclosed is a closed-cell polyurethane or polyisocyanurate polymer foam prepared from reaction of an effective amount of the foam-forming composition of this disclosure and a suitable polyisocyanate. Also disclosed is a process for producing a closed-cell polyurethane or polyisocyanurate polymer foam.
    Type: Application
    Filed: November 12, 2012
    Publication date: December 4, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Gary Loh, Joseph Anthony Creazzo
  • Patent number: 8901184
    Abstract: A foamed resin molded article that is obtained by kneading and foaming a pellet including one or more fluorine resins and a chemical blowing agent in an extrusion molding process. The pellet is formed by mixing powder of the one or more fluorine resins and powder of the chemical blowing agent without heating and melting, and solidifying and molding. A method of manufacturing a foamed resin molded article includes making pellets including one or more fluorine resins and a chemical blowing agent, and kneading and foaming the pellets in an extrusion molding process.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 2, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventors: Masahiro Abe, Akinari Nakayama, Masafumi Nagano
  • Patent number: 8895635
    Abstract: The present invention relates to foam products made with blowing agent compositions comprising at least one hydrochlorofluoroolefin (HCFO) used in the preparation of Namable thermoplastic compositions. The HCFOs of the present invention include, but are not limited to, 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), particularly the trans-isomer, 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), dichloro-fluorinated propenes, and mixtures thereof. The blowing agent compositions of the present invention are used with coblowing agents including carbon dioxide, atmospheric gases, hydrofluorocarbons (HFC), hydrofluoroolefins (HFO), alkanes, hydrofluoroethers (HFE), and mixtures thereof. Preferred HFCs used as coblowing agents in the present invention include, but are not limited too, 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), pentafluorethane (HFC-125), difluoromethane (HFC-32).
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: November 25, 2014
    Assignee: Arkema Inc.
    Inventors: Brett L. Van Horn, Maher Y. Elsheikh, Benjamin Bin Chen, Philippe Bonnet
  • Publication number: 20140336293
    Abstract: A blowing agent for thermosetting foams is disclosed. The blowing agent is the hydrofluoropropene HFO-1243zf in combination with a hydrochlorofluoroolefin (HCFO) selected from HCFO-1233zd, HCFO-1233xf and HCFO-1223. The blowing agent is effective as a blowing agent in the manufacture of thermosetting foams.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Applicant: Arkema Inc.
    Inventors: Benjamin Bin Chen, Joseph S. Costa, Brett L. Van Horn, Maher Y. Elsheikh, Philippe Bonnet
  • Publication number: 20140323605
    Abstract: The invention relates to stable emulsions for the production of foams based on isocyanate, at least comprising three polyols A1a, A1b and A1c as well as at least one physical blowing agent T, wherein A1a is a polyether polyol obtained by addition of epoxides to starter compounds selected from carbohydrates and di- or higher-functional alcohols, A1b is a polyether polyol started on an aromatic amine, and A1c is a polyester polyol obtained by esterification of a polycarboxylic acid component and a polyalcohol component, wherein the total amount of aromatic dicarboxylic acid derivatives used in the esterification, calculated on the basis of the free aromatic dicarboxylic acids and based on the total mass of polyalcohol component and polycarboxylic acid component, is less than or equal to 48.5% by mass.
    Type: Application
    Filed: August 22, 2012
    Publication date: October 30, 2014
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Reinhard Albers, Torsten Heinemann, Stephanie Vogel, Hartmut Nefzger, Frank Otto
  • Patent number: 8859632
    Abstract: A foamed resin product having shape-formable properties, a method of using the same and a cushion material that is to be worn by the human body are provided. The foamed resin product (a flexible polyurethane foam, etc.) has a glass transition temperature, expressed as the temperature of the loss tangent peak, of 10° C. to 35° C., a loss tangent within this temperature range of 0.20 to 0.80, and, with respect to the storage elastic modulus (G?) within this temperature range, the ratio (G?max/G?min) of maximum value (G?max) to minimum value (G?min) of 3.0 to 30. The using method thereof has attaching a molded article made of the foamed resin product to the surface of the human body, and lowering the hardness of the molded article due to the heat transferred from the human body so as to deform the molded article by allowing to follow-up the shape of the body.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: October 14, 2014
    Assignee: INOAC Corporation
    Inventors: Mitsuru Omoto, Minoru Kawarabayashi, Shunichi Hayashi
  • Publication number: 20140303269
    Abstract: Disclosed is a method of preparing a bio-based thermosetting foam material with improved properties, in particular improved flame retardant properties, which method includes the steps of a) producing a prepolymer by condensation of at least one phenolic compound and formaldehyde in a ratio of 1:1.0 to 3.0 using 0.15 to 5 wt % of an alkaline catalyst in the temperature range of 50 to 100° C. until the refractive index of the reaction mixture is 1.4990 to 1.5020, b) adding 2 to 40 wt % of at least one natural polyphenol at a temperature of 50 to 100° C., c) adding 2 to 10 wt % of one or more emulsifiers and mixtures thereof, d) adding 2 to 10 wt % of one or more foaming agents and mixtures thereof and e) adding 10 to 20 wt % of a curing agent and f) curing. All wt % being related to the amount of the raw materials used.
    Type: Application
    Filed: November 14, 2012
    Publication date: October 9, 2014
    Applicant: Momentive Specialty Chemicals Inc.
    Inventors: Daniel Dahlhaus, Gunda Kuhlmann, Rosel Bölke
  • Publication number: 20140288201
    Abstract: A one component precursor for the polymeric foam (OCF) composition comprising a very low amount of free monomeric MDI. The present OCF composition may be obtained without any free MDI removal step, and without the addition of extra solvent to compensate for the substantially lower amount of free MDI, compared with traditional compositions. The present composition comprises a source of free NCO of functionality of at least 2.6, a tri- or higher functional alcohol, all polyols being characterized by a rather low molecular weight and at least a specific mono-functional alcohol as well as an isocyanate end-capped prepolymer of toluene diisocyanate (=end capped TDI). The OCF composition is suitable for being dispensed from a pressurized can with a blowing agent.
    Type: Application
    Filed: January 26, 2012
    Publication date: September 25, 2014
    Inventors: Aster De Schrijver, Joao Moura Bordado, Georgi Goerigev
  • Publication number: 20140283537
    Abstract: The present invention relates to compositions for use in refrigeration, air-conditioning, and heat pump systems wherein the composition comprises a fluoroolefin and at least one other component. The compositions of the present invention are useful in processes for producing cooling or heat, as heat transfer fluids, foam blowing agents, aerosol propellants, and fire suppression and fire extinguishing agents.
    Type: Application
    Filed: July 30, 2013
    Publication date: September 25, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: BARBARA HAVILAND MINOR, VELLIYUR NOTT MALLIKARJUNA RAO
  • Publication number: 20140243441
    Abstract: A polymer of formula (I): where: n is an integer from 10 to 5,000; m is an integer from 10 to 5,000; Ar1 and Ar3 are the same or different and are residues derived from a tetra-hydroxy aromatic monomer, the tetra-hydroxy aromatic monomer being wherein R is the same or different and is H or a C1-C8 alkyl, C2-C8 alkenyl or C3-C8 cycloalkyl group; and, Ar2 and Ar4 are the same or different and are residues derived from a tetra-halogenated aromatic monomer, the tetra-halogenated aromatic monomer being wherein X is F, Cl or Br, and R1 and R2 are the same or different and are wherein y is an integer from 1 to 8; with the proviso that when Ar1 is the same as Ar3 and Ar2 is the same as Ar4, R1 and R2 are not both —CN is useful as a material for gas separation, vapor separation, adsorbents or catalysis.
    Type: Application
    Filed: March 12, 2014
    Publication date: August 28, 2014
    Applicant: NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Naiying DU, Michael D. GUIVER, Gilles P. ROBERTSON
  • Publication number: 20140242313
    Abstract: A cavity between inner and outer walls of an open-box-shaped mould is filled with a polyurethane reaction mixture, containing an isocyanate and an emulsion of an isocyanate-reactive composition with three polyols and a blowing agent, which is cured to a polyurethane containing polymer. The inner and outer wall are a fixed distance from one another and each wall comprises a bottom and sides. The mixture is fed through an inlet in the bottom of the outer wall. Before filling the cavity, the mould is turned downwards so that the mixture foams upwards, filling the cavity. The three polyols are polyether polyol obtained by adding an epoxy to carbohydrates or difunctional or higher-functional alcohols; polyether polyol obtained by adding an epoxy to an aromatic amine; and polyester polyether polyol obtained by adding an epoxy to the esterification product of an aromatic dicarboxylic acid derivative and a difunctional or higher-functional alcohol.
    Type: Application
    Filed: February 20, 2014
    Publication date: August 28, 2014
    Applicant: BAYER MATERIALSCIENCE AG
    Inventors: Stephanie VOGEL, Reinhard ALBERS, Michael LOOF, Frank OTTO
  • Publication number: 20140234283
    Abstract: The present invention relates to an isocyanate-free multicomponent system, especially for production of foams for medical products such as wound dressings, comprising at least two separate components, the first component comprising at least one alkoxysilane-terminated prepolymer and the second component an aqueous component, and the aqueous component having a pH of 4.0 to 9.5 at 20 DEG C.
    Type: Application
    Filed: September 24, 2012
    Publication date: August 21, 2014
    Applicant: Bayer Intellectual Property GmbH
    Inventor: Jan Schönberger
  • Patent number: 8808571
    Abstract: The invention provides a heat transfer composition comprising (i) a first component selected from trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)) and mixtures thereof; (ii) carbon dioxide (R-744); and (iii) a third component selected from 1,1-difluoroethane (R-152a), fluoroethane (R-161), and mixtures thereof.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Patent number: 8808570
    Abstract: The invention provides a heat transfer composition comprising (i) a first component selected from trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)) and mixtures thereof; (ii) carbon dioxide (R-744); and (iii) a third component selected from propylene (R-1270), propane (R-290), n-butane (R-600), isobutane (R-600a), and mixtures thereof.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Patent number: 8791167
    Abstract: A composition including an effective amount of trans-1,3,3,3-tetrafluoropropene component combined with an effective amount of an alcohol selected from the group of methanol, ethanol, propanol, isopropanol, tert-butanol, isobutanol, 2-ethyl hexanol and any combination thereof, where the composition has azeotropic properties.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: July 29, 2014
    Assignee: Honeywell International Inc.
    Inventors: James M. Bowman, Rajiv R. Singh, David J. Williams, Hang T. Pham, Justin L. Becker
  • Patent number: 8785511
    Abstract: Low density silicone-containing polyurethane foams with excellent surface characteristics are prepared by reacting a foamable composition containing a siloxane of the formula and an isocyanate, in the presence of at least one blowing agent.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: July 22, 2014
    Assignee: Wacker Chemie AG
    Inventors: Jens Cremer, Steffen Jungermann
  • Publication number: 20140197562
    Abstract: A standard polyurethane doped with a polymeric gel uniformly diffused in the body, where the polyurethane acquires the properties of the gel without any change to its structure in a durable stable manner.
    Type: Application
    Filed: May 22, 2012
    Publication date: July 17, 2014
    Applicant: New Wind S.R.L.
    Inventors: Filippo Piccinini, Nilso Cruccas
  • Patent number: 8779018
    Abstract: In the present invention, a catalyst composition comprising the following amine compounds of (A) and (B) and/or (C) is used and further, a raw material-blended composition further containing a polyol component and water is used. (A) A quaternary ammonium salt represented by the following general formula (1): wherein each of R1 to R3 represents a hydrocarbon group having 1 to 12 carbon atoms, R4 represents an alkyl group or an aromatic hydrocarbon group having 1 to 18 carbon atoms, and X represents an organic acid group having an acid dissociation constant (pKa) of 4.8 or less; (B) A hydrophobic amine compound; (C) A heterocyclic tertiary amine compound.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: July 15, 2014
    Assignee: Tosoh Corporation
    Inventors: Katsumi Tokumoto, Yutaka Tamano
  • Publication number: 20140191154
    Abstract: Compositions are disclosed comprising: (a) 1,1,1,2,2-pentafluoropropane; (b) a compound selected from the group consisting of 2,3,3,3-tetrafluoropropene, E-1,3,3,3-tetrafluoropropene, and 1,1,1-trifluoropropene; and optionally (c) a compound selected from the group consisting of 1,1,1,2-tetrafluoroethane and difluoromethane. Such compositions are useful in methods to produce cooling, produce heat, transfer heat, form a foam, produce aerosol products, for recovering heat, and for replacing existing refrigerants. Additionally, these compositions are useful in refrigeration, air conditioning and heat pump apparatus.
    Type: Application
    Filed: August 20, 2012
    Publication date: July 10, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Barbara Haviland Minor, William Joseph Simonsick, Konstantinos Kontomaris
  • Patent number: 8772364
    Abstract: The present invention relates to blowing agent compositions comprising (1) at least one hydrofluoroolefin (HFO) and (2) at least one hydrochlorofluoroolefin (HCFO) used in the preparation of foamable thermoplastic compositions. The HFOs of component (1) include, but are not limited too, 3,3,3-trifluoropropene (HFO-1243zf), 1,2,3,3,3-pentafluoropropene (HFO-1225ye), cis- and/or trans-1,3,3,3-tetrafluoropropene (HFO-1234ze), and 2,3,3,3-tetrafluoropropene (HFO 1234yf), and mixtures thereof. The HCFOs of component (2) include, but are not limited to, 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) and mixtures thereof. The blowing agent compositions are useful in the production of low density insulating foams with improved k-factor.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: July 8, 2014
    Assignee: Arkema Inc.
    Inventors: Brett L. Van Horn, Maher Y. Elsheikh, Benjamin Bin Chen, Philippe Bonnet
  • Publication number: 20140179814
    Abstract: Polyurethane foams which are highly flame resistant are described, as well as the production of such polyurethane foams by the reaction between a natural polyol, such as sucrose or a blend of mono- or disaccharides in place of the standard hydrocarbon-based polyol component, a polyisocyanate and water in the presence of a suitable polyurethane forming catalyst and a non-halogenated flame retardant, and optionally one or more components such as surfactants and/or emulsifiers. The resultant polyurethane foam has a bio-based solid content ranging from about 17% to 30%, may be formulated in a variety of foam densities for a variety of applications, and exhibits a high degree of fire and burn resistance, as exhibited by the flame spread index, flash over resistance determination, and the smoke spread values.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: Imperial Sugar Co.
    Inventors: Joseph Mooney, Thomas Rathke, Jose Luna, Douglas Svenson
  • Publication number: 20140179812
    Abstract: A rigid polyurethane foam includes the reaction product of an isocyanate and an isocyanate reactive component in the presence of a blowing agent. The isocyanate reactive component includes an aromatic polyester polyol, a rigid polyol, and an aliphatic polyester polyol. The rigid polyurethane foam has a tensile adhesion of greater than 35 kPa (5 psi) when disposed on a metal substrate or a polyester, polyurethane, or epoxy coated metal substrate, each having a substrate temperature of greater than 41° C. (105° F.), and tested in accordance with ASTM D1623-09. A method of forming a composite article comprising a substrate and the rigid polyurethane foam includes the steps of combining the isocyanate reactive component and the isocyanate in the presence of the blowing agent to form a reaction mixture and applying the reaction mixture to the substrate having a substrate temperature of greater than 41° C. (105° F.) to form the composite article.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 26, 2014
    Applicant: BASF SE
    Inventor: Michael L. JACKSON
  • Publication number: 20140179813
    Abstract: Cross-linkable foamable composition with low content of monomeric isocyanates, containing a pre-polymer of polyester diols and/or polyether dials reacted i) with asymmetric aromatic diisocyanates to form a reaction product with OH and NCO groups, ii) subsequent addition of and reaction with symmetric aromatic diisocyanate in a quantity at least equivalent to the available OH-groups, 0.1 to 30 wt % additives, at least one propellant, wherein the polyols have a molar mass (MN) of less than 5000 g/mol, and the reaction product has a content of less than 0.1 wt % monomeric asymmetric isocyanate and less than 2 wt % monomeric symmetric isocyanate.
    Type: Application
    Filed: February 3, 2014
    Publication date: June 26, 2014
    Applicant: Henkel AG & Co. KGaA
    Inventors: Hans-Georg Kinzelmann, Uwe Franken, Christoph Lohr
  • Publication number: 20140113984
    Abstract: Catalyst compositions useful in the production of insulating polyurethane or polyisocyanurate foam are disclosed. The catalyst compositions impart increased stability of a mixture of the catalyst, a halogen-containing blowing agent, and a polyol. These catalyst compositions include amine/acid salts with a pH of <7.0 which can be used in combined with tertiary amine catalysts and metal-based or ammonium-based trimerization catalyst and at least one metal-based gel catalyst and optionally one or more of an additional catalyst described in (1) or (2). These improved catalysts can be used with any halogenated blowing agent, and provide substantial stability benefits with the use of hydrofluoroolefins and hydrofluorochloroolefins.
    Type: Application
    Filed: July 26, 2013
    Publication date: April 24, 2014
    Inventors: Juan Jesus BURDENIUC, Jean Louise VINCENT, Tadao YASUE, Timothy J. MILLER, Renee Jo KELLER
  • Publication number: 20140100299
    Abstract: The invention described herein generally pertains to the use of low boiling point, low vapor pressure blowing agents with froth polyurethane or polyisocyanurate foams to achieve superior cavity filling than when using conventional higher vapor pressure or more ozone-depleting blowing agents.
    Type: Application
    Filed: October 8, 2012
    Publication date: April 10, 2014
    Applicant: FOMO PRODUCTS, INC.
    Inventor: Anthony J. Taylor
  • Publication number: 20140093719
    Abstract: Disclosed are foam compositions and processes to form closed-cell tannin-based foams. The foams comprises a continuous polymeric phase defining a plurality of cells, wherein the continuous polymeric phase comprises a tannin-based resin derived from a tannin and a monomer, wherein the monomer comprises furfural, glyoxal, acetaldehyde, 5-hydroxymethylfurfural, acrolein, levulinate esters, sugars, 2,5-furandicarboxylic acid, 2,5-furandicarboxylic aldehyde, urea, difurfural (DFF), furfuryl alcohol, glycerol, sorbitol, lignin, or mixtures thereof, and wherein the plurality of cells comprises a plurality of open-cells and a plurality of closed-cells with an open-cell content measured according to ASTM D6226-5, of less than 50%. The foam composition also comprises a discontinuous phase disposed in at least a portion of the plurality of closed-cells, the discontinuous phase comprising one or more blowing agents.
    Type: Application
    Filed: May 25, 2012
    Publication date: April 3, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Mark Andrew Harmer, Vivek Kapur, Sharlene Renee Williams
  • Publication number: 20140093721
    Abstract: The invention relates to high-temperature-resistant foams having low thermal conductivity, to the production thereof from organic polyisocyanates and polyepoxides, and to the use of the foams.
    Type: Application
    Filed: April 27, 2012
    Publication date: April 3, 2014
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Dirk Wegener, Stephen Reiter, Harald Rasselnberg, Marcel Schornstein, Hans-Detlef Arntz, Dirk Brüning
  • Patent number: 8680168
    Abstract: The invention is the use of low boiling point, low vapor pressure blowing agents with froth polyurethane or polyisocyanurate foams to fill cavity voids when compared to higher vapor pressure or more ozone-depleting blowing agents.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: March 25, 2014
    Assignee: Fomo Products, Inc.
    Inventors: Tom Fishback, Doug Caffoe, Anthony Taylor, Julie L. Shoemaker
  • Publication number: 20140066532
    Abstract: Polyurethane/polyisocyanurate foams having a NFPA 101 Class A rating (ASTM E-84) are produced from a foam-forming reaction mixture that includes: an organic polyisocyanate, an isocyanate-reactive composition that includes at least one polyether polyol or polyester polyol with a nominal hydroxyl functionality of at least 2.0, a blowing agent composition and at least one halogen-free flame retardant. The blowing agent composition includes: (1) up to 5% by weight, based on total weight of the foam-forming composition, of one or more hydrocarbons having an LEL less than 2% by volume in air; and/or (2) a hydrocarbon having an LEL greater than 2% by volume in air; and (3) up to 1% by weight, based on total weight of foam-forming composition, of water.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Applicant: Bayer MaterialScience LLC
    Inventors: George G. Combs, Susan C. Pigott
  • Patent number: 8658708
    Abstract: Foam-forming compositions containing azeotropic or azeotrope-like mixtures containing cis-1,1,1,4,4,4-hexafluoro-2-butene are disclosed. The foam-forming composition contains (a) an azeotropic or azeotrope-like mixture of cis-1,1,1,4,4,4-hexafluoro-2-butene with methyl formate, 1,1,1,3,3-pentafluorobutane, trans-1,2-dichloroethylene, pentane, isopentane, cyclopentane, HFC-245fa, or dimethoxymethane; and (b) an active hydrogen-containing compound having two or more active hydrogens. Also disclosed is a closed-cell polyurethane or polyisocyanurate polymer foam prepared from reaction of an effective amount of the foam-forming composition with a suitable polyisocyanate. Also disclosed is a process for producing a closed-cell polyurethane or polyisocyanurate polymer foam by reacting an effective amount of the foam-forming composition with a suitable polyisocyanate.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: February 25, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Gary Loh, Mark L. Robin, Joseph Anthony Creazzo
  • Publication number: 20140051776
    Abstract: A polyol pre-mix composition includes a blowing agent having a halogenated hydroolefin, a polyol, a surfactant, a catalyst composition, and a metal salt. The metal salt may be, for example, a carboxylate, acetylacetonate, alcoholate of a metal selected from the group consisting of Zn, Co, Ca, and Mg. The metal salt may be, for example, a carboxylate and/or alcoholate of a C1-C21 straight chain or branched aliphatic monocarboxylic acid or monoalcohol, such as magnesium formate, zinc octoate, calcium octoate, cobalt octoate, and magnesium octoate, and mixtures thereof. The metal acetylacetonate may be, for example, zinc acetylacetonate, cobalt acetylacetonate, magnesium acetylacetonate, or calcium acetylacetonate. A two-part system for producing a thermosetting foam blend includes (a) a polyisocyanate and, optionally, one or more isocyanate compatible raw materials; and (b) the polyol pre-mix composition.
    Type: Application
    Filed: March 6, 2012
    Publication date: February 20, 2014
    Inventors: Benjamin Bin Chen, Joseph S. Costa, Laurent Abbas, Haiming Liu, Sri R. Seshadri, William D. Honnick
  • Publication number: 20140039078
    Abstract: The invention is directed to polyurethane foams which are flotation resistant with sufficient strength and density to provide stability and inhibit erosion at pipeline trench sites, and other uses, wherein at least 50% of the foam is open cell and has a density of approximately 1.3 lbs/ft3 to 3.5 lbs/ft3.
    Type: Application
    Filed: September 25, 2013
    Publication date: February 6, 2014
    Applicant: Foam Supplies, Inc.
    Inventors: Timothy T. Kalinowski, David G. Keske, Victor B. Matimba, David L. Modray, Mark Schulte, Donald C. Keim
  • Patent number: 8642669
    Abstract: The invention relates to a foamable mixture which contains at least one alkoxysilane-terminated prepolymer and which can be produced of a) at least one alkoxysilane that was functionalized with isocyanate groups and that can be produced of at least one hydroxyfunctional and/or aminofunctional alkoxysilane and at least one diisocyanate or polyisocyanate, and b) at least one compound that contains at least one OH group, and at least one blowing agent, characterized in that the foamable mixture has a dynamic viscosity of 100 to 25,000 mPas, preferably 500 to 10,000 mPas, at 23° C. The invention further relates to a method for producing said foamable mixture. The foamable mixtures according to the invention are suitable for sealing, insulating and mounting joints, roof surfaces, windows and doors or for filling hollow spaces.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: February 4, 2014
    Assignee: Henkel AG & Co., KGaA
    Inventors: Wilfried Huebner, Milan Sebestian, Christiane Kunze, Lars Zander, Johann Klein
  • Patent number: 8628681
    Abstract: A heat transfer composition comprising trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), carbon dioxide (R-744) and a third component selected from difluoromethane (R-32), 1,1-difluoroethane (R-152a), fluoroethane (R-161), 1,1,1,2-tetrafluoroethane (R-134a), propylene, propane and mixtures thereof.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: January 14, 2014
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E Low
  • Publication number: 20140010981
    Abstract: The present invention relates to a composition for producing a rigid polyurethane foam comprising at least one polyol having a molecular weight of not less than 1700 g/mol and at least one blowing agent as component A, and at least one polyisocyanate as component B, wherein the at least one polyisocyanate B comprises from 11 to 39.5 wt % of a polyisocyanate prepolymer, based on a polyether polyol having an OH number of at least 100 mg KOH/g, to a rigid polyurethane foam obtainable by reacting this composition, to a process for producing such a rigid polyurethane foam, to the use of such a rigid polyurethane foam for insulation, especially for pipe insulation and also to a process for producing an insulated pipe.
    Type: Application
    Filed: June 21, 2013
    Publication date: January 9, 2014
    Applicant: BASF SE
    Inventors: Christof GRIESER-SCHMITZ, Gianpaolo Tomasi, Ludwig Windeler, Alex Popov, Carsten Ellersiek, Annika Halwe-Bommelmann
  • Patent number: 8618183
    Abstract: A method of forming a porous composite material in which substantially all of the pores within the composite material are small having a diameter of about 5 nm or less and with a narrow PSD is provided. The porous composite material includes a first solid phase having a first characteristic dimension and a second phase comprised of pores having a second characteristic dimension, wherein the characteristic dimensions of at least one of said phases is controlled to a value of about 5 nm or less.
    Type: Grant
    Filed: September 1, 2012
    Date of Patent: December 31, 2013
    Assignee: International Business Machines Corporation
    Inventors: Stephen M. Gates, Alfred Grill, Deborah A. Neumayer, Son Nguyen, Vishnubhai V. Patel
  • Publication number: 20130345329
    Abstract: An embodiment of a closed-cell polymeric rigid foam may be made using a one-shot method and a reaction system that includes a hydrofluoroalkene physical blowing agent and a polyol mixture having an aminic polyol. The hydrofluoroalkene blowing agent has 3 to 5 carbon atoms and a boiling point between 10° C. and 40° C. at 1 atmosphere pressure. Embodiments of rigid foams may have high closed cell content and are particularly well suited for thermal insulation.
    Type: Application
    Filed: August 22, 2013
    Publication date: December 26, 2013
    Applicant: Huntsman International LLC
    Inventors: Sachchida N. Singh, Jinhuang Wu, Alan J. Hamilton
  • Publication number: 20130316164
    Abstract: Combinations of gelatinous elastomer and polyurethane foam may be made by introducing a plasticized triblock copolymer resin and/or a diblock copolymer resin at least partially cured into gel particles into a mixture of polyurethane foam forming components including a polyol and an isocyanate. The plasticized copolymer resin is polymerized to form a cured gelatinous elastomer or gel, which is then reduced in size, for instance to give an average particle size of 10 millimeters or less. Polymerizing the polyol and the isocyanate forms polyurethane foam. The polyurethane reaction is exothermic and can generate sufficient temperature to at least partially melt the styrene-portion of the triblock copolymer resin thereby extending the crosslinking and in some cases integrating the triblock copolymer within the polyurethane polymer matrix. The gel component has higher heat capacity than polyurethane foam and thus has good thermal conductivity and acts as a heat sink.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Peterson Chemical Technology, Inc.
    Inventors: Bruce W. Peterson, Mark L. Crawford
  • Publication number: 20130310474
    Abstract: A polyurethane foam is prepared by combining a polyether triol with a hydroxyl value of from 25 to 30 and a molecular weight from 5000 to 7000 g/mol; a polyether diol with a hydroxyl value of from 25 to 30 and a molecular weight from 3000 to less than 5000 g/mol; a chain extender mixture including 1,4-butanediol and at least one of monoethylene glycol, hexanediol, neopentyl glycol, and isomers thereof; a copolymer polyether polyol having a styrene acrylonitrile solids content of at least 38 wt % and an average hydroxyl number of at least 23; an isocyanate component; and a blowing agent. It is particularly suitable for shoe sole applications, where it exhibits improvement in slip resistance under wet conditions when compared with some other polyether-polyurethane formulations.
    Type: Application
    Filed: January 23, 2012
    Publication date: November 21, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Silvia Scussolin, Andrea Benvenuti
  • Patent number: 8541478
    Abstract: An embodiment of a closed-cell polymeric rigid foam may be made using a one-shot method and a reaction system that includes a hydrofluoroalkene physical blowing agent and a polyol mixture having an aminic polyol. The hydrofluoroalkene blowing agent has 3 to 5 carbon atoms and a boiling point between 10° C. and 40° C. at 1 atmosphere pressure. Embodiments of rigid foams may have high closed cell content and are particularly well suited for thermal insulation.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: September 24, 2013
    Assignee: Huntsman International LLC
    Inventors: Sachchida Nand Singh, Jinhuang Wu, Alan J. Hamilton
  • Patent number: 8530533
    Abstract: The present invention relates to a rigid polyurethane foam comprising reinforcing materials which can be obtained by mixing (a) isocyanates which have a viscosity at 25° C. of less than 500 mPas with (b) compounds having groups which are reactive toward isocyanates, (c) blowing agents comprising water, (d) catalysts and, if appropriate, (e) further additives to form a reaction mixture and applying the reaction mixture to a reinforcing material, wherein the compounds (b) having groups which are reactive toward isocyanates comprise a polyetherol (b1) having a functionality of 4 or more and a viscosity at 25° C. of 10 000 mPas or less and a polyetherol (b2) having a functionality of 3 or less and a viscosity at 25° C. of 500 mPas or less. The present invention further relates to a process for producing such rigid polyurethane foams and the use of the rigid polyurethane foams for the insulation of liquefied natural gas tanks.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: September 10, 2013
    Assignee: BASF SE
    Inventors: Pit Lehmann, Katrin Thane, Cheul Hyeon Hwang
  • Patent number: 8513318
    Abstract: A method for producing a rigid polyurethane foam, which comprises reacting a polyol with a polyisocyanate in the presence of an amine catalyst and a blowing agent, wherein as the amine catalyst, at least one amine compound having at least one type of substituent selected from the group consisting of a hydroxyl group, a primary amino group and a secondary amino group in its molecule, or N-(2-dimethylaminoethyl)-N?-methylpiperazine, is used, and as the blowing agent, 1,1,1,3,3-pentafluoropropane (HFC-245fa) and/or 1,1,1,3,3-pentafluorobutane (HFC-365mfc) is used.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: August 20, 2013
    Assignee: Tosoh Corporation
    Inventors: Hiroyuki Kiso, Katsumi Tokumoto, Yutaka Tamano
  • Publication number: 20130197115
    Abstract: The present invention relates to a process for producing rigid polyurethane foams by reaction of a) at least one organic polyisocyanate with b) at least one polyol component in the presence of a blowing agent mixture comprising water and halogenated alkenes, wherein the amount of water is at least 1.40 mol/kg of polyol component b) and the amount of halogenated alkene is at most 2.00 mol/kg of polyol component b), and also to the use of such a blowing agent mixture for producing corresponding rigid polyurethane foams and for increasing the adherence and reducing the thermal conductivity of corresponding rigid polyurethane foams. The present invention further relates to a rigid polyurethane foam obtainable by the process of the present invention.
    Type: Application
    Filed: July 30, 2012
    Publication date: August 1, 2013
    Applicant: BASF SE
    Inventors: Christiane GIESKER, Markus Schuette, Patrick Lax, Jörg Krogmann