At Least One Polymer Is Derived From A -n=c=x Reactant Wherein X Is A Chalcogen Atom Or Wherein The Polymer-forming System Contains The Same Type Of Reactant Patents (Class 521/137)
  • Patent number: 11214647
    Abstract: There is described a process for producing a free-rise polyurethane foam having a density of less than or equal to about 0.75 pcf. the process comprises the steps of: (a) contacting: (i) an isocyanate, (ii) a first polyol comprising a first polymer chain consisting essentially of propylene oxide units and alkylene oxide units selected from ethylene oxide, butylene oxide and mixtures thereof in a weight ratio of propylene oxide units to alkylene oxide units in the range of from about 90:10 to about 25:75, the polymer chain being terminally capped with the ethylene oxide units, the first polyol having a primary hydroxyl content of at least about 70% based on the total hydroxyl content of the first polyol, (iii) water (iv) a surfactant and (v) a catalyst to form a foamable reaction mixture; and (b) expanding the foamable reaction mixture to produce the free-rise polyurethane foam.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: January 4, 2022
    Inventors: Jing Zhang, Dorota Ulman
  • Patent number: 11202517
    Abstract: A foam mattress in which a layer of latex or latex-like foam placed above a layer of memory foam is described. This construction of the mattress provides the contouring pressure relief that a visco-elastic foam provides with a top surface with quick recovery (a latex-like “bounce”) that prevents people from getting “stuck” in the visco-elastic foam and improves the springiness of the mattress. The mattress may also include straps and cinches to aid in transportation of the mattress. The mattress may also include removable covers that aid in keeping the mattress clean.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: December 21, 2021
    Assignee: CASPER SLEEP INC.
    Inventors: Philip Krim, Neil Parikh, Jeff Chapin
  • Patent number: 11124595
    Abstract: A polyol composition is made by polymerizing a mixture of ethylene oxide and propylene oxide onto a mixture of at least one diol initiator and at least one triol initiator, followed by polymerizing 100% propylene oxide or a mixture of at least 90 weight percent propylene oxide and at most 10 weight percent ethylene oxide. The resulting polyol composition has a hydroxyl equivalent weight of 200 to 400 and an average nominal functionality of 2.05 to 2.95 hydroxyl groups/molecule. 5 to 30 percent of the hydroxyl groups of the coinitiated polyether polyol are primary hydroxyl groups and polymerized ethylene oxide constitutes 40 to 63 percent of the total weight of the coinitiated polyether polyol.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: September 21, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Hamideh Ahmadloo, Paul Cookson, Ricco B. Borella, Jean-Paul Masy, Lucie Porcelli, Francois Casati
  • Patent number: 11090863
    Abstract: Methods for manufacturing articles of footwear are provided. In various aspects, the methods comprise utilizing additive manufacturing methods with foam particles. In some aspects, the disclosed methods comprise selectively depositing a binding material on foam particles in a target area such that the binding material coats at least a portion of defining surfaces of the foam particles with the binding material. The binding material is then cured to affix foam particles in the target area to one another. In various aspects, the disclosed methods can be used to manufacturer articles with sub-regions that differential levels of affixing between the foam particles, and thereby resulting in sub-regions with different properties such as density, resilience, and/or flexural modulus. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: August 17, 2021
    Assignee: NIKE, Inc.
    Inventors: Jay Constantinou, Harleigh Doremus, Luis Folgar, Brandon Kvamme, Denis Schiller
  • Patent number: 11078325
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: August 3, 2021
    Assignee: Presidium USA, Inc
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Patent number: 11072680
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: July 27, 2021
    Assignee: Presidium USA, Inc.
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Patent number: 11072679
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: July 27, 2021
    Assignee: Presidium USA, Inc
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Patent number: 11074899
    Abstract: Acoustic dampeners, methods of making acoustic dampener, and uses thereof are described. The acoustic dampener includes a polymer foam article; and a metal-organic framework portion. The metal-organic framework portion comprises a metal-organic framework in a polymer matrix. The metal-organic framework portion is adhered to, or otherwise coupled to or included with, the polymer foam article. Such an acoustic dampener can be used in a computer equipment cabinet.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: July 27, 2021
    Assignee: International Business Machines Corporation
    Inventors: Joseph Kuczynski, Rebecca Morones, Sarah K. Czaplewski-Campbell, Melissa K. Miller
  • Patent number: 11066512
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: July 20, 2021
    Assignee: Presidium USA, Inc.
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Patent number: 11066511
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: July 20, 2021
    Assignee: Presidium USA, Inc.
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Patent number: 11046807
    Abstract: The invention relates to a process for preparing a flame-resistant polymer-modified polyol having a solids content of 1 to 65 wt. % wherein (i) at least one polyisocyanate and (ii) an olamine are reacted in (iii) a base polyol having at least two active hydrogen containing groups of which more than 50% are primary active hydrogen containing groups and wherein the olamine has at least one phosphonic ester group attached to a tertiary nitrogen atom and contains at least two hydroxyl groups. The invention further relates to a flame-resistant polymer-modified polyol obtainable with the process of the invention, to a process for preparing optionally foamed plastics using the polymer-modified polyol of the invention, and to the use of a polymer-modified polyol for the preparation of flexible polyurethane foams.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: June 29, 2021
    Assignee: PCC ROKITA SA
    Inventors: Marcin Tomczak, Herve Wuilay, Michal Salasa, Lukasz Makula, Kevin Pickin, Uwe Storzer
  • Patent number: 11041041
    Abstract: High resiliency polyurethane foam is made from a polyether polyol having an equivalent weight of at least 1000. At least a portion of the polyether polyol is one or more random copolymer(s) formed by polymerizing a mixture of 70 to 95% by weight propylene oxide and 5 to 30% by weight ethylene oxide onto an initiator compound. The random copolymer(s) has a nominal hydroxyl functionality of at least 5, a hydroxyl equivalent weight of at least 1500 g/equivalent and no more than 0.01 milliequivalents per gram of terminal unsaturation. The randomly polymerized propylene oxide and ethylene oxide constitute at least 80% of the total weight of the random copolymer. At least 70% of the hydroxyl groups of the random copolymer are secondary hydroxyls.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: June 22, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: David A. Babb, Jean-Paul Masy
  • Patent number: 10982039
    Abstract: The invention relates to a method for producing PUR/PIR rigid foam materials, having the steps of reacting at least one polyester polyol (a), which can be obtained by reacting a. I.) at least one cyclic carboxylic acid anhydride; a.2.) at least one low-molecular dial with a molecular mass of 62 to 450 Da; and a.3.) at least one alkylene oxide; by esterifying the components a.I.) and a.2.) and subsequently oxalkylating the resulting carboxylic acid half-ester using component a.3.); wherein at least the oxalkylation is carried out using a.4.) at least one amine catalyst in which (the) nitrogen atom(s) is/are part of an aromatic ring system, with (b) at least one polyisocyanate-containing component, (c) at least one propellant, (d) at least one or more catalysts, (e) optionally at one flameproofing agent and/or other auxiliary agents, and (f) optionally at least one additional compound with at least two groups which are reactive towards isocyanates and which differ from polyester polyol (a).
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: April 20, 2021
    Assignee: Covestro Deutschland AG
    Inventors: Hartmut Nefzger, Torsten Hagen, Klaus Lorenz, Rene Abels
  • Patent number: 10894857
    Abstract: A method of forming a polyurethane foam article includes the step of forming a resin composition. The resin composition includes a polyol component, an amine catalyst, and a blowing component. The blowing component includes a hydrofluoroolefin and formic acid. The method also includes the steps of combining the resin composition, a recycled resin composition, and an isocyanate component to form a reaction mixture and discharging the reaction mixture to form the polyurethane foam article.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: January 19, 2021
    Assignee: BASF SE
    Inventors: Michael J. Krupa, Robert S. Coleman, David Shtern
  • Patent number: 10889681
    Abstract: A polyurethane catalyst comprises a sodium compound, the sodium compound being 1 to 60 wt % of the polyurethane catalyst by the mass percent, and further comprises a tertiary amine and/or pyridine compound. The sodium compound and the tertiary amine and/or pyridine compound achieve a synergistic effect; during the catalysis of the polymerization of isocyanate and polyalcohol, the speed of the polymerization reaction is increased; and the prepared polyurethane material has excellent physical properties, does not contain any heavy metal element at all, is an environment-friendly catalyst, solves the technical problem of ensuring environmental protection, safety and the catalytic efficiency of the polyurethane catalyst, and is particularly applicable to the preparation of polyurethane synthetic leather resin slurry, a polyurethane elastomer (prepolymer), a polyurethane coating, a polyurethane adhesive, a polyurethane composite material, flexible polyurethane foam, and a rigid polyurethane material.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: January 12, 2021
    Inventors: Yi Guo, Shaojuan Huang, Haoming Zhang
  • Patent number: 10815353
    Abstract: A composition for a single-component polyurethane foam and a method of using the same. The composition comprises a polyether or polyester or a combination thereof with functionality 2 and a hydroxyl number between about 22 mgKOH/g and about 374 mgKOH/g, a polyether or polyester or a combination thereof with functionality 3 and a hydroxyl number between about 84 mgKOH/g and about 842 mgKOH/g, a fire-retarding agent, a silicone stabilizer, a catalyst, polymeric diphenylmethane diisocyanate, a dimethyl ether, propane, isobutane or a combination thereof, and 1,1-difluoroethane or any other Freon, or any combination thereof.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: October 27, 2020
    Inventors: Konstantin Dragan, Vitalii Titorov
  • Patent number: 10767008
    Abstract: This invention relates to polymer polyols which comprise one or more base polyols, at least one preformed stabilizer, one or more ethylenically unsaturated monomers, and, in the presence of at least one free radical polymerization catalyst, and optionally, one or more polymer control agents. The base polyol of these polymer polyols comprises one or more amine initiated polyols. The present invention also relates to processes for preparing these polymer polyols, to foams prepared from these polymer polyols, and to processes for producing foams from these polymer polyols.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: September 8, 2020
    Assignee: Covestro LLC
    Inventor: Rick L. Adkins
  • Patent number: 10766998
    Abstract: This invention relates to a process for preparing a flexible polyurethane foam in which the isocyanate-reactive component comprises a specific isocyanate-reactive component. The invention also relates to flexible polyurethane foam wherein the isocyanate-reactive comprises the specific isocyanate-reactive component.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: September 8, 2020
    Assignee: Covestro LLC
    Inventors: Nigel Barksby, Brian L. Neal
  • Patent number: 10767009
    Abstract: Polyether polyols are made by a process that includes a continuous addition of starter and alkylene oxide. The feed of starter is discontinued when 80 to 95% of the alkylene oxide has been fed to the reactor. This process produces a product with a narrow molecular weight distribution.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: September 8, 2020
    Assignee: Covestro LLC
    Inventors: Jean-Paul Masy, Carlos M. Villa, David A. Babb, John W. Weston, Sweta Somasi
  • Patent number: 10633481
    Abstract: Polyurea systems comprising: (a) an amino-functional aspartic ester of the general formula (I) wherein X represents an n-valent organic radical derived from a corresponding n-functional primary amine X(NH2)n, R1 and R2 each independently represent an organic radical having no Zerevitinov active hydrogens and n represents an integer of at least 2; and (b) an isocyanate functional prepolymer having a residual monomer content of less than 1% by weight, the prepolymer prepared by reacting: (b1) an aliphatic isocyante; and (b2) a polyol component having a number average molecular weight of ?400 g/mol and an average OH functionality of 2 to 6, wherein the polyol component comprises one or more constituents selected from the group consisting of polyester polyols, polyester-polyether polyols and mixtures thereof; processes for making the same; postoperative adhesions barriers prepared therewith and dispensing systems for such polyurea systems.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: April 28, 2020
    Assignee: Adhesys Medical GmbH
    Inventors: Heike Heckroth, Hartmut Nefzger, Christian Wamprecht
  • Patent number: 10590257
    Abstract: The present invention provides moldable, fully scalable cellulose silica-based hydrogels for use as low-cost and safe carriers and aqueous viscosity modifiers in various industrial and medical applications.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: March 17, 2020
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Eric A. Appel, Anthony C Yu
  • Patent number: 10479953
    Abstract: The present disclosure relates to emulsifying agents produced from succinic acids or anhydrides and polyalkylene glycols. The present disclosure also relates to lubricating oils containing such emulsifying agents. The emulsifying agent provides a lubricating oil that is substantially free of an aqueous layer after about 24 hours when tested according to ASTM D7563-10.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: November 19, 2019
    Assignee: AFTON CHEMICAL CORPORATION
    Inventors: Andrew Yeung, Anthony Jarvis, Matthew Ross
  • Patent number: 10457790
    Abstract: A method of manufacturing a polishing pad includes producing an urethane prepolymer having a viscosity of 20,000 cps (at 25° C.) to 40,000 cps (at 25° C.) by mixing a plurality of polymers, mixing the urethane prepolymer with an inert gas and a low-boiling blowing agent having a boiling point of 60° C. to 150° C., and manufacturing a polishing layer including porous pores by causing a mixture produced at the mixing to be subjected to gelation and curing in a predetermined cast.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: October 29, 2019
    Assignee: KPX CHEMICAL CO., LTD.
    Inventors: Seung-Geun Kim, Hak-Su Kang, Jeong-Seon Choo, Dae-Han Jung, Gi-Young Park
  • Patent number: 10427391
    Abstract: A novel formulation for preparing a polyurethane foam with low density, desirable hardness, good appearance, and good adhesion to a polymer film without compromising the processing properties of the formulation; and a process for preparing a multilayer structure made of the polyurethane foam.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: October 1, 2019
    Assignee: Dow Quimica Mexicana S.A. de C.V.
    Inventor: Juan Hernandez Garcia
  • Patent number: 10421832
    Abstract: Tertiary amine catalysts having isocyanate reactive groups capable of forming thermally stable covalent bonds able to withstand temperatures from 120° C. and higher and up to 250° C. are disclosed. These catalyst can be used to produce polyurethane foam having the following desirable characteristics: a) very low chemical emissions over a wide range of environmental conditions and isocyanate indexes (e.g., indexes as low as 65 but higher than 60); b) sufficient hydrolytic stability to maintain the catalyst covalently bound to foam without leaching of tertiary amine catalyst when foam is exposed to water or aqueous solutions even at temperatures higher than ambient (temperature range 25° C. to 90° C.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: September 24, 2019
    Assignee: Evonik Degussa GmbH
    Inventors: Juan Jesus Burdeniuc, Torsten Panitzsch, Renee Jo Keller
  • Patent number: 10421845
    Abstract: A method of manufacturing a polishing pad includes producing an urethane prepolymer having a viscosity of 20,000 cps (at 25° C.) to 40,000 cps (at 25° C.) by mixing a plurality of polymers, mixing the urethane prepolymer with an inert gas and a low-boiling blowing agent having a boiling point of 60° C. to 150° C., and manufacturing a polishing layer including porous pores by causing a mixture produced at the mixing to be subjected to gelation and curing in a predetermined cast.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: September 24, 2019
    Assignee: KPX CHEMICAL CO., LTD.
    Inventors: Seung-Geun Kim, Hak-Su Kang, Jeong-Seon Choo, Dae-Han Jung, Gi-Young Park
  • Patent number: 10336879
    Abstract: A rigid polyurethane foam which has ultrafine cells, has a low thermal conductivity of 0.0190 W/(m·K) or lower, exhibits excellent heat insulating properties and flame retardancy, and has very little impact on global warming, without using a special apparatus such as a gas loading device. Provided is a rigid polyurethane foam which is obtained by mixing and reacting raw materials including a polyol, a polyisocyanate, a blowing agent, and a catalyst. The rigid polyurethane foam contains the polyol containing a polyester polyol having an aromatic component concentration of 17-35 wt. %, and a non-amine-based polyether polyol and/or an aromatic amine-based polyether polyol; the polyisocyanate in which MDI/TDI are mixed at a ratio of 4/6 to 9/1; and the blowing agent containing a halogenated olefin.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: July 2, 2019
    Assignee: ACHILLES CORPORATION
    Inventors: Takeshi Kurita, Yamato Koike
  • Patent number: 10294336
    Abstract: The present invention relates to the synthesis of polymer polyols in unsaturated polyols as liquid phase, polymer polyols and their use.
    Type: Grant
    Filed: November 26, 2015
    Date of Patent: May 21, 2019
    Assignee: BASF SE
    Inventors: Christian Koenig, Andreas Emge, Iran Otero Martinez
  • Patent number: 10232533
    Abstract: A method for making a low density foamed article includes placing a desired amount of thermoplastic polyurethane foam beads in a cavity of an injection mold and closing the mold; combining in an extruder connected to the mold a molten polymer selected from the group consisting of thermoplastic polyurethane elastomers and thermoplastic ethylene-vinyl acetate copolymers with both a physical or chemical blowing agent other than a supercritical fluid present in an amount up to about 15 wt % based on molten polymer weight and a supercritical fluid that is at least one of about 0.1 to about 5 weight percent of supercritical CO2 based on molten polymer weight or about 0.1 to about 4 weight percent of supercritical N2 based on molten polymer weight, to form a mixture and injecting the mixture into the mold and foaming the mixture to form the low density foamed article.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: March 19, 2019
    Assignee: Nike, Inc.
    Inventor: Hossein A. Baghdadi
  • Patent number: 10227467
    Abstract: Foamed thermoplastic elastomeric polyurethane and ethylene-vinyl acetate copolymer articles are made with a combination of a supercritical fluid and a non-supercritical fluid blowing agent.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: March 12, 2019
    Assignee: Nike, Inc.
    Inventor: Hossein A. Baghdadi
  • Patent number: 10183198
    Abstract: Disclosed herein are polyurethane golf ball compositions. The compositions are prepared by adding a UV absorber to a polyol prior to reacting the polyol with an isocyanate to form a prepolymer, which is then reacted with a curing agent to form the polyurethane.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: January 22, 2019
    Assignee: Acushnet Company
    Inventors: Michael Michalewich, Brian Comeau, Shawn Ricci, Manjari Kuntimaddi, Matthew F. Hogge, Nicholas M. Nardacci, Michael R. Madson
  • Patent number: 10167438
    Abstract: The present invention provides a compressor for refrigeration and air conditioning and a refrigeration and air conditioning device capable of achieving both favorable environmental performance and favorable refrigeration cycle efficiency. In the compressor for refrigeration and air conditioning, a refrigerator oil containing a polyol ester and a refrigerant containing difluoromethane are enclosed. The polyol ester has two or more repetitions of poly[2,2-di(alkanoyloxymethyl)oxytrimethylene] as a structural unit. Further, the polyol ester is composed of only one or both of a cyclic polyol ester, which is obtained by cyclically polymerizing a molecular chain having the structural unit, and a crosslinked polyol ester, which is obtained by crosslinking molecular chains having the structural unit with each other through a crosslinkable structural unit polymerized with the structural unit.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: January 1, 2019
    Assignee: Hitachi-Johnson Controls Air Conditioning, Inc.
    Inventor: Shigenori Matsumoto
  • Patent number: 10059863
    Abstract: A two-component polyurethane adhesive is described having high strength and extensibility, wherein the mechanical properties are only slightly dependent on the temperature. The polyurethane adhesive can be suitable as a structural adhesive. The adhesive can include a triol, a diol, a polyamine, a polyisocyanate, and a polyurethane polymer having isocayanate groups in certain ratios.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: August 28, 2018
    Assignee: GALDERMA RESEARCH & DEVELOPMENT
    Inventors: Wolfgang Roock, Steffen Kelch, Florian Ittrich, Martin Linnenbrink
  • Patent number: 10023738
    Abstract: The invention provides a bioabsorbable blend of (i) a polymer component comprising polylactic acid (PLA), polyglycolic acid (PGA), a copolymer of PLA and PGA, or any combination thereof and (ii) thermoplastic polyurethane (TPU) tailored to a medical application, and a process for making the same. In some embodiments, the TPU comprises units derived from a diol chain extender, a diisocyanate, and a polyol formulated to provide a set biodegradation rate in combination with at least one physical property. The blend of the invention provides useful materials for medical applications that have the individual benefits of polylactic acid and TPU while moderating each material's typical limitations.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: July 17, 2018
    Assignee: LUBRIZOL ADVANCED MATERIALS, INC.
    Inventors: Umit G. Makal, Roger W. Day
  • Patent number: 9939337
    Abstract: A deformation detection sensor which combines a magnetic resin dispersing a magnetic filler in a resin with a magnetic sensor, of which stability of detection property is highly enhanced. The deformation detection sensor comprises a magnetic resin-containing polymer foam which comprises a magnetic resin, in which a magnetic filler is contained, and a polymer foam in which the magnetic resin is included, and a magnetic sensor that detects a magnetic change caused by a deformation of the magnetic resin-containing polymer foam, wherein the magnetic resin has an elastic modulus of 0.1 to 10 MPa, and a production thereof.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: April 10, 2018
    Assignee: TOYO TIRE & RUBBER CO., LTD.
    Inventors: Takeshi Fukuda, Takuya Tsuzuki
  • Patent number: 9890100
    Abstract: Low molecular weight polyoxyalkylene polyether polyols having a hydroxyl content of from about 3.4 to about 12.1% by weight, and OH numbers of from about 112 to about 400 are produced by a continuous process using a DMC catalyst. In the process of the present invention, oxyalkylation conditions are established in a continuous reactor in the presence of a DMC catalyst; alkylene oxide and a low molecular weight starter are continuously introduced into the continuous reactor; a partially oxyalkylated polyether polyol is recovered from the reactor; and the recovered partially oxyalkylated polyether polyol is allowed to further reactor until the unreacted alkylene oxide content of the mixture is reduced to 0.001% or less by weight. The alkoxylation of the present invention must be carried out a pressure sufficiently high to prevent deactivation of the DMC catalyst. Pressures of from 45 to 55 psia are preferred.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 13, 2018
    Assignee: Covestro LLC
    Inventors: Jack Reese, Paul Webb
  • Patent number: 9840603
    Abstract: A process for forming a combustion-modified ether (CME) polyurethane foam includes providing a polyol component including a PIPA polyol that is a dispersion having a solids content from 10 wt % to 75 wt %, based on a total weight of the PIPA polyol, providing an isocyanate component that includes at least one polyisocyanate, providing an additive component that includes at least one flame retardant, and forming a reaction mixture including the polyol component, the isocyanate component, and the additive component to form a CME polyurethane foam. The reaction mixture has an isocyanate index from 90 to 150.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: December 12, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Paul A. Cookson, Irena Amici-Kroutilova, Alberto Lora Lamia, Francois Casati
  • Patent number: 9758615
    Abstract: Elastomers are prepared from a reaction mixture that contains a polyene compound, an epoxy resin, a thiol curing agent and a basic catalyst. The polyene compound has an average of at least two groups containing aliphatic carbon-carbon double bonds capable of reaction with a thiol group. At least one of said aliphatic carbon-carbon double bonds is separated from each other said aliphatic carbon-carbon double bond by an aliphatic spacer group having a weight of at least 500 atomic mass units. These elastomers are typically phase-separated materials having good elongation and tensile properties.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: September 12, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: William Heath, Phillip S. Athey, Nathan Wilmot, Harshad M. Shah, Kamesh R. Vyakaranam, Nicole Knight, Adam C. Colson
  • Patent number: 9751279
    Abstract: The invention relates to composite elements comprising a thermoplastic polymer and an adjacent polyurethane bonded thereto, to a process for production thereof and to the use thereof.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: September 5, 2017
    Assignee: Covestro Deutschland AG
    Inventors: Rolf William Albach, Hartmut Nefzger, Harald Knaup, Frank Hahn, Petra Venner, Monika Haselbach
  • Patent number: 9637585
    Abstract: The subject disclosure provides a viscoelastic polyurethane foam and a method of forming the viscoelastic polyurethane foam. The viscoelastic polyurethane foam comprises the reaction product of a toluene diisocyanate and an isocyanate reactive component. The isocyanate reactive component comprises a first polyether triol, a second polyether triol, an amino alcohol chain extender, and a hydrolyzable polyether polydimethylsiloxane copolymer. The first polyether triol has a weight-average molecular weight of from 500 to 5,000 g/mol, at least 60 parts by weight ethyleneoxy units, based on the total weight of the first polyether triol, and at least 10% ethyleneoxy end caps. The second polyether triol, which is different from the first polyether triol, has a weight-average molecular weight of from 5,000 to 10,000 g/mol and at least 80% ethyleneoxy end caps.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: May 2, 2017
    Assignee: BASF SE
    Inventors: Theodore M. Smiecinski, Chad Alan Rogers
  • Patent number: 9586304
    Abstract: The invention provides a method of manufacturing a polishing pad suitable for planarizing at least one of semiconductor, optical and magnetic substrates. The method obtains a liquid polyurethane material formed from an isocyanate-terminated molecule and a curative agent. The liquid polyurethane material has a Tgel temperature and contains fluid-filled polymeric microspheres. The fluid-filled polymeric microspheres are a blend of preexpanded and unexpanded fluid-filled polymeric microspheres. The preexpanded and unexpanded fluid-filled polymeric microspheres each have a Tstart temperature where diameter of the preexpanded and unexpanded fluid-filled polymeric microspheres increases and a Tmax temperature where gas escapes to decrease diameter of the expanded and unexpanded fluid-filled polymeric microspheres. The cured polyurethane matrix contains preexpanded and expanded fluid-filled polymeric microspheres.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: March 7, 2017
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Bainian Qian, Andrew Wank, George C. Jacob
  • Patent number: 9505881
    Abstract: This invention relates to novel polymer polyols, to a process for preparing these novel polymer polyols, to flexible polyurethane foams comprising these novel polymer polyols, and to a process for the production of these flexible polyurethane foams. These novel polymer polyols provide unexpected improvements in foams prepared therefrom.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: November 29, 2016
    Assignee: Covestro LLC
    Inventors: Rick L. Adkins, Brian L. Neal
  • Patent number: 9481070
    Abstract: The invention provides a polishing pad suitable for planarizing at least one of semiconductor, optical and magnetic substrates. The polishing pad is a cast polyurethane polymeric matrix formed from an isocyanate-terminated molecule and a curative agent. The cast polyurethane polymeric matrix contains 4.2 to 7.5 weight percent fluid-filled microspheres in the isocyanate-terminated molecule. The fluid-filled-microspheres is polymeric and has an average diameter of 10 to 80 ?m and the polishing pad having a conditioner sensitivity (CS) of 0 to 2.6.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: November 1, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, George C. Jacob, Kun-Ming Tsai
  • Patent number: 9452507
    Abstract: The invention provides a method of manufacturing a polishing pad suitable for planarizing at least one of semiconductor, optical and magnetic substrates. The method obtains a liquid polyurethane material formed from an isocyanate-terminated molecule and a curative agent. The liquid polyurethane material contains 4.2 to 7.5 weight percent fluid-filled polymeric microspheres in the isocyanate-terminated molecule. The fluid-filled polymeric microspheres are a blend of preexpanded and unexpanded fluid-filled polymeric microspheres. The liquid polyurethane material contains a blend of preexpanded and unexpanded fluid-filled polymeric microspheres having a relative viscosity ? ? 0 of 1.1 to 7. Then the liquid polyurethane material solidifies into a polyurethane matrix that contains preexpanded and expanded fluid-filled polymeric microsphere for forming the polishing pad.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: September 27, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, George C. Jacob
  • Patent number: 9399696
    Abstract: Embodiments include polymer polyol dispersions which include a polyol liquid phase and solid particle phase. Embodiments include methods of making the polymer polyol dispersions. The polymer polyol dispersions are essentially free of tin, have a solid content of between about 20 and 50 wt % based on the total weight of the polymer polyol dispersion, and have a viscosity at 20 C. of less than 9000 mPas. The solid particle phase has more than 90% by weight of particles in the solid particle phase having a particle diameter of less than 5 ?m.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 26, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Ricco B. Borella, Paul Cookson, Daniel Hoehener, Francois M. Casati
  • Patent number: 9309346
    Abstract: A method is provided for preparing polyurethane foams, which comprises contacting at least one organic isocyanate compound, at least one polyol, at least one blowing agent, and a tertiary amine catalyst composition. The catalyst composition has the general formula wherein R1, R2, and Y are, independently, an alkyl group having from one to three carbon atoms or —CH2CH2OH; Z is —CH2CH2OH; and n is an integer from 3 to 7, inclusive. Also provided is a method for catalyzing the reaction between at least one isocyanate compound and at least one active hydrogen-containing compound, such as a polyol and/or a blowing agent.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: April 12, 2016
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, Douglas P. Freyberger
  • Patent number: 9260346
    Abstract: A graft polyol includes a natural oil including at least 50% by weight of a natural oil polyol. Particles are dispersed in the natural oil and comprise the reaction product of a macromer polyol, a polymerizable monomer, a chain transfer agent, and a free radical initiator. The macromer polyol and the polymerizable monomer react in the presence of the natural oil. The graft polyol is formed by providing the natural oil and providing the macromer polyol, the chain transfer agent, the free radical initiator, and the polymerizable monomer. The natural oil, the polymerizable monomer, the macromer polyol, the chain transfer agent, and the free radical initiator are combined, and the polymerizable monomer, the macromer polyol, the chain transfer agent, and the free radical initiator react to form particles dispersed in the natural oil.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: February 16, 2016
    Assignee: BASF SE
    Inventors: Joseph P. Borst, Irina Ternyayeva, Steven E. Wujcik, David K. Bower, Andreas Kunst
  • Patent number: 9212250
    Abstract: A method of improving the mechanical strength of polyurethane foams made from bio-based polyols, the polyol-containing compositions utilized in the method of the invention, and the polyurethane foams produced by the method of the invention are provided. The method of the invention involves the incorporation of aromatic polyester polyol in the polyol-containing composition used to manufacture the foams. In one embodiment, the aromatic polyester polyol is utilized in a polyol-containing composition which is employed in the manufacture of flexible polyurethane foam. In another embodiment, the aromatic polyester polyol transesterified with a natural oil-containing composition to form a transesterification reaction product that is utilized in a polyol-containing composition which is employed in the manufacture of flexible polyurethane foam.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: December 15, 2015
    Assignee: Stepan Company
    Inventors: Warren A. Kaplan, Xiuguang A. Guo, David J. Norberg
  • Patent number: 9139708
    Abstract: Methods of extruding polyurethane composite materials are described. One method includes introducing at least one polyol and inorganic filler to a first conveying section of the extruder, transferring the at least one polyol and inorganic filler to a first mixing section of an extruder, mixing the at least one polyol and the inorganic filler in the first mixing section, transferring the mixed at least one polyol and inorganic filler to a second conveying section of the extruder, introducing a di- or poly-isocyanate to the second conveying section, transferring the mixed at least one polyol and inorganic filler and the di- or poly-isocyanate to a second mixing section, mixing the mixed at least one polyol and inorganic filler with the di- or poly-isocyanate in the second mixing section of the extruder to provide a composite mixture, and transferring the composite mixture to an output end of the extruder. Other related methods are also described.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: September 22, 2015
    Assignee: Boral IP Holdings LLC
    Inventor: Wade H. Brown
  • Patent number: 9139683
    Abstract: The present invention relates to a process for producing a polyurethane foam, where the blowing agent used is present in the supercritical or near-critical state. A reaction mixture is introduced into a closed mould, where the closed mould has been set up in such a way that its interior volume and/or the pressure prevailing in its interior can be altered after the introduction of the mixture by external influence. Through the selection of the surfactant it is possible to obtain microemulsions of the blowing agent in the polyol phase. The invention further relates to a nanocellular polyurethane foam obtainable by the process of the invention.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: September 22, 2015
    Assignee: Bayer MaterialScience AG
    Inventors: Stefan Lindner, Wolfgang Friederichs, Reinhard Strey, Thomas Sottmann, Elena Khazova, Lorenz Kramer, Verena Dahl, Agnes Chalbi