-xh Reactant Contains A C-x-c Group Patents (Class 521/174)
  • Patent number: 10414852
    Abstract: A biomass-based thermoplastic polyurethane is provided. The biomass-based thermoplastic polyurethane is a reaction product of a composition. The composition includes 1-50 parts by weight of a modified lignin, 50-99 parts by weight of a first polyol, and 40-60 parts by weight of a diisocyanate. The modified lignin has an OH value of less than 3.0 mmol/g. The sum of the modified lignin and the first polyol is 100 parts by weight.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: September 17, 2019
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wen-Pin Chuang, Yi-Che Su, Yun-Ya Huang, Chao-Chieh Chiang, Cheng-Han Hsieh
  • Patent number: 10323212
    Abstract: Polyols are produced by an alkoxylation process in which a vegetable oil containing hydroxyl functional groups is combined with a DMC catalyst to form a mixture, the DMC catalyst is then activated by adding ethylene oxide and/or propylene oxide to the vegetable oil/catalyst mixture, and ethylene oxide and propylene oxide are added to the mixture containing activated DMC catalyst in amounts such that the total of percentage of ethylene oxide in the polyol plus percentage of primary hydroxyl groups in the polyol produced is from 50 to 77% and the percentage of primary hydroxyl groups is at least 30% but less than 50%. These polyols are useful for the production of molded polyurethane foams, particularly, hot-cure molded polyurethane foams.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: June 18, 2019
    Assignee: Covestro LLC
    Inventors: Stanley L. Hager, Micah N. Moore, Jack R. Reese, Brian L. Neal
  • Patent number: 10294323
    Abstract: The present invention relates to novel thermoplastic polyurethanes (TPU) that contain alkylene substituted spirocyclic compounds. The present invention provides for TPU which exhibit high temperature resistance.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: May 21, 2019
    Assignee: Lubrizol Advanced Materials, Inc.
    Inventor: Umit G. Makal
  • Patent number: 10184023
    Abstract: The present invention relates to novel thermoplastic polyurethane (TPU) compositions that contain alkylene substituted spirocyclic compounds as chain extender and polycarbonate polyol. The present invention provides for TPUs which exhibit high temperature resistance.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: January 22, 2019
    Assignee: Lubrizol Advanced Materials, Inc.
    Inventor: Umit G. Makal
  • Patent number: 10106638
    Abstract: This disclosure is directed to make low density and low amine emissions water blown polyurethane foams using a reactive catalyst composition. The method is particularly useful in the preparation of full water blown, low density polyurethane foams having a density in the range of about 6 to about 16 kg/m3. A catalyst composition comprising at least one non-emissive amine catalyst and tetraalkyl guanidine, the method of employing the catalyst composition and a formulation comprising the catalyst composition are disclosed.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: October 23, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller
  • Patent number: 10100440
    Abstract: A polyester is copolymerized with diacid monomer, esterified diacid monomer or a combination thereof with a polyol monomer. The diacid monomer, the esterified diacid monomer or the combination thereof includes (1) furan dicarboxylic acid, dialkyl furandicarboxylate, or a combination thereof or (2) furan dicarboxylic acid, dialkyl furandicarboxylate, or a combination thereof and spiro-diacid.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: October 16, 2018
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITTUTE
    Inventors: Cheng-Jyun Huang, Guang-Way Jang, Shu-Chen Li, Po-Ju Chen
  • Patent number: 10094050
    Abstract: A fiber includes polyester copolymerized with diacid monomer, esterified diacid monomer or combination thereof with a polyol monomer. The diacid monomer, esterified diacid monomer or combination thereof includes (1) furan dicarboxylic acid, dialkyl furandicarboxylate, or combination thereof or (2) furan dicarboxylic acid, dialkyl furandicarboxylate, or combination thereof and spiro-diacid. The polyol monomer includes (3) C2-C14 polyol or (4) C2-C14 polyol and spiro-diol. The diacid monomer, esterified diacid monomer or combination thereof and the polyol monomer meet: (a) diacid monomer, esterified diacid monomer or combination thereof includes (2) furan dicarboxylic acid, dialkyl furandicarboxylate, or combination thereof and spiro-diacid, (b) polyol monomer includes (4) C2-C14 polyol and spiro-diol, or (c) a combination thereof. The polyester has a viscosity at 30° C. of 0.5 dL/g to 1.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: October 9, 2018
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Cheng-Jyun Huang, Guang-Way Jang, Shu-Chen Li, Po-Ju Chen
  • Patent number: 10081638
    Abstract: The present invention is directed to polyisocyanates and polyurethanes derived therefrom. In various embodiments, the present invention provides polyisocyanates, methods of making the polyisocyanates from fused bicyclic alcohols, polyurethanes, and methods of making the polyurethanes from the polyisocyanates.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: September 25, 2018
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Jason Shih-Hao Chen, Michael Richard Kessler, Michael Dennis Zenner
  • Patent number: 10017605
    Abstract: Foam compositions are provided. The compositions are prepared from multi-functional acetoacetate esters and multi-functional amines or acrylates. The foam compositions can include one or more additives. The foam compositions can be used for home and commercial insulation, air sealing, sound proofing, structural improvement, and exterior roofing, among other applications. The foam compositions provide advantages of being isocyanate free and offer reduced exposure to isocyanate.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: July 10, 2018
    Assignee: GACO WESTERN, LLC
    Inventors: David L. Trumbo, Nick Krogman, Daniel S. Nelson
  • Patent number: 9790314
    Abstract: The present invention discloses a viscoelastic sound-absorbing polyurethane foam and a method for preparing the same, the foam being prepared by reacting a polyisocyanate composition and an isocyanate reactive component. The isocyanate reactive component comprises, based on the weight of mixed polyethers, 30-80 wt % of (bii) a copolyol of epoxypropane-epoxyethane, or a conjugate thereof, wherein the content of oxy-ethylidene unit is 5-35 wt %; 2-20 wt % of (biii) a copolyol of epoxypropane-epoxyethane, or a conjugate thereof, wherein the content of oxy-ethylidene unit is 70-100 wt %; and 20-70 wt % of (biv) a copolyol of epoxypropane-epoxyethane, or a conjugate thereof, wherein the content of oxy-ethylidene unit is 0-20 wt %. The sound-absorbing foam of the present invention has a ball rebound rate of 15-30% and good sound absorption performance.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: October 17, 2017
    Assignees: Wanhua Chemical (Beijing) Co., Ltd., Wanhua Chemical Group Co., Ltd., Wanhua Chemical (Ningbo) Co., Ltd.
    Inventors: Jun Zhao, Chen Shen, Yi Zhao, Peng Wei
  • Patent number: 9783653
    Abstract: Foamed polymeric compositions containing clay nucleating agents are described. The clays are preferably sepiolite, palygorskite/attapulgite, or combinations thereof. Also described are processes for forming the foamed compositions. The resulting products find particular application as insulation and packaging materials.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: October 10, 2017
    Assignee: A. SCHULMAN, INC.
    Inventors: Juan-Antonio Igualada, Jose-Luis Feijoo
  • Patent number: 9556293
    Abstract: The present invention is directed to polyisocyanates and polyurethanes derived therefrom. In various embodiments, the present invention provides polyisocyanates, methods of making the polyisocyanates from fused bicyclic alcohols, polyurethanes, and methods of making the polyurethanes from the polyisocyanates.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: January 31, 2017
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Jason Shih-Hao Chen, Michael Richard Kessler, Michael Dennis Zenner
  • Patent number: 9512259
    Abstract: Disclosed are high strength polyurethane foam compositions and methods of making them. In one aspect, the inventive polyurethane foams include strength enhancing additives comprising one or more polycarbonate polyols derived from the copolymerization of CO2 and one or more epoxides. In one aspect, the inventive methods include the step of substituting a portion of the polyether polyol in the B-side of a foam formulation with one or more polycarbonate polyols derived from the copolymerization of CO2 and one or more epoxides.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: December 6, 2016
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Vahid Sendijarevic, Aisa Sendijarevic
  • Patent number: 9399705
    Abstract: The invention relates to storage-stable prepregs (preimpregnated fibers) based on low-viscosity polyurethane systems having a very high characteristic number and flat fiber composite components (molded bodies; composite components) produced therefrom, which are obtained due to an impregnation method of fiber reinforced materials such as woven fabrics and fleece, and to a method for the production thereof.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 26, 2016
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Florian Hupka, Marcel Schornstein, Dirk Wegener, Harald Rasselnberg
  • Patent number: 9388271
    Abstract: There is provided a polyoxyalkylene polyol or monool (S) represented by formula (2). In the formula (2), R2 represents an m-valent group in which m active hydrogens are removed from the active hydrogen-containing compound (H); Z is an alkylene group or a cycloalkylene group, and these groups are unsubstituted or substituted with a halogen atom or an aryl group. A hydroxyl value x, total degree of unsaturation y and the content of ethylene oxide z satisfy mathematical expression (3). In mathematical expression (3), x represents 5 to 280 mgKOH/g, y represents total degree of unsaturation represented by a unit meq/g, and z is from 0 to 50. R2—[—(ZO)p-(AO)q-(CH2CH2O)r-H]??(2) y?18.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: July 12, 2016
    Assignee: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Hiromichi Nakaminami, Shogo Sugahara, Shu Yasuhara, Kouichi Murata
  • Patent number: 9279072
    Abstract: A polyurethane adhesive having a low gross heat of combustion is used to assemble insulation panels such as mineral wool insulation panels. The polyurethane adhesive contains a polyisocyanate side and a polyol side. The polyol side includes a certain polyether ether polyol and an aromatic polyester diol. The mixture of these polyols provides excellent adhesion together with suitably low viscosities, even at high filler levels, and a cured adhesive that has a low gross heat of combustion.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: March 8, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Philippe Poncet, Jorge Jimenez
  • Patent number: 9255174
    Abstract: Embodiments of the present invention relate to polyurethane foams having high air flow while maintaining viscoelastic properties. In one embodiment, a reaction system for preparation of a viscoelastic polyurethane foam is provided. The reaction system comprises (a) a polyisocyanate component and (b) an isocyanate reactive component. The isocyanate reactive component comprises (i) from 35 to 74% by weight of the isocyanate reactive component of one or more propylene oxide rich (PO-rich) polyols having a combined number average equivalent weight from 200 to 500, (ii) from 24 to 50% by weight of the isocyanate reactive component of one or more ethylene oxide rich (EO-rich) polyols having a combined number average equivalent weight from 200 to 2,800, and (iii) from 2 to 10% by weight of the isocyanate reactive component of one or more butylene oxide rich (BO-rich) polyethers having a number average equivalent weight of 2,000 or more.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: February 9, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Kaoru Aou, Rogelio R. Gamboa, Bernard E. Obi
  • Patent number: 9187674
    Abstract: A fire-resistant coating composition and method that can be applied to various poles and substrates so as to substantially reduce the likelihood of fire and/or heat damage. The first-resistant coating composition having a first component and a second component. The first component may comprise isocyanate and a thickening agent, and the second component may comprise a multifunctional polyol, preferably a tetrafunctional polyol, most preferably an amine-based tetrafunctional polyol, titanium dioxide, diol ether, expandable graphite particles, a flame retardant additive, at least one thickening agent, and a catalyst.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: November 17, 2015
    Assignee: Crosslink Technology Inc.
    Inventors: John Ulcar, Tony Csaba
  • Patent number: 9062168
    Abstract: The invention described herein generally pertains to the use of low boiling point, low vapor pressure blowing agents with froth polyurethane or polyisocyanurate foams to achieve superior cavity filling than when using conventional higher vapor pressure or more ozone-depleting blowing agents.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: June 23, 2015
    Assignee: Fomo Products, Inc.
    Inventor: Anthony J. Taylor
  • Patent number: 9045580
    Abstract: A foam-molded polyurethane foam for a seat pad, particularly for a vehicle, that reduces both shakiness and stress relaxation is provided. The polyurethane foam contains a foaming liquid containing (A) a polyol, (B) a polyisocyanate, (C) water and (D) a catalyst. The polyol (A) contains from 40 to 50% by mass of (a-1) a polyether polyol having a molar ratio of repeating units derived from ethylene oxide and propylene oxide of from 5/95 to 25/75 and a number average molecular weight of from 6,000 to 8,000, and from 5 to 15% by mass of (a-2) a polyether polyol having a molar ratio of repeating units derived from ethylene oxide and propylene oxide of from 0/100 to 20/80 and a number average molecular weight of from 600 to 2,000. The amount of water (C) is 2.0 parts by mass or more per 100 parts by mass of the polyol (A).
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: June 2, 2015
    Assignee: BRIDGESTONE CORPORATION
    Inventor: Kosuke Yoshitomi
  • Publication number: 20150141543
    Abstract: This invention relates to novel polyol blends, a process for the production of foam with very low resistance to air flow from certain polyol blends and to the resultant foams produced from certain polyol blends. The polyol blends comprise one or more monofunctional polyethers having a hydroxyl number of less than 28; one or more polyether polyols having a hydroxyl number of 20 to 240 and containing at least 50% of copolymerized oxyethylene; one or more polyether polyols having a hydroxyl number of 47 to 300 and containing from 5 to 40% of copolymerized oxyethylene; and optionally, one or more polyether polyols having a hydroxyl number of 10 to 45. This process of the invention comprises reacting one or more polyisocyanates, with an isocyanate-reactive component in the presence of at least one catalyst, at least one surfactant and at least one blowing agent.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 21, 2015
    Inventors: Stanley L. Hager, Bruce Britt, Suan McVey, Micah Moore, Peter Uthe, Jack Reese
  • Publication number: 20150141542
    Abstract: The present invention provides a method for producing flame-retardant polyurethane foams, the resulting flame-retardant polyurethane foams having particularly low densities.
    Type: Application
    Filed: May 17, 2013
    Publication date: May 21, 2015
    Applicant: BAYER MATERIALSCIENCE AG
    Inventors: Sven Meyer-Ahrens, Stefan Lindner, Bert Klesczewski
  • Patent number: 9034936
    Abstract: Polyurethane foams are made using a biuret-modified MDI and/or PMDI as the isocyanate component. The isocyanate is characterized by having a high content of biuret-containing oligomers and, preferably, a low proportion (if any) of biuret-urea oligomers. Flexible, resilient foams made using this biuret-modified isocyanate perform well on flammability tests such as the UNI 9175 CS. E. RF4 test, even without added flame retardants.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: May 19, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Alessia Battistini, Gianluca Casagrande, Luigi Bertucelli, Alessio Sabadini
  • Patent number: 9029432
    Abstract: A reaction system comprising (a) a polyisocyanate component and (b) an isocyanate reactive component for preparation of a polyurethane foam having high air flow with low compression set is provided. The isocyanate reactive component comprises (i) from 45 to 70% by weight of one or more PO-rich polyols having a combined number average equivalent weight from 210 to 510, (ii) from 20 to 30% by weight of one or more ethylene oxide polyols having a combined number average equivalent weight from 200 to 500, (iii) from 10 to 25% by weight of one or more ethylene oxide-alkylene oxide polyethers having a combined number average equivalent weight from 300 to 800; and (iv) from 0.5 to 15% by weight of one or more PO-rich polyols having a functionality of 1 to 4 and a combined number average equivalent weight of 2,000 to 6,000.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: May 12, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Kaoru Aou, Rogelio R. Gamboa, Hongming Ma
  • Patent number: 9023908
    Abstract: The present invention relates to a method for adsorbing and/or absorbing oil, by bringing oil into contact with a polyurethane sponge with excellent mechanical properties.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: May 5, 2015
    Assignee: BASF SE
    Inventors: Nils Mohmeyer, Ralf Fritz, Bernd Bruchmann, Anna Cristadoro, Marcus Leberfinger, Antje van der Net
  • Patent number: 9023910
    Abstract: A process for producing a polyurethane shoe sole having an article density of 100 to 350 g/L and being made from an organic polyisocyanate, a polyol, a blowing agent consisting of water, and optionally a crosslinking and/or chain-extending agent, a catalyst, and other auxiliaries and/or additives. First, polyisocyanate, polyol and any crosslinking and/or chain-extending agent are mixed and reacted at a temperature of 110° C. to 180° C. to give a prepolymer having polyisocyanate groups. Second, the isocyanate-terminated prepolymer obtained and any remaining polyisocyanate are mixed with any remaining polyol, blowing agent comprising water, and any remaining crosslinking and/or chain-extending agent and also any catalyst and other auxiliaries and/or additives are introduced into a mold and allowed to fully react to give a polyurethane shoe sole.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: May 5, 2015
    Assignee: BASF SE
    Inventors: Heinrich Bollmann, Andre Kamm, Anand G. Huprikar, Ulrich Holwitt
  • Patent number: 9018271
    Abstract: Embodiments of the invention provide for polyurethane flexible foams that do not require a post production crushing step. These “self crushing” flexible foams neither collapse, skin peel, nor form voids upon demolding, and yet maintain excellent physical properties such as uniform cell sizes, high quality surface appearance, compression set, resistance to fatigue, etc.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: April 28, 2015
    Assignee: Dow Global Technologies LLC
    Inventor: Alessia Battistini
  • Patent number: 9018273
    Abstract: A polishing pad, having a polishing layer comprising a thermoset polyurethane foam, wherein the polishing layer has an in-plane variation of 12 or less in microrubber A hardness, the variation being obtained by measuring the polishing layer from a polishing surface side of the layer, the thermoset polyurethane foam contains, as raw material components, an isocyanate component and active-hydrogen-containing compounds, and the active-hydrogen-containing compounds comprise a trifunctional polyol having at least one terminated hydroxyl group that is a secondary hydroxyl group, and having a hydroxyl group value of 150 to 1,000 mg KOH/g in an amount of 10 to 50 parts by weight for 100 parts by weight of the active-hydrogen-containing compounds.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: April 28, 2015
    Assignee: Toyo Tire & Rubber Co., Ltd.
    Inventors: Aya Ito, Masato Doura
  • Patent number: 9018272
    Abstract: A flexible polyurethane foam comprises the reaction product of an isocyanate component and an isocyanate-reactive component in the presence of a blowing agent. The isocyanate component comprises a polymeric diphenylmethane diisocyanate component and a monomeric diphenylmethane diisocyanate component. The monomeric diphenylmethane diisocyanate component comprises 2,4?-diphenylmethane diisocyanate and 4,4?-diphenylmethane diisocyanate. The flexible polyurethane foam is substantially free of supplemental flame retardant additives and exhibits flame retardance under flammability tests according to California Technical Bulletin 117 regulations.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: April 28, 2015
    Assignee: BASF SE
    Inventors: Raymond A. Neff, Theodore M. Smiecinski
  • Publication number: 20150105485
    Abstract: According to the present invention, a urethane foam rubber is constituted with a polymer having a moiety derived from a diisocyanate, and a moiety derived from a polyether polyol, number of atoms composing the shortest path along a bond intervening two NCO groups in at least a part of the diisocyanate is no less than 11, Mw of the polyether polyol is no less than 1,000 and no greater than 4,000, and the polymer exhibits at least one of the following features (i) to (iii): (i) having moieties derived from two or more types of the polyether polyols that are each different in terms of at least one of a weight average molecular weight and an oxyalkylene unit; (ii) having the moiety derived from the polyether polyol that includes two or more types of oxyalkylene units; and (iii) further having a moiety derived from a tri- or higher multi-functional isocyanate.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 16, 2015
    Inventors: Tomoya Miyata, Katsunori Suzuki, Takayuki Nose, Takato Mori
  • Patent number: 9006304
    Abstract: The present invention relates to aqueous polyurethane-polyurea dispersions which stabilize a foam—produced by mechanical expansion—without addition of further foam-stabilizing components in such a way that aqueous foams are obtainable which are stable both during temporary storage and during processing, so that they can be applied in the form of foam also by customary application methods and substantially retain the foam structure even after drying.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 14, 2015
    Assignee: Stahl International B.V.
    Inventor: Juergen Muenter
  • Patent number: 8997417
    Abstract: A door made of polyurethane, including a door body, the door body including a plurality of integrated plates stacked on one another for supporting. A method for preparing the door includes providing a mold, and spraying a parting agent inside the mold; heating the mold to a temperature of 30-70° C., spraying the parting agent, and placing a plurality of plates or a metal skeleton in the mold; mixing raw materials to obtain a mixture; injecting the mixture into the mold to cover the stacked plates, and curing for 30-90 min; demolding, transferring a product from the mold to a thermostatic chamber for shaping at a constant temperature; trimming uneven edges and surfaces of the product; and spraying a paint on the product.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: April 7, 2015
    Inventor: Zhongping Wang
  • Patent number: 9000062
    Abstract: Semi-rigid polyurethane foams having a density of 90 to 180 kg/m3 and a compressive strength of 20 to 95 kPa are produced by reacting a polyisocyanate with an isocyanate-reactive component that includes an o-toluenediamine initiated polyether polyol. These foams are particularly useful as composites for automotive interior components.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: April 7, 2015
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Rolf Albach, Monika Haselbach, Harald Fietz
  • Patent number: 9000118
    Abstract: Polymer-modified polyol, for use as a starting material for polyurethane foam, is made by reacting an olamine, such as triethanolamine, with an isocyanate in the presence of a metal organic catalyst. The catalyst is a metal salt of an organic acid and the viscosity of the polymer-modified polyol is at least 2250 mPa·s. In one embodiment the catalyst is of the formulat M(O.CO.R.CH3)2 where M is a metal and R is a carbon chain of 6 to 20 carbons. A metal salt of a monohydroxy fatty acid, particularly ricinoleic acid may be used.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: April 7, 2015
    Assignee: Fritz Nauer AG
    Inventors: Henri Mispreuve, Reinold Naescher, Kurt Schoenenberger, Johan Frei, Erik Vogel, Zacharias Grote
  • Patent number: 8993648
    Abstract: A polishing pad capable of maintaining a high level of dimensional stability during absorption of moisture or water includes a polishing layer including a polyurethane foam having fine cells, wherein the polyurethane foam includes a cured product of a reaction of an isocyanate-terminated prepolymer (A), a polymerized diisocyanate, and a chain extender, and the isocyanate-terminated prepolymer (A) includes an isocyanate monomer, a high molecular weight polyol (a), and a low molecular weight polyol. A method for manufacturing such a polishing pad includes mixing a first component containing an isocyanate-terminated prepolymer with a second component containing a chain extender and curing the mixture to form a polyurethane foam. The pad so made is used in the manufacture of semiconductor devices.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: March 31, 2015
    Assignee: Toyo Tire & Rubber Co., Ltd.
    Inventors: Yoshiyuki Nakai, Tsuyoshi Kimura, Atsushi Kazuno, Kazuyuki Ogawa, Tetsuo Shimomura
  • Publication number: 20150087738
    Abstract: The present invention typically provides one-component polyurethane grout compositions and more specially to grout composition useful for seepage control and quick stoppage of water leakage under high water pressure environment, wherein the composition comprises a isocyanate prepolymer and auxiliary components selected from a plasticizer, a silane coupling agent, a catalyst, a cell stabilizer, an anionic surfactant, a filler, a blowing agent or a mixture thereof. The invention also provides the isocyanate prepolymer composition, obtained by reacting a polyfunctional isocyanate, with a polyfunctional polyol comprising at least one polyether polyol containing relatively low amount of ethylene oxide units, and optionally other polyfunctional polyols such as polyester polyols, biorenewable polyols or a mixture thereof, and at least a monofunctional hydroxyl containing compound, wherein the NCO content of said prepolymer is 3%˜18%.
    Type: Application
    Filed: April 23, 2013
    Publication date: March 26, 2015
    Inventors: Xiaodong Wu, Yueping Dai, Zhi Peng
  • Publication number: 20150087739
    Abstract: An antimicrobial polyurethane foam that is formed from: a multi-functional isocyanate component; an aqueous polyol component reactive with the multi-functional isocyanate component; an antimicrobial metallic compound; and a complexing agent. The complexing agent is used to form a stable blend of the antimicrobial metallic compound with the polyol component. Exemplary complexing agents include amine compounds, ammonium-containing compounds and ammonia as well as combinations these compounds. The antimicrobial metallic compound can be a silver, zinc or copper compound. Desirably, the antimicrobial metallic compound is silver saccharinate. A process of making the antimicrobial polyurethane foam and stable blends used in the manufacture of the antimicrobial polyurethane foam are also disclosed.
    Type: Application
    Filed: December 1, 2014
    Publication date: March 26, 2015
    Inventors: Bhalchandra M. Karandikar, Bruce L. Gibbins
  • Publication number: 20150076400
    Abstract: This invention relates to novel polyol blends, a process for the production of foam with very low resistance to air flow from certain polyol blends and to the resultant foams produced from certain polyol blends. The polyol blends comprise one or more monofunctional polyethers having a hydroxyl number of less than 28; one or more polyether polyols having a hydroxyl number of 20 to 240 and containing at least 50% of copolymerized oxyethylene; one or more polyether polyols having a hydroxyl number of 47 to 300 and containing from 5 to 40% of copolymerized oxyethylene; and optionally, one or more polyether polyols having a hydroxyl number of 10 to 45. This process of the invention comprises reacting one or more polyisocyanates, with an isocyanate-reactive component in the presence of at least one catalyst, at least one surfactant and at least one blowing agent.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Inventors: Stanley L. Hager, Bruce Britt, Susan McVey, Micah Moore, Peter Uthe, Jack Reese
  • Publication number: 20150069810
    Abstract: A pressure-distributing foam structure for use in a seat application may he produced from a foam mixture comprising an ethylene oxide capped diol in a range of about 37 to about 96% weight. The foam structure may have a hardness at 25% deflection that varies within +/?150% in a temperature range of ?20° C. to 50° C. The foam structure has a hysteresis loss that varies within +/?40% in the temperature range of ?20° C. to 50° C. The pressure-distributing foam structure may be used in a seat component, such as a seat back, a seat cushion, and/or a head rest. A method of making the pressure-distributing foam structure may comprise mixing the ethylene oxide capped diol with at least one of a copolymer polyol and a base polyol.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Applicant: Johnson Controls Technology Company
    Inventors: Ryoko Yamasaki, Eugene Peiffer
  • Patent number: 8975306
    Abstract: A viscoelastic foam system is provided having an amine-based polyoxypropylene extended polyol to impart strength, recoverability and endurance to the foam, and an appropriately selected non-amine-based polyol to provide flexibility to the foam. The combination of amine-based propylene oxide extended polyol and non-amine-based polyol provides a viscoelastic semi-rigid foam with excellent impact and recovery properties, recovering to substantially 100% of its initial volume and shape following an impact, yet with sufficient rigidity and stiffness so that it is effective at absorbing multiple impacts. A method of making the above viscoelastic foam is also provided.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: March 10, 2015
    Assignee: Intellectual Property Holdings, LLC
    Inventor: Charles M. Milliren
  • Publication number: 20150057384
    Abstract: A method for producing polyurethane foams by reacting at least one organic isocyanate moiety, at least one polyol, a blowing agent consisting of halogen-containing (fluorine-containing) olefins and at least a siloxane of formula (I) R, R1, R2, R4, a, b, c, and d are defined herein, as well as compositions made by said method are described.
    Type: Application
    Filed: November 4, 2014
    Publication date: February 26, 2015
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Martin GLOS, Carsten SCHILLER, Christian EILBRACHT
  • Patent number: 8957123
    Abstract: A process for producing resilient, flexible polyurethane foams that function well in noise and vibration absorption applications for vehicle applications that are made from a blend of polyols (i) and an isocyanate (ii), wherein the blend of polyols (i) comprises a mixture of polyether polyols (i.a) that each has a hydroxyl equivalent weight of from 1200 to 3000 and at least 70% primary hydroxyl groups, from 5 to 80% by weight of the ethylene oxide-capped polypropylene oxides are nominally difunctional, from 0.5 to 20% by weight of the ethylene oxide-capped polypropylene oxides have a nominal functionality of four or higher, and the balance of the ethylene oxide-capped polypropylene oxides, but not less than 1.5% by weight thereof, are nominally trifunctional; an autocatalytic polyol (i.b) having a functionality in the range of 2 to 8 and a hydroxyl number in the range of 15 to 200, wherein said autocatalytic polyol compound comprising at least one tertiary amine group; and a low unsaturation polyol (i.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 17, 2015
    Assignee: Dow Global Technologies Inc
    Inventors: Issam Lazraq, Helmut Stegt, Allan James, Stephen R. Burks
  • Publication number: 20150031781
    Abstract: The present invention is directed to the use of a disalt of malic acid in the production of a polyurethane foam to lower the glass transition temperature of the polyurethane foam obtained, wherein the disalt of malic acid is added to the reaction mixture comprising at least a polyol component, an isocyanate component, a catalyst to catalyse urethane or isocyanurate bond formation, an optional blowing agent and optionally further additives, and also to a polyurethane foam having a glass transition temperature of ?20° C. to 15° C., which polyurethane foam is characterized in that it comprises disalts of malic acid or reaction products thereof with an isocyanate component, wherein the fraction accounted for by the disalts and the reaction products thereof with an isocyanate component is below 0.08 wt % based on the polyurethane foam.
    Type: Application
    Filed: February 8, 2013
    Publication date: January 29, 2015
    Applicant: EVONIK INDUSTRIES AG
    Inventors: Ruediger Landers, Roland Hubel
  • Patent number: 8937107
    Abstract: An embodiment of a closed-cell polymeric rigid foam may be made using a one-shot method and a reaction system that includes a hydrofluoroalkene physical blowing agent and a polyol mixture having an aminic polyol. The hydrofluoroalkene blowing agent has 3 to 5 carbon atoms and a boiling point between 10° C. and 40° C. at 1 atmosphere pressure. Embodiments of rigid foams may have high closed cell content and are particularly well suited for thermal insulation.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: January 20, 2015
    Assignee: Huntsman International LLC
    Inventors: Sachchida N. Singh, Jinhuang Wu, Alan J. Hamilton
  • Patent number: 8937108
    Abstract: A foam article for use in a seat cushion includes an open cell, polyurethane foam material that includes a base polyol; a crosslinker; an isocyanate; a surfactant; and water, that are reacted together to produce a seat cushion having dynamic and static performance specifications that are better than the performance characteristics for a traditional, high resilient material seat cushion, as well as other seating materials.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: January 20, 2015
    Assignee: Johnson Controls Technology Company
    Inventors: James T. McEvoy, Terrence M. McRoberts, Ryoko Yamasaki, William Li, Murray D. Metcalfe
  • Patent number: 8927614
    Abstract: The invention relates to a process for producing polyurethanes by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups, wherein the compounds b) having at least two hydrogen atoms which are reactive toward isocyanate groups comprise at least one polyether alcohol b1) which has been prepared by reaction of an aromatic amine b1a) with propylene oxide using an amine b1b) which is different from b1a) as catalyst.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: January 6, 2015
    Assignee: BASF SE
    Inventors: Marc Fricke, Markus Schütte, Sirus Zarbakhsh, Johann Klassen
  • Patent number: 8927613
    Abstract: The present invention relates to cellular polyisocyanate polyaddition products whose density to DIN EN ISO 845 is from 200 to 800 kg/m3, and also to prepolymer composed of at least one diisocyanate (a) and of at least one polyether alcohol (b), where the at least one polyether alcohol (b) comprises the following components: (b1) aliphatic polyether alcohols whose number-average molar mass is from 300 to 1000 g/mol, (b2) aliphatic polyether alcohols whose number-average molar mass is from 2000 to 10 000 g/mol, and (b3) aliphatic polyether alcohols whose number-average molar mass is from 10 000 to 100 000 g/mol, to a process for its production, to a cellular polyisocyanate polyaddition product thus produced, and to its use as damping elements in vehicle construction.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: January 6, 2015
    Assignee: BASF SE
    Inventors: Frank Prissok, Joern Duwenhorst, Michael Harms, Sven Lasai
  • Publication number: 20150004389
    Abstract: Embodiments of the invention provide for viscoelastic polyurethane foams. The foams are made from reaction system which includes (a) an isocyanate reactive component, (b) a isocyanate component, (c) one or more blowing agents, (d) a catalyst component, and (e) a silicone based surfactant. The isocyanate reactive component includes at least (i) from 25 to 80% by weight of at least one polyoxyethylene capped polyoxypropylene/polyoxyethylene polyol having a combined number average equivalent weight from 1300 to 1700, a polyoxyethylene percentage of between 75% and 95% by weight of the combined amounts of polyoxypropylene and polyoxyethylene, and a primary OH percentage of between 80 and 95% of the total number of OH groups of the polyoxyethylene capped polyoxypropylene/polyoxyethylene polyol, and (ii) from 5 to 30% by weight of the isocyanate reactive component of at least one low functionality polyol having a functionality of between 1.5 and 2.
    Type: Application
    Filed: September 20, 2012
    Publication date: January 1, 2015
    Inventors: Elisa Corinti, Andrea Benvenuti, Alessio Sabadini, Jean-Paul Masy, Francois M. Casati, Brian Dickie
  • Patent number: 8916620
    Abstract: A method for improving the thermal stability of polyurethane-modified polyisocyanurate (PU-PIR) foams is provided. Moreover, a process for producing the PU-PIR foams exhibiting improved thermal stability is provided. The foams have incorporated therein a high molecular weight ammonium polyphosphate (APP). APP is employed as a partial or complete substitute for flame retardants conventionally employed in PU-PIR foams. The foams of the invention exhibit excellent and improved thermal stability characteristics as compared to foams to which no APP has been added.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: December 23, 2014
    Assignee: Stepan Company
    Inventors: Warren A. Kaplan, Angelo R. Gabbianelli, David J. Norberg
  • Patent number: 8912363
    Abstract: Provided is a chlorinated polyether which has excellent solubility in solvents and excellent thermal stability, has the excellent effect of improving the adhesion of coating materials, inks, and adhesives to polyolefins, can be expected to be usable as a flame retardant, and is useful also as a novel starting material for polyurethanes. The polyether is a novel chlorinated polyether containing, as a repeating unit, at least one of the chlorinated-ether residue represented by the following formula (1) and the chlorinated-ether residue represented by the following formula (2). Also provided is a novel polyurethane obtained therefrom.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: December 16, 2014
    Assignee: Tosoh Corporation
    Inventors: Megumi Okada, Mayuko Okada, Yuko Okada