From Aromatic Reactant Patents (Class 521/146)
  • Publication number: 20090274890
    Abstract: A styrene-modified polypropylene type resin particle of the present invention includes: a polypropylene type resin and a polystyrene type resin, wherein the polystyrene type resin is included at 30 parts by weight or more but less than 600 parts by weight per 100 parts by weight of the polypropylene type resin, and polystyrene type resin particles having a longitudinal diameter of 5 ?m or less are dispersed in the polypropylene type resin.
    Type: Application
    Filed: February 21, 2007
    Publication date: November 5, 2009
    Applicant: SEKISUI PLASTICS CO., LTD.
    Inventors: Shinji Ishida, Masahiko Ozawa
  • Patent number: 7612119
    Abstract: Expandable vinylaromatic polymers which comprise: a) a matrix obtained by polymerizing 50-100% by weight of one or more vinylaromatic monomers and 0-50% by weight of a copolymerizable monomer; b) 1-10% by weight, calculated with respect to the polymer (a) of an expanding agent englobed in the polymeric matrix; c) 0.01-20% by weight, calculated with respect to the polymer (a) of carbon black distributed in the polymeric matrix having an average diameter ranging from 30 to 2000 nm, a surface area ranging from 5 to 40 m2/g, a sulfur content ranging from 0.1 to 2000 ppm and an ash content ranging from 0.001 to 1%.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: November 3, 2009
    Assignee: Polimeri Europa S.p.A.
    Inventors: Antonio Ponticiello, Alessandra Simonelli, Loris Zamperlin
  • Patent number: 7605188
    Abstract: This invention relates to foam insulating products, particularly extruded polystyrene foam, containing multi-layered nano-graphite as a process additive for improving the physical properties of foam products.
    Type: Grant
    Filed: December 31, 2004
    Date of Patent: October 20, 2009
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Roland R. Loh, Mark E. Polasky, Joseph P. Rynd, James Lee, Xiangmin Han, Kurt W. Koelling, Yadollah Delaviz
  • Patent number: 7585912
    Abstract: The present invention relates to a styrenic polymer composition comprising a flame-retardant effective amount of a compound of formula (I): (C6H(5-n)Yn)CH2X, wherein X is Cl or Br; Y is Cl or Br; and n is an integer between 1 and 5; or a mixture of two or more of said compounds of formula (I) or their homologues and derivatives or other Br-FRs.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: September 8, 2009
    Assignee: Bromine Compounds Ltd.
    Inventors: Nurit Kornberg, Jakob Oren, Smadar Hini, Michael Peled
  • Patent number: 7579385
    Abstract: Disclosed are dried porous crumbs of a hydrogenated block copolymer which is obtained by hydrogenating a block copolymer comprising (a) at least one polymer block composed mainly of aromatic vinyl monomer units and (b) at least one polymer block composed mainly of conjugated diene monomer units, and which has a molecular weight of 70,000 or more. The dried porous crumbs have a water content of 1% by weight or less and having the capability of absorbing an oil in an amount of 1.0 or more, in terms of the ratio of the weight of an oil, which is absorbed by the dried porous crumbs when the dried porous crumbs are immersed in the oil at 25° C. under atmospheric pressure for 1 minute, to the weight of the dried porous crumbs. Also disclosed is a method for producing the same.
    Type: Grant
    Filed: April 28, 1999
    Date of Patent: August 25, 2009
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Yasumasa Yamakoshi, Toshinori Shiraki, Masami Kamaya
  • Publication number: 20090142563
    Abstract: The invention relates to a method of producing a foam product (1), whereby a body (2) of expanded closed-cell foam, in particular expanded polystyrene particle foam, is subjected to a non-melting heat treatment at a temperature above the glass transition temperature of the plastic used to form the foam, in particular polystyrene.
    Type: Application
    Filed: February 15, 2006
    Publication date: June 4, 2009
    Inventors: Alois Zorn, Florian Nowy
  • Publication number: 20090093561
    Abstract: A monolithic, carbonaceous foam suitable for use in respiratory protection is produced by creating an emulsion of a monomer such as vinylidene chloride and/or styrene, a cross-linking agent and a surfactant, curing the emulsion to yield a polymeric foam, sulfonating the foam, and carbonizing the sulfonated foam to yield the monolithic, carbonaceous foam.
    Type: Application
    Filed: October 3, 2008
    Publication date: April 9, 2009
    Inventors: Adina Cordoneanu, Michael Evans
  • Publication number: 20090082479
    Abstract: Disclosed herein is a method of preparing a fused aerogel-polymer composite in which aerogel and an organic polymer is mixed in a dry state to adsorb polymer particles on the surface of the aerogel and are then subjected to thermal treatment, thus forming a polymer coating on the aerogel. The fused aerogel-polymer composite can be used for thermal insulation in a variety of applications. The fused aerogel-polymer composite exhibits high thermal insulation properties and superior physical strength and processability while still maintaining the properties of an aerogel that does not have a polymer coated on its surface.
    Type: Application
    Filed: April 10, 2008
    Publication date: March 26, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Myung Dong CHO
  • Patent number: 7491434
    Abstract: A novel polymodal asymmetric elastomeric block copolymer and a pressure sensitive adhesive, tape and adhesive backed article made therefrom, such as a polymer foam article having a substantially smooth surface prepared by melt-mixing a polymer composition and a plurality of microspheres, at least one of which is an expandable polymeric microsphere, under process conditions, including temperature and shear rate, selected to form an expandable extrudable composition; and extruding the composition through a die.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: February 17, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Ashish K. Khandpur, JingJing Ma, Mark D. Gehlsen, Bradley S. Momchilovich, John J. Stradinger
  • Publication number: 20090023827
    Abstract: The present invention concerns method of preparing shape memory materials starting from standard thermoplastic polymers. The present invention further is concerned with products obtained by the methods in accordance with the present invention and the use of these products over a wide variety of applications.
    Type: Application
    Filed: November 28, 2006
    Publication date: January 22, 2009
    Inventor: Andreas Lendlein
  • Publication number: 20080311812
    Abstract: Copolymers, especially multi-block copolymer containing therein two or more segments or blocks differing in chemical or physical properties, are prepared by polymerizing propylene, 4-methyl-1-pentene, or other C4-8?-olefin and one or more copolymerizable comonomers, especially ethylene in the presence of a composition comprising the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
    Type: Application
    Filed: March 17, 2005
    Publication date: December 18, 2008
    Inventors: Daniel J. Arriola, Edmund M. Carnahan, David D. Devore, Phillip D. Hustad, Roger L. Kuhlman, Timothy T. Wenzel
  • Publication number: 20080300328
    Abstract: Expandable monovinylidene aromatic polymer, e.g., polystyrene, beads are prepared by a suspension polymerization process comprising polymerizing monovinylidene aromatic monomer, e.g., styrene, under suspension polymerization conditions with, based on the weight of the monomer: A. 0.05 to 0.60 percent by weight (wt %) of tricalcium phosphate, B. Greater than 0 to 0.1 wt % of calcium carbonate, C. 0.0002 to 0.005 wt % of co-stabilizer, D. 0.0001 to 0.01 wt % of a low molecular weight polyethylene wax, E. 0.4 to 0.9 wt % of a flame retardant, and F. 2 to 10 wt % of a C3-6 hydrocarbon blowing agent. The expandable beads are converted to foam having a low thermal conductivity by contacting the separated and dried expandable beads at foaming conditions with, based on the weight of the monomer: A. 0.05 to 0.65 wt % of a glyceride comprising units of fatty acids with a C8-26 chain length, and B. 0.005 to 0.30 wt % of a metal stearate.
    Type: Application
    Filed: March 18, 2008
    Publication date: December 4, 2008
    Applicant: DOW GLOBAL TECHNOLOGIES INC.
    Inventors: Jurgen Schellenberg, Gotthard Simmich, Rolf-Dieter Klodt
  • Publication number: 20080300331
    Abstract: Prepare a polymer foam having cells defined by cell walls having an average thickness and carbon nano-tubes having a length that exceeds the average thickness of the cell walls by incorporating the carbon nano-tubes into expandable polymer beads in a suspension polymerization process and then expanding the expandable polymer beads into a polymer foam.
    Type: Application
    Filed: October 17, 2007
    Publication date: December 4, 2008
    Inventors: Jurgen Schellenberg, Petra Dehnert, Barbara Erling
  • Patent number: 7456227
    Abstract: Process for preparing polymer, e.g. polystyrene, particles that may not or may contain a water-retaining agent and that require only a one-step process for incorporating the water-retaining agent. The polymer particles may be prepared via an extrusion process, or a bulk polymerization process wherein a water-retaining agent is blended into the polymer melt. Water is incorporated into the particles by soaking them in hot or cold water or treating the particles with steam for a predetermined time depending on the desired water content in the particles. The water-retaining agent may be starch, zeolite, silica dioxide or poly (N-isopropyl acrylamide) ranging from 0.1% to 10.0% by weight. The particles can be expanded via appropriate means to form pre-expanded or expanded particles in a conventional manner.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: November 25, 2008
    Assignee: NOVA Chemicals Inc.
    Inventors: Karel Cornelis Bleijenberg, Michel F. J. Berghmans, Hugo A. A. Berghmans
  • Publication number: 20080281010
    Abstract: Foamed film compositions using chemical blowing agents and produced by continuous blown film extrusion or cast film extrusion of polymer foams. The composition has small cell size and is suitable for the production of thin film articles. The articles may be monolayer or multilayered structures.
    Type: Application
    Filed: March 28, 2008
    Publication date: November 13, 2008
    Applicant: Ingenia Polymers Inc.
    Inventors: John Lefas, Salvatore D'Uva, Arthur Tinson
  • Publication number: 20080255260
    Abstract: A composition including an effective amount of trans-1,3,3,3-tetrafluoropropene component combined with an effective amount of an alcohol selected from the group of methanol, ethanol, propanol, isopropanol, tert-butanol, isobutanol, 2-ethyl hexanol and any combination thereof, where the composition has azeotropic properties.
    Type: Application
    Filed: April 16, 2007
    Publication date: October 16, 2008
    Inventors: Jim M. Bowman, David J. Williams, Rajiv R. Singh, Hang T. Pham, Justin L. Becker
  • Publication number: 20080242752
    Abstract: Polymeric foam and polymeric foam products that contain a foamable polymer material, nanographite, and 1,1,2,2-tetrafluoroethane (HFC-134) are provided. Preferably, the foamable polymer material is an alkenyl aromatic polymer material. The foam is free of other conventional blowing agents typically utilized in preparing a foamed product. The nanographite is not chemically or surface modified and is preferably compounded in a polyethylene methyl acrylate copolymer (EMA), which is used both as a medium and a carrier for the nanographite. The nanographite may be compounded in the polymer in an amount up to 60% loading. In addition, the nanographite acts as a nucleating agent, R-value enhancer, infrared attenuating agent, lubricant, UV absorber, and process aid. The inventive foam composition produces extruded foams that have R-values that are equal to or better than conventional extruded foams produced with 1-chloro-1,1-difluoroethane (HCFC-142b).
    Type: Application
    Filed: March 28, 2007
    Publication date: October 2, 2008
    Inventors: Yadollah Delaviz, Raymond M. Breindel, Mitchell Z. Weekley, Roland R. Loh, Manoj K. Choudhary
  • Publication number: 20080226721
    Abstract: Porous bodies which are soluble or dispersible in non-aqueous media comprising a three dimensional open-cell lattice containing (a) 10 to 70% by weight of a polymeric material which is soluble in water immiscible non-aqueous media and (b) 30 to 90% by weight of a surfactant, said porous bodies having an intrusion volume as measured by mercury porosimetry of at least 3 ml/g.
    Type: Application
    Filed: December 23, 2004
    Publication date: September 18, 2008
    Inventors: Andrew Ian Cooper, Alison Jayne Foster, Steven Paul Rannard, Haifei Zhang
  • Patent number: 7425583
    Abstract: A porous ion exchanger includes an open cell structure including interconnected macropores and mesopores whose average diameter is in a range of 1 to 1000 ?m existing on walls of the macropores. Moreover, a total pore volume is in a range of 1 to 50 ml/g, ion exchange groups are uniformly distributed, and an ion exchange capacity is not less than 0.5 mg equivalent/g of dry porous ion exchanger. The porous ion exchanger can be used as an ion exchanger filled into a deionization module of an electrodeionization water purification device, solid acid catalyst, adsorbent, and filler for chromatography.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: September 16, 2008
    Assignee: Organo Corporation
    Inventors: Hiroshi Inoue, Koji Yamanaka, Makio Tamura, Shusaku Yoshida, Hideo Nakamura
  • Publication number: 20080221230
    Abstract: The invention is a flame retardant for styrene foams. The flame retardant contains both aromatic bromine and an olefin. The olefin is an internal olefin. Desirable flame retardants are selected from: formula I: wherein R1 is C1-C6 and optionally containing a heteroatom or olefin; R2 is C1-C6 and optionally containing a heteroatom or olefin; and R3-R12 is H, C1-C6 (optionally containing a heteroatom), or halogen; and further wherein the compound of formula I is present in a concentration of at least 50 percent of a trans isomer; formula II: wherein R1 is Halogen, C1-C6 and optionally containing a heteroatom or olefin; R2 is Halogen, C1-C6 and optionally containing a heteroatom or olefin; and R3-R7 is H, C1-C6 (optionally containing a heteroatom), or halogen; and formula III: wherein R1 is Halogen, C1-C6 and optionally containing a heteroatom or olefin; R2 is Halogen, H, C1-C6 and optionally containing a heteroatom or olefin; and R3-R6 is H, halogen.
    Type: Application
    Filed: November 30, 2007
    Publication date: September 11, 2008
    Inventors: Mark V. Hanson, Stephen B. Falloon, Wayne Meyer
  • Publication number: 20080188579
    Abstract: A nanoporous material is provided. The pores of the nanoporous material are formed between nanoparticles that have a polymeric surface layer. The nanoporous material is produced by (a) suspending the nanoparticles in a medium material, wherein the nanoparticles are phase separated from the medium material, (b) heating the suspension to a temperature above the melting point of the nanoparticle surface layer, and (c) cooling the suspension. Alternatively, the nanoporous material may be produced by dissolving nanoparticles having a polymeric surface layer in a solvent, and then adding a medium material that causes the nanoparticles to phase separate from the solution.
    Type: Application
    Filed: December 12, 2007
    Publication date: August 7, 2008
    Inventors: Xiaorong Wang, Mindaugas Rackaitis
  • Publication number: 20080107852
    Abstract: Foamed plastic structures that include one or more foamed plastic bodies containing a polymer matrix that includes one or more polymers formed by polymerizing a monomer mixture that includes vinyl aromatic monomers and divinyl aromatic monomers. The structures formed can include, as non-limiting examples, pallets, containers, stackable containers, produce boxes, seafood shipping containers, geofoam blocks, and insulated concrete forms.
    Type: Application
    Filed: November 8, 2006
    Publication date: May 8, 2008
    Inventors: Justin D. Rubb, Blain Hileman, Paul E. Arch
  • Patent number: 7358280
    Abstract: Process for processing expandable polymer particles e.g. polystyrene (EPS) that eliminates the maturing step between the pre-expander and molding steps. The expandable particles are first over pressurized with gas, e.g. air, carbon dioxide, nitrogen, and mixtures thereof, at a pressure between 500 and 8000 kPa and a temperature between ?20° C. and 130° C. for 15 to 7200 minutes to create a gas pressure in the particles. Using the gas pressure in the particles, pre-expanding the particles with a heating medium, e.g. steam at a temperature between 100° C. and 120° C. and at a pressure ranging above atmospheric pressure and below the gas pressure in said particles, i.e. 50 to 200 kPa for 5 to 120 seconds. The pre-expanded particles are air dried in the pre-expander while holding a positive pressure in the particles; are optionally transferred to a pressure silo; and then are transferred to a molding machine where the gas pressure in the particles is used to form a foam article.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: April 15, 2008
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Michel Florentine Jozef Berghmans, Karel Cornelis Bleijenberg, Joachim Teubert, Alphonsus Catharina Gerardus Metsaars
  • Patent number: 7358282
    Abstract: A soft, flexible, low-density, open-cell, thermoplastic, absorbent foam formed from a foam polymer formula including a balanced amount of a plasticizing agent and a surfactant in combination with a base resin. Thermoplastic elastomers can be added to the foam polymer formula to improve softness, flexibility, elasticity, and resiliency of the resulting foam. The surfactant may be either a single surfactant or a multi-surfactant system. The foam possesses a number of qualities, such as softness and strength, which render the foam particularly suitable for use in a variety of personal care products, medical products, and the like.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: April 15, 2008
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Jeffrey Jennings Krueger, Fred Robert Radwanski, Mark G. Reichmann, Peter Robert Elliker, Ali Yahiaoui, Renette E. Richard, Oomman Painummoottil Thomas
  • Patent number: 7312253
    Abstract: A blowing agent blend for making thermoplastic polymer foams comprises methyl formate. The blowing agent blend can further comprise at least one co-blowing agent. The co-blowing agent is either a physical co-blowing agent (e.g. an inorganic agent, a hydrocarbon, a halogenated hydrocarbon, a hydrocarbon with polar, functional group(s), water or any combination thereof), or a chemical co-blowing agent, or combinations thereof. The thermoplastic polymer foam can be an alkenyl aromatic polymer foam, e.g. a polystyrene foam. The blowing agent blend can comprise any combination of methyl formate and one or more co-blowing agents. The methyl formate-based blowing agent blends produce stable foams for various applications, including containers, packaging systems, as well as insulation boards and building materials. A process for the preparation of such foams is also provided.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: December 25, 2007
    Assignee: Pactiv Corporation
    Inventors: Yash Paul Handa, Joseph A. Brackman, Glenn C. Castner, Mohammad Zafar
  • Patent number: 7307105
    Abstract: A blowing agent blend for making thermoplastic polymer foams comprises methyl formate. The blowing agent blend can further comprise at least one co-blowing agent. The co-blowing agent is either a physical co-blowing agent (e.g. an inorganic agent, a hydrocarbon, a halogenated hydrocarbon, a hydrocarbon with polar, functional group(s), water or any combination thereof), or a chemical co-blowing agent, or combinations thereof. The thermoplastic polymer foam can be an alkenyl aromatic polymer foam, e.g. a polystyrene foam. The blowing agent blend can comprise 100 mol % methyl formate, or it can comprise any combination of methyl formate and one or more co-blowing agents. The methyl formate-based blowing agent blends produce stable foams. A process for the preparation of such foams is also provided.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: December 11, 2007
    Assignee: Pactiv Corporation
    Inventors: Yash Paul Handa, Gary A. Francis
  • Patent number: 7294655
    Abstract: Expandable or pre-expanded thermoplastic particles, e.g. polystyrene particles, used to form foam containers e.g. cups, bowls, are coated with a coating composition comprising a liquid part consisting of a) liquid polyethylene glycol with an average molecular weight of 200 to 800; and a solid part comprising components selected from the group consisting of b) polyolefin wax, e.g. polyethylene wax, c) a metal salt of higher fatty acids, e.g. zinc stearate or calcium stearate; d) polyethylene glycol with an average molecular weight of 900 to 10,000; and e) a fatty bisamide or fatty amide, e.g. ethylene bis-stearamide; and combinations of b) through e). The coating composition prevents or resists leakage of liquids and foods with oil and/or fatty components and improves the rim strength and ATF properties of foam containers.
    Type: Grant
    Filed: January 31, 2004
    Date of Patent: November 13, 2007
    Assignee: Nova Chemicals Inc.
    Inventors: Jiansheng Tang, David Allen Cowan, Dennis H. Piispanen, Michael T. Williams
  • Patent number: 7291382
    Abstract: A low density, flexible, resilient, absorbent open-cell thermoplastic foam includes a combination of thermoplastic elastomer, ethylene ionomer, stiff polymer, and surfactant selected to provide various advantageous properties. The foam is useful in personal care absorbent articles, medical absorbent articles, absorbent wiping articles, and a variety of other applications.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: November 6, 2007
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Jeffrey Jennings Krueger, Renette E. Richard
  • Patent number: 7279504
    Abstract: Expandable vinylaromatic polymers which comprise: a) a matrix obtained by polymerizing 50-100% by weight of one or more vinylaromatic monomers and 0.50% by weight of a copolymerizable monomer; b) 1-10% by weight, calculated with respect to the polymer (a), of an expanding agent englobed in the polymeric matrix; c) 0.05-25% by weight, calculated with respect to the polymer (a), of an inorganic filler homogeneously distributed in the polymeric matrix with a substantially spherical granulometry, an average diameter ranging from 0.01 to 100 ?m, a refraction index higher than 1.6 and a white index, as defined in “Colour Index” (third edition published by the Society of Dyers and Colourists, 1982), equal to or lower than 22.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: October 9, 2007
    Assignee: Polimeri Europa S.p.A.
    Inventors: Dario Ghidoni, Roberto Lanfredi, Gilberto Frigerio, Alessandro Casalini
  • Patent number: 7273894
    Abstract: Disclosed are novel compositions for the preparation of void-containing articles comprising a polymer matrix and a voiding agent The voiding agent comprises at least one first polymer and at least one second polymer, which are selected on the basis of physical properties such as glass transition temperature, tensile modulus, melting point, surface tension, and melt viscosity. Shaped articles such as sheet, film, bottles, tubes, labels, and sleeves may prepared from these compositions. Also disclosed are polyester shrink films prepared using a voiding agent comprising a novel blend of cellulosic and olefinic polymers. The resulting shrink films have better opacity, lower density, reduced shrink force, and improved printability as compared with most standard voiding agents. The films are useful for sleeve label and other shrink film applications and their lower density allows them to be readily separated from soft drink bottles, food containers and the like during recycling operations.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: September 25, 2007
    Assignee: Eastman Chemical Company
    Inventors: Marcus David Shelby, Tony Wayne Helton, Emerson Eston Sharpe, Jr.
  • Patent number: 7259190
    Abstract: An adhesive composition comprising a polymeric matrix and absorbent particles wherein at least a part of the absorbent particles are microcolloid particles. The microcolloid particles are water absorbent particles preferably having a rounded or spherical shape. The addition of microcolloids to an adhesive provides an improved moisture handling properties compared to state of the art technology as well as the rheological properties of the adhesive matrix may be less affected than by addition of traditional hydrocolloids.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: August 21, 2007
    Assignee: Coloplast A/S
    Inventor: Mads Lykke
  • Patent number: 7232849
    Abstract: A crosslinked polymeric bead comprising a polymer having from 0.5 mole percent to 2 mole percent crosslinker. The bead has a diameter no greater than 200 ?m, no void spaces having a diameter greater than 5 ?m, and less than 5 weight percent of organic extractables.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: June 19, 2007
    Assignee: Rohm and Haas Company
    Inventors: James Charles Bohling, Marlin Kenneth Kenzey, John Joseph Maikner, James Franklin Tate, Jr.
  • Patent number: 7176247
    Abstract: A water insoluble interpenetrating polymer network is obtained by independently cross-linking a first polymer derived from a sulfonic acid or phosphonic acid group containing alkenyl monomer and a second polymer polymerized independently of the first polymer and interpenetrating the first polymer, where the second polymer is selectively permeable to water compared to methanol. Through adjustment of the degree of first polymer monomer acidification, polymer ratios and the extent of cross-linking in the at least two interpenetrating polymers, ion conductivity and solvent permeability are controlled. A film produced from such a water insoluble interpenetrating polymer network is well suited as a membrane in a direct methanol fuel cell. The relative degree and mechanism of cross-linking and interpenetrating the first polymer and second polymer are also adjustable parameters that impact on film properties.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: February 13, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Charles W. Walker, Jr.
  • Patent number: 7173066
    Abstract: A porous ion exchanger includes an open cell structure including interconnected macropores and mesopores whose average diameter is in a range of 1 to 1000 ?m existing on walls of the macropores. Moreover, a total pore volume is in a range of 1 to 50 ml/g, ion exchange groups are uniformly distributed, and an ion exchange capacity is not less than 0.5 mg equivalent/g of dry porous ion exchanger. The porous ion exchanger can be used as an ion exchanger filled into a deionization module of an electrodeionization water purification device, solid acid catalyst, adsorbent, and filler for chromatography.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: February 6, 2007
    Assignee: Organo Corporation
    Inventors: Hiroshi Inoue, Makio Tamura, Shusaku Yoshida, Hideo Nakamura, Koji Yamanaka
  • Patent number: 7166646
    Abstract: This invention relates to foam insulating products, particularly extruded polystyrene foam, containing asphalt as an infrared attuation and process additives for improving the insulating properties and for reducing the manufacturing cost of the foam products.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: January 23, 2007
    Assignee: Owens Corning Fiberglas Technology, Inc.
    Inventors: Roland R. Loh, Barbara A. Fabian, Sheree L. Bargabos, Mitchell Z. Weekley, Byron J. Hulls, J. Patrick Rynd
  • Patent number: 7153890
    Abstract: The present invention provides, as a resin bead which can be developed for use completely different from the use of conventional polystyrene resin beads, a porous resin bead made from a styrene-hydroxystyrene-divinylbenzene copolymer, which contain a hydroxyl group in an amount of 10–1000 ?mol/g, and further, a production method of a porous resin bead made from a styrene-hydroxystyrene-divinylbenzene copolymer, which contains suspension copolymerization of a styrene monomer, an acyloxystyrene monomer and a divinylbenzene monomer using an organic solvent (containing at least hydrocarbon and alcohol) and water, followed by hydrolysis reaction.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: December 26, 2006
    Assignee: Nitto Denko Corporation
    Inventors: Kenjiro Mori, Tatsuya Konishi, Ayako Matsunawa
  • Patent number: 7132485
    Abstract: The invention relates to a suspension polymerization process for the preparation of styrene-containing (co)polymers, wherein the process comprises the steps of continuously or semi-continuously dosing an initiator to the reaction mixture, said initiator having a specified half-life at the temperature of the reaction mixture to which it is dosed. The invention further relates to styrene based (co)polymer obtainable by said process, and to the use of said styrene (co)polymer in a shaping process.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: November 7, 2006
    Assignee: Akzo Nobel N.V.
    Inventors: Hendrikus Gerardus Boevenbrink, Frans Johannes Hoogesteger
  • Patent number: 7122582
    Abstract: The present invention provides a method of producing porous spherical particles, which includes suspension polymerization of a multifunctional monomer having two or more vinyl groups and a vinyl monomer having one vinyl group in an aqueous medium in the presence of a porogen and a distribution stabilizer, wherein the distribution stabilizer is polyvinyl alcohol having a saponification degree of 75 to 85 mol %. According to the method of the present invention, generation of particle agglomerates and large particles can be suppressed and porous spherical particles having a desired average particle size and a narrow particle size distribution can be conveniently produced.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: October 17, 2006
    Assignee: Nitto Denko Corporation
    Inventors: Tatsuya Konishi, Takeo Matsumura, Kenjiro Mori
  • Patent number: 7078441
    Abstract: An organic porous material having a continuous pore structure, which comprises interconnected macropores and mesopores with a radius of 0.01 to 100 ?m in the walls of the macropores, having a total pore volume of 1 to 50 ml/g and having pore distribution curve characteristics wherein the value obtained by dividing the half-width of the pore distribution curve at the main peak by the radius at the main peak is 0.5 or less. The organic porous material is useful as an adsorbent having high physical strength and excelling in adsorption amount and adsorption speed, an ion exchanger excelling in durability against swelling and shrinkage, and a filler for chromatography exhibiting high separation capability.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: July 18, 2006
    Assignee: Organo Corporation
    Inventors: Hiroshi Inoue, Koji Yamanaka
  • Patent number: 7037997
    Abstract: A vinyl monomer of the structure R—B—Ar(—CH?CH2)n (1) in which Ar is an aromatic ring (arylene group); n is an integer >0, in particular one or two; B is a bridge structure; R is a (C2-30)-hydrocarbon group carrying two or more protected or unprotected hydroxy groups. The monomer is characterized in that B comprises a chain of atoms linking R to Ar and consisting of 1–10 atoms selected from carbons and the heteroatoms ether oxygen, thioether sulphur or amino nitrogen, with the proviso that the terminal atom in B which is attached to R is one of the heteroatoms. A method for producing a polymer support matrix in which the vinylmonomer is one of the monomeric units. The support matrix as such is also claimed. The preferred method for producing the support matrices involves suspension polymerisation, the preferred form of matrix is beads.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: May 2, 2006
    Assignee: GE Healthcare Bio-Sciences AB
    Inventors: Rose Nasman, legal representative, Harry Nasman, legal representative, Jan Nasman, deceased
  • Patent number: 7026364
    Abstract: A porous ion exchanger includes an open cell structure including interconnected macropores and mesopores whose average diameter is in a range of 1 to 1000 ?m existing on walls of the macropores. Moreover, a total pore volume is in a range of 1 to 50 ml/g, ion exchange groups are uniformly distributed, and an ion exchange capacity is not less than 0.5 mg equivalent/g of dry porous ion exchanger. The porous ion exchanger can be used as an ion exchanger filled into a deionization module of an electrodeionization water purification device, solid acid catalyst, adsorbent, and filler for chromatography.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: April 11, 2006
    Assignee: Organo Corporation
    Inventors: Hiroshi Inoue, Koji Yamanaka, Makio Tamura, Shusaku Yoshida, Hideo Nakamura
  • Patent number: 7005457
    Abstract: Multi-functional microcapsules comprising a core material including a major portion of one or more functional additives and a shell material including at least one functional additive, a method of manufacturing such multifunctional microcapsules and polymeric products incorporating such multifunctional microcapsules are provided.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: February 28, 2006
    Assignee: Owens Corning Fiberglas Technology, Inc.
    Inventors: Roland R. Loh, Barbara A. Fabian, Zhang Wentao, Gu Nong
  • Patent number: 6982309
    Abstract: It has been discovered that improved polystyrene products may be obtained by polymerizing styrene in the presence of p-t-butyl styrene (TBS) and optionally at least one di-olefinic substituted aromatic compound, such as isopro-penyl styrene, sec-butenyl styrene, m-isobutenyl styrene, p-diisopropenyl benzene, diallyl benzene, and/or diallyl phthalate. The resulting copolymers have a higher glass transition temperature (Tg), a higher molecular weight distribution (MWD), a higher Mz, and a lower melt flow index (MFI) as compared with a polymerized product made by an otherwise identical method except that TBS and/or the di-olefinic substituted aromatic compound are not used. These copoly-mers are also more highly branched as compared with a polymerized product made by an otherwise identical method in the absence of TBS and/or a di-olefinic substituted aromatic compound.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: January 3, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Jose M. Sosa, Kenneth P. Blackmon
  • Patent number: 6972311
    Abstract: It has been discovered that improved polystyrene products may be obtained by polymerizing styrene in the presence of at least one multifunctional initiator, at least one chain transfer agent, and at least one cross-linking agent. The presence of the multifunctional initiator tends to cause more branched structures in the polystyrene. A mathematical model that helps optimize the levels of these additives for given molecular weights, melt flow indices (MFIs) and zero shear viscosities (?0) has also been discovered.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: December 6, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Cyril Chevillard, Jose M. Sosa, Aron Griffith, Jay Reimers
  • Patent number: 6960617
    Abstract: Hydrogels having improved elasticity and mechanical strength properties are obtained by subjecting a hydrogel formulation containing a strengthening agent to chemical or physical crosslinking conditions subsequent to initial gel formation. Superporous hydrogels having improved elasticity and mechanical strength properties are similarly obtained whenever the hydrogel formulation is provided with a foaming agent. Interpenetrating networks of polymer chains comprised of primary polymer(s) and strengthening polymer(s) are thereby formed. The primary polymer affords capillary-based water sorption properties while the strengthening polymer imparts significantly enhanced mechanical strength and elasticity to the hydrogel or superporous hydrogel. Suitable strengthening agents can be natural or synthetic polymers, polyelectrolytes, or neutral, hydrophilic polymers.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: November 1, 2005
    Assignee: Purdue Research Foundation
    Inventors: Hossein Omidian, Yong Qiu, Shicheng Yang, Dukjoon Kim, Haesun Park, Kinam Park
  • Patent number: 6908950
    Abstract: This invention relates to foam insulating products, particularly extruded polystyrene foam, containing asphalt as an infrared attuation and process additives for improving the insulating properties and for reducing the manufacturing cost of the foam products.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: June 21, 2005
    Assignee: Owens Corning Fiberglas Technology, Inc.
    Inventors: Roland R. Loh, Barbara A. Fabian, Sheree L. Bargabos, Mitchell Z. Weekley, Byron J. Hulls, J. Patrick Rynd
  • Patent number: 6841580
    Abstract: An organic porous material having a continuous pore structure, which comprises interconnected macropores and mesopores with a radius of 0.01 to 100 ?m in the walls of the macropores, having a total pore volume of 1 to 50 ml/g and having pore distribution curve characteristics wherein the value obtained by dividing the half-width of the pore distribution curve at the main peak by the radius at the main peak is 0.5 or less. The organic porous material is useful as an adsorbent having high physical strength and excelling in adsorption amount and adsorption speed, an ion exchanger excelling in durability against swelling and shrinkage, and a filler for chromatography exhibiting high separation capability.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: January 11, 2005
    Assignee: Organo Corporation
    Inventors: Hiroshi Inoue, Koji Yamanaka
  • Patent number: 6831111
    Abstract: Polymeric products which after special cross-linking become macroreticular and acquire the ability to absorb organic solvents and petroleum products which are released in the water, in the amount of 40-80 gram of oily matter/gram of polymer. The macroreticular polymers include polystyrene, trimeric copolymer with styrene, ethylene, butadiene (SEBS) elastomeric SBR with styrene 10%, 20% and 40% fully hydrogenated to saturation, which after special cross-linking in chlorinated solvents with a cross-linking agent forms a thick cross-linked mass which is cut and deodorized. These products are used in a polypropylene net and are swept on the surface of water basins, harbors or the surface of sea to collect the oily matter and the petroleum by endomolecular absorption and by external surface adherence, and the loaded net is washed with petroleum to remove all absorbed oily matter as useful fuel. The net with the absorbing polymers is then ready for reuse.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: December 14, 2004
    Assignee: Innoval Management Limited
    Inventors: George N. Valkanas, Ioannis Konstantakopoulos
  • Publication number: 20040242827
    Abstract: It has been discovered that improved polystyrene products may be obtained by polymerizing styrene in the presence of at least one multifunctional initiator, at least one chain transfer agent, and at least one cross-linking agent. The presence of the multifunctional initiator tends to cause more branched structures in the polystyrene. A mathematical model that helps optimize the levels of these additives for given molecular weights, melt flow indices (MFIs) and zero shear viscosities (&eegr;0) has also been discovered.
    Type: Application
    Filed: May 27, 2003
    Publication date: December 2, 2004
    Inventors: Cyril Chevillard, Jose M. Sosa, Aron Griffith, Jay Reimers
  • Patent number: 6822012
    Abstract: This invention relates generally to water resistant peelable protective and decorative clear or pigmented coating compositions and, more specifically, to aqueous and solvent based, polymeric coating compositions which form a protective and/or decorative coating and is removably adheres to a variety of substrates, including automotive paints, metals, glass, vinyl, plastics, concrete, natural and synthetic elastomers, and ceramics. The coatings can be either a flat film on the substrate, or a three-dimensional expandable foamy coating, and can be readily peeled off from the substrate as a whole piece. The coatings may be formulated for temporary or long-term protection depending upon the application. The peelable coatings can be applied as a paint, paste, film, or expandable foam cord whereby the expansion of the foam can be controlled by the formulation and applicator.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: November 23, 2004
    Assignee: Ashland Inc
    Inventors: Richard J. Baumgart, Michael A. Dituro, Frances E. Lockwood, Zhiqiang Zhang, Daniel J. Dotson