Ethylenic Reactant Is Acyclic Hydrocarbon Patents (Class 525/319)
-
Patent number: 10071939Abstract: The present invention relates to a method of forming mixed xylenes from a heavy reformate using a dealkylation-transalkylation system that includes the step of introducing a heavy reformate containing methyl ethyl benzenes and tri-methyl benzenes and sufficiently free of toluene into the dealkylation stage with a hydrogen-containing material such that the heavy reformate and the hydrogen-containing material intermingle and contact a hydrodealkylation catalyst. The dealkylation-transalkylation system includes dealkylation stages, non-aromatic product gas separations and transalkylation stages. The BTEX component toluene forms from the reaction of methyl ethyl benzenes and hydrogen in the presence of the hydrodealkylation catalyst. The method also includes the step of introducing a dealkylated heavy reformate into the transalkylation stage such that the dealkylated heavy reformate contacts a transalkylation catalyst, forming a transalkylation stage product mixture that includes mixed xylenes.Type: GrantFiled: March 3, 2015Date of Patent: September 11, 2018Assignee: SAUDI ARABIAN OIL COMPANYInventor: Raed Abudawoud
-
Patent number: 9403926Abstract: The present invention is directed to a process of polymerizing propylene in at least three stages. In the first, and optionally in the second, polymerization stage propylene, ethylene and at least one alpha-olefin having from 4 to 10 carbon atoms are introduced into the polymerization reactors as fresh monomer feeds. In the third polymerization stage propylene and optionally ethylene is introduced as fresh monomer feed.Type: GrantFiled: December 19, 2013Date of Patent: August 2, 2016Assignee: BOREALIS AGInventors: Kauno Alastalo, Johanna Lilja, Pauli Leskinen
-
Patent number: 8993681Abstract: Provided is a dendritic ethylene polymer. The polymer is a dendritic polymer of an ethylene/alpha-olefin-diene copolymer and a vinyl-terminated polyethylene. There is also provided a process for making a dendritic ethylene polymer. The process includes the steps of preparing a dendritic ethylene polymer by reacting ethylene/alpha-olefin-diene copolymer with vinyl-terminated polyethylene in the presence of a radical source. There is also provided a blend and a blown film that include the dendritic ethylene polymer.Type: GrantFiled: July 14, 2011Date of Patent: March 31, 2015Assignee: ExxonMobil Research and Engineering CompanyInventors: Andy H. Tsou, Shuji Luo, Donna J. Crowther, Gabor Kiss, Johannes M. Soulages, Pradeep P. Shirodkar
-
Patent number: 8969483Abstract: A photoresist material comprising a polymer with at least two acrylate derivatives incorporated therein, and a photo-acid generator for generating an acid by exposure, wherein at least one of the two acrylate derivatives incorporated therein comprises a norbornyl moiety having a lactone structure, and at least one of the two acrylate derivatives comprises an ester-substituted tetracyclododecyl moiety.Type: GrantFiled: November 28, 2012Date of Patent: March 3, 2015Assignee: NEC CorporationInventors: Katsumi Maeda, Shigeyuki Iwasa, Kaichiro Nakano, Etsuo Hasegawa
-
Patent number: 8951637Abstract: The present invention provides a method for producing water-absorbent resin particles which show an excellent water absorption rate and high equilibrium swelling capacity and which have an appropriate particle size to be excellent in handleability, and water-absorbent resin particles obtained by the method.Type: GrantFiled: November 24, 2010Date of Patent: February 10, 2015Assignee: Sumitomo Seika Chemicals Co., Ltd.Inventors: Atsushi Heguri, Kenji Tanimura, Yuichi Onoda
-
Patent number: 8940839Abstract: This invention relates to a composition comprising a multiblock polyolefin represented by the formula: PO—C(R11)(R12)—C(R13)?C(R14)—C(R15)(R16)—PO*, or isomers thereof, wherein R11, R12, R13, R14, R15, and R16, are each independently a substituted or unsubstituted C1 through C4 hydrocarbyl group or a hydrogen; PO and PO* are polyolefins; PO and PO* are each independently a substituted or unsubstituted hydrocarbyl group having 9 to 4000 carbon atoms, provided that at least one of PO and PO* are C20 or greater, said polyolefin having: 1) an internal unsaturation as shown by the 13C NMR peak at between about 128 and about 132 ppm; 2) an Mn ratio “Z”=0.1 to 10 where Z is the Mn (as determined by 13C NMR) divided by Mn (as determined according to Gel Permeation Chromotography using polystyrene standards); and 3) optionally, from 0.3(J) and 0.Type: GrantFiled: March 25, 2011Date of Patent: January 27, 2015Assignee: ExxonMobil Chemical Patents Inc.Inventors: John R. Hagadorn, Charles J. Ruff, Renuka N. Ganesh, Patrick Brant
-
Patent number: 8900707Abstract: The present invention provides a method for producing water-absorbent resin particles which show an excellent water absorption rate and high equilibrium swelling capacity and which have an appropriate particle size to be excellent in handleability, and water-absorbent resin particles obtained by the method.Type: GrantFiled: November 24, 2010Date of Patent: December 2, 2014Assignee: Sumitomo Seika Chemicals Co., Ltd.Inventors: Atsushi Heguri, Kenji Tanimura, Yuichi Onoda
-
Publication number: 20140248067Abstract: A modified polymer body 1 has a polymer body 2 composed of a polymer material containing a carbon-carbon double bond and first binding parts 3 and second binding parts 4 bound to the surface of the polymer body 2. The first binding parts 3 are such that an organic group 6 having a functional group is bound via an isocyanuric acid skeleton 5 to the surface of the polymer body 2. The second binding parts 4 are such that an organic group 7 having a functional group is directly bound to the surface of the polymer body 2 without interposing an isocyanuric acid skeleton 5.Type: ApplicationFiled: May 15, 2014Publication date: September 4, 2014Applicant: TOKAI RUBBER INDUSTRIES, LTD.Inventors: Yosuke Hayashi, Shuichi Egawa, Yasuyuki Hayasaki
-
Patent number: 8802783Abstract: A photoresist material comprising a polymer with at least two acrylate derivatives incorporated therein, and a photo-acid generator for generating an acid by exposure, wherein at least one of the two acrylate derivatives incorporated therein comprises a norbornyl moiety having a lactone structure, and at least one of the two acrylate derivatives comprises an ester-substituted tetracyclododecyl moiety.Type: GrantFiled: November 28, 2012Date of Patent: August 12, 2014Assignee: NEC CorporationInventors: Katsumi Maeda, Shigeyuki Iwasa, Kaichiro Nakano, Etsuo Hasegawa
-
Patent number: 8785551Abstract: A composition for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.Type: GrantFiled: December 8, 2010Date of Patent: July 22, 2014Assignee: Dow Global Technologies LLCInventors: Daniel J. Arriola, Edmund M. Carnahan, Yunwa Wilson Cheung, David D. Devore, David D. Graf, Phillip D. Hustad, Roger L. Kuhlman, Colin Li Pi Shan, Benjamin C. Poon, Gordon R. Roof, James C. Stevens, Pamela J. Stirn, Timothy T. Wenzel
-
Publication number: 20140200313Abstract: A process for the preparation by ethylene polymerization of at least one dialkyl magnesium compound of formula R—(CH2—CH2)n—Mg—(CH2—CH2)m—R? in which R and R?, identical or different, represent aryl, benzyl, allyl or alkyl groups and in which the integers n and m, identical or different, represent average —CH2—CH2— chain formation numbers greater than 1, the process including a single stage of mixing the following components: at least one ligand or one ligand precursor, at least one rare earth salt, at least one dialkyl magnesium compound of formula R—Mg—R?, and ethylene, in a medium allowing contact between the components of the above mixture.Type: ApplicationFiled: July 20, 2012Publication date: July 17, 2014Applicant: UNIVERSITE DE LILLE 1 SCIENCE ET TECHNOLOGIESInventors: Thomas Chenal, Andre Mortreux, Marc Visseaux
-
Patent number: 8754170Abstract: The invention relates to a multiblock polyolefin, and methods to make a multiblock polyolefin, represented by the formula (X) or (XII): PO—C(R11)(R12)—C(R13)?C(R14)—C(O)—O—((CR15R16)z—(CR17R18)m—O)n—R19??(X) or PO—C(R11)(R12)—C(R13)?C(R14)—C(O)—O—((CR15R16)z—(CR17R18)mO)n—C(O)—C(R14)?C(R13)—C(R12)(R11)—PO??(XX), wherein R11, R12, R13, and R14 are each independently a substituted or unsubstituted C1 through C4 hydrocarbyl group or a hydrogen; R15, R16, R17, and R18 are each independently a substituted or unsubstituted C1 through C4 hydrocarbyl group or a hydrogen; R19 is a C1 to a C20 substituted or unsubstituted hydrocarbyl group or a hydrogen; z is ?1 to about 5; m is ?1 to about 5; PO is a polyolefin hydrocarbyl group comprising 10 to 4000 carbon atoms; and n is from 1 to about 10,000.Type: GrantFiled: April 23, 2013Date of Patent: June 17, 2014Assignee: ExxonMobil Chemical Patents Inc.Inventors: John R. Hagadorn, Patrick Brant
-
Patent number: 8710143Abstract: A composition for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.Type: GrantFiled: July 31, 2012Date of Patent: April 29, 2014Assignee: Dow Global Technologies LLCInventors: Daniel J. Arriola, Edmund M. Carnahan, Yunwa Wilson Cheung, David D. Devore, David D. Graf, Phillip D. Hustad, Roger L. Kuhlman, Colin Li Pi Shan, Benjamin C. Poon, Gordon R. Roof, James C. Stevens, Pamela J. Stirn, Timothy T. Wenzel
-
Patent number: 8609779Abstract: The invention relates to functionalized interpolymers derived from base olefin interpolymers, which are prepared by polymerizing one or more monomers or mixtures of monomers, such as ethylene and one or more comonomers, to form an interpolymer products having unique physical properties. The functionalized olefin interpolymers contain two or more differing regions or segments (blocks), resulting in unique processing and physical properties.Type: GrantFiled: November 21, 2012Date of Patent: December 17, 2013Assignee: Dow Global Technologies LLCInventors: William J. Harris, John D. Weaver, Brian W. Walther, Stephen F. Hahn, Yunwa W. Cheung, Pankaj Gupta, Thoi H. Ho, Kenneth N. Reichek, Selim Yalvac, Teresa P. Karjala, Benjamin R. Rozenblat, Cynthia L. Rickey
-
Publication number: 20130261250Abstract: The present invention relates to arborescent polymers comprising isoolefins and styrenic monomers, as well as processes for making same. In particular, the invention relates to highly branched block copolymers comprising an arborescent core with a high glass-transition temperature (Tg) and branches attached to the core terminated in polymer endblock segments with a low Tg. The copolymers of the invention desirably exhibit thermoplastic elastomeric properties and, in one embodiment, are desirably suited to biomedical applications.Type: ApplicationFiled: April 8, 2011Publication date: October 3, 2013Applicant: LANXESS INC.Inventors: Goran Stojcevic, Steven Teertstra, Lorenzo Ferrari, Kevin Kulbaba, Greg Davidson
-
Patent number: 8481658Abstract: A method for transitioning from a Ziegler-Natta to a Phillips catalyst system for the olefin polymerization reaction in one reactor, preferably a gas phase reactor, is described. The method comprises the steps of a) discontinuing a first olefin polymerization reaction performed in the presence of the Ziegler-Natta catalyst system; b) performing a second olefin polymerization reaction in the presence of a further catalyst system comprising catalyst components (A) and (B) producing, respectively, a first and a second polyolefin fraction, wherein the Mw of the first polyolefin fraction is less than the Mw of the second polyolefin fraction and the initial activity of catalyst component (A) exceeds the initial activity of catalyst component (B); and c) performing a third olefin polymerization reaction the presence of the Phillips catalyst system.Type: GrantFiled: December 17, 2009Date of Patent: July 9, 2013Assignee: Basell Polyolefine GmbHInventors: Gerhardus Meier, Shahram Mihan
-
Publication number: 20130102711Abstract: The invention relates to block polymers, for example, arborescent copolymer compounds, and to methods of making and purifying such compounds. In one embodiment, the invention relates to arborescent polymer compounds that contain one or more styrene polymeric blocks in combination with one or more isobutylene polymeric blocks. In another embodiment, the invention relates to methods for purifying arborescent polymer compounds that contain at least one styrene polymeric block in combination with at least one isobutylene polymeric block.Type: ApplicationFiled: December 10, 2012Publication date: April 25, 2013Applicant: The University of AkronInventor: The University of Akron
-
Patent number: 8415433Abstract: A process for producing polymer microparticles by suspension polymerization of a vinyl-based monomer in which, when polymer microparticles are produced by suspension polymerization of a vinyl-based monomer, a macromonomer having a radically polymerizable unsaturated group at a terminus of a vinyl-based monomer-derived polymer is used as a dispersion stabilizer.Type: GrantFiled: July 5, 2007Date of Patent: April 9, 2013Assignee: Toagosei Co., Ltd.Inventors: Hideo Matsuzaki, Akihiro Gotou, Tomotaka Mizuno, Michihiro Kaai
-
Patent number: 8415434Abstract: A polymerization process and the resulting polymer composition, said process comprising polymerizing one or more addition polymerizable monomers and a polymerizable shuttling agent in the presence of at least one addition polymerization catalyst comprising a metal compound or complex and a cocatalyst under conditions characterized by the formation of a branched polymer, preferably comprising pseudo-block molecular architecture.Type: GrantFiled: December 23, 2010Date of Patent: April 9, 2013Assignee: Dow Global Technologies LLCInventors: Daniel J. Arriola, Edmund M. Carnahan, David D. Devore, Phillip D. Hustad, Brian A. Jazdzewski, Roger L. Kuhlman, Francis J. Timmers, Timothy T. Wenzel
-
Publication number: 20130008506Abstract: A resin composition comprising a hydrogenated block copolymer which is used for a resin composition for encapsulating a solar cell is provided. The hydrogenated block copolymer can be obtained by hydrogenating 90% or more of the total unsaturated bonds of block copolymers which comprise at least two polymer blocks [A] having an aromatic vinyl compound-origin repeating unit as the main component and at least one polymer block [B] comprising a chain-type conjugated diene compound-origin repeating unit as the main component and in which the ratio (wA:wB) of the weight fraction (wA) of the total polymer blocks [A], relative to the total block copolymer, to the weight fraction (wB) of the total polymer block [B] is 20:80 to 60:40. The resin composition has a tensile elasticity (at 23° C.) of 1.Type: ApplicationFiled: February 1, 2011Publication date: January 10, 2013Applicant: ZEON CORPORATIONInventors: Naoki Tanahashi, Teiji Kohara
-
Patent number: 8318864Abstract: The invention relates to functionalized interpolymers derived from base olefin interpolymers, which are prepared by polymerizing one or more monomers or mixtures of monomers, such as ethylene and one or more comonomers, to form an interpolymer products having unique physical properties. The functionalized olefin interpolymers contain two or more differing regions or segments (blocks), resulting in unique processing and physical properties.Type: GrantFiled: February 21, 2011Date of Patent: November 27, 2012Assignee: Dow Global Technologies LLCInventors: William J. Harris, John D. Weaver, Brian W. Walther, Stephen F. Hahn, Yunwa W. Cheung, Pankaj Gupta, Thoi H. Ho, Kenneth N. Reichek, Selim Yalvac, Teresa P. Karjala, Benjamin R. Rozenblat, Cynthia L. Rickey
-
Publication number: 20120245290Abstract: This invention relates to a composition comprising a multiblock polyolefin represented by the formula: PO—C(R11)(R12)—C(R13)?C(R14)—C(R15)(R16)—PO*, or isomers thereof, wherein R11, R12, R13, R14, R15, and R16, are each independently a substituted or unsubstituted C1 through C4 hydrocarbyl group or a hydrogen; PO and PO* are polyolefins; PO and PO* are each independently a substituted or unsubstituted hydrocarbyl group having 9 to 4000 carbon atoms, provided that at least one of PO and PO* are C20 or greater, said polyolefin having: 1) an internal unsaturation as shown by the 13C NMR peak at between about 128 and about 132 ppm; 2) an Mn ratio “Z”=0.1 to 10 where Z is the Mn (as determined by 13C NMR) divided by Mn (as determined according to Gel Permeation Chromotography using polystyrene standards); and 3) optionally, from 0.3(J) and 0.Type: ApplicationFiled: March 25, 2011Publication date: September 27, 2012Inventors: John R. Hagadorn, Charles J. Ruff, Renuka N. Ganesh, Patrick Brant
-
Patent number: 8268425Abstract: The invention relates to a polyethylene molding composition which has a multimodal molar mass distribution and is particularly suitable for producing external sheathing of electric or information transmission cables. The molding composition has a density at a temperature of 23° C. in the range from 0.94 to 0.95 g/cm3 and an MFI190/5 in the range from 1.2 to 2.1 dg/min. It comprises from 45 to 55% by weight of a low molecular weight ethylene homopolymer A, from 30 to 40% by weight of a high molecular weight copolymer B of ethylene and another olefin having from 4 to 8 carbon atoms and from 10 to 20% by weight of an ultra high molecular weight ethylene copolymer C. The invention also relates to an electric or information transmission cable having an external sheath of the polyethylene molding composition which has a thickness in the range from 0.2 to 3 cm.Type: GrantFiled: November 17, 2005Date of Patent: September 18, 2012Assignee: Basell Polyolefine GmbHInventors: Heinz Vogt, Joachim Berthold
-
Patent number: 8217120Abstract: The present invention provides functionalized styrene oligomers and polymers prepared by Friedel-Crafts chemistry, as well as epoxidation products thereof. In particular, the invention provides allyl functional TPE. The invention also provides methods for making the functionalized styrene oligomers and polymers of the invention as well as epoxidation products thereof, compositions containing the same, and methods for using the functionalized and epoxified styrene oligomers that take advantage of the unique properties of the compounds and compositions of the invention.Type: GrantFiled: August 13, 2009Date of Patent: July 10, 2012Assignee: Designer Molecules, Inc.Inventor: Stephen M. Dershem
-
Patent number: 8211982Abstract: The invention relates to functionalized interpolymers derived from base olefin interpolymers, which are prepared by polymerizing one or more monomers or mixtures of monomers, such as ethylene and one or more comonomers, to form an interpolymer products having unique physical properties. The functionalized olefin interpolymers contain two or more differing regions or segments (blocks), resulting in unique processing and physical properties.Type: GrantFiled: February 21, 2011Date of Patent: July 3, 2012Assignee: Dow Global Technologies LLCInventors: William J. Harris, John D. Weaver, Brian W. Walther, Stephen F. Hahn, Yunwa W. Cheung, Pankaj Gupta, Thoi H. Ho, Kenneth N. Reichek, Selim Yalvac, Teresa P. Karjala, Benjamin R. Rozenblat, Cynthia L. Rickey
-
Publication number: 20120157633Abstract: A process for making a substantially saturated dendritic hydrocarbon polymer. The process has the following steps: (a) polymerizing an amount of a first alkadiene monomer under anionic conditions in the presence of a first organic monolithium initiator to produce a linear polyalkadiene having a lithiated chain end; (b) reacting the linear polyalkadiene with an amount of a second organic monolithium initiator in the presence of tetramethylethylene diamine to form a multilithiated polyalkadiene; (c) reacting the multilithiated polyalkadiene with an amount of a second alkadiene monomer to form a branched polyalkadiene; (d) repeating steps (b) and (c) with the branched polyalkadiene one or more times to prepare a dendritic polyalkadiene; and (e) hydrogenating the dendritic polyalkadiene to form the substantially saturated dendritic hydrocarbon polymer.Type: ApplicationFiled: December 19, 2011Publication date: June 21, 2012Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: David John Lohse, Nikos Hadjichristidis, Andy Haishung Tsou, Pamela J. Wright, Suzzy Chen Hsi Ho, Paul Edward Schuenzel
-
Patent number: 8198374Abstract: A composition for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.Type: GrantFiled: December 8, 2010Date of Patent: June 12, 2012Assignee: Dow Global Technologies LLCInventors: Daniel J. Arriola, Edmund M. Carnahan, Yunwa Wilson Cheung, David D. Devore, David D. Graf, Phillip D. Hustad, Roger L. Kuhlman, Colin Li Pi Shan, Benjamin C. Poon, Gordon R. Roof, James C. Stevens, Pamela J. Stirn, Timothy T. Wenzel
-
Publication number: 20120130018Abstract: The present disclosure provides a polymerization process for the production of a high melt flow propylene impact copolymer. The process includes contacting an active propylene-based polymer having a melt flow rate greater than about 100 g/10 min with one or more olefins in a polymerization reactor to form the propylene impact copolymer with a melt flow rate greater than about 60 g/10 min. The production of the high melt flow propylene impact copolymer may occur in one or more polymerization reactors, utilizing standard hydrogen concentration, and no visbreaking.Type: ApplicationFiled: February 23, 2009Publication date: May 24, 2012Inventors: William G. Sheard, Jeffrey D. Goad, Linfeng Chen
-
Publication number: 20120101235Abstract: This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 1 to 25 mol %, prior to use as an activator, where the mol % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the amount of the unknown species is determined by the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.Type: ApplicationFiled: October 18, 2011Publication date: April 26, 2012Inventors: Donna J. CROWTHER, David M. Fiscus
-
Publication number: 20120083523Abstract: According to an aspect of the present invention, implantable or insertable medical devices are provided, which contain one or more polymeric regions. These polymeric regions, in turn, contain one or more polymers, at least one of which is a copolymer that includes the following: (a) one or more unsaturated hydrocarbon monomer species and (b) one or more heteroatom-containing monomer species.Type: ApplicationFiled: December 8, 2011Publication date: April 5, 2012Applicant: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Robert E. RICHARD, Marlene C. SCHWARZ, Rudolf FAUST
-
Patent number: 8142929Abstract: A positive electrode for non-aqueous electrolyte battery includes a positive electrode active material layer containing at least a positive electrode active material and a binder and a coating layer containing a polymer provided on the positive electrode active material layer, wherein the polymer has a block chain A composed of a random copolymer containing a repeating unit (I) represented by formula (I) and a repeating unit (II) represented by formula (II) and a block chain B containing a repeating unit (III) represented by formula (III) wherein R1-R3, R4a, R4b, R5-R13 are as defined herein.Type: GrantFiled: May 16, 2011Date of Patent: March 27, 2012Assignees: Sanyo Electric Co., Ltd., Nippon Soda Co., Ltd.Inventors: Nobuhiro Sakitani, Naoki Imachi, Atsushi Kaizuka, Takeshi Niitani, Masato Amaike
-
Publication number: 20110301281Abstract: The present invention relates to arborescent polymers and to a process for making same. In one embodiment, the present invention relates to arborescent polymers formed from at least one inimer and at least one isoolefin that have been end-functionalized with a polymer or copolymer having a low glass transition temperature (Tg), and to a process for making such arborescent polymers. In another embodiment, the present invention relates to arborescent polymers formed from at least one inimer and at least one isoolefin that have been end-functionalized with less than about 5 weight percent end blocks derived from a polymer or copolymer having a high glass transition temperature (Tg), and to a process for making such arborescent polymers.Type: ApplicationFiled: August 16, 2011Publication date: December 8, 2011Applicant: LANXESS, INC.Inventors: Gabor Kaszas, Kevin Kulbaba
-
Patent number: 8058351Abstract: A process for producing low molecular weight polymers, the process comprising partially hydrogenating an unsaturated polymer to form a partially hydrogenated polymer, and reacting the partially hydrogenated polymer with an acyclic alkene in the presence of a metathesis catalyst.Type: GrantFiled: May 19, 2006Date of Patent: November 15, 2011Assignee: Bridgestone CorporationInventors: James Pawlow, James Hall, Jason Poulton
-
Patent number: 8030414Abstract: The invention relates to novel polymers or oligomers containing at least sulfinate groups (P—(SO2)nX, X=1-(n=1), 2-(n=2) or 3-(n=3) valent metal cation or H+ or ammonium ion NR4+ where R=alkyl, aryl, H), which are obtained by completely or partially reducing polymers or oligomers containing at least SO2Y-groups (Y?F, Cl, Br, I, OR, NR2 (R=alkyl and/or aryl and/or H), N-imidazolyl, N-pyrazolyl) by means of suitable reducing agents in a suspension or in a solution form. Polymer and polymer(blend)membranes which are obtained by further reacting the received sulfinated polymers, especially by alkylation of the sulfinate groups with mono- di- or oligo functional electrophiles. The invention further relates to methods for producing the sulfinated polymers and for further reacting the sulfinated polymers with electrophiles by S-alkylation.Type: GrantFiled: November 26, 2008Date of Patent: October 4, 2011Inventors: Thomas Haring, Jochen Kerres, Wei Zhang
-
Publication number: 20110230620Abstract: A catalyst composition comprising a polymer functionalized with a ligand for binding a transition metal containing compound to form a transition metal complex, wherein said functionalized polymer has a number average molecular weight of about 5,000 to 30,000 g/mol and a polydispersity index of about 1.0 to 2.0. The catalyst is used in a hydroformylation reaction, preferably one in which the liquid phase has been volumetrically expanded with a compressed gas, is readily recyclable using nanofiltration.Type: ApplicationFiled: November 16, 2009Publication date: September 22, 2011Inventors: Jon Tunge, Bala Subramaniam, Jing Fang, Ranjan Jana
-
Patent number: 8012558Abstract: Release agent more particularly for an adhesive with an ethylene multi-block copolymer, the ethylene multi-block copolymer being composed of hard segment blocks, comprising at least 95% (w/w) ethylene and a comonomer, and of soft segment blocks, comprising ethylene and a comonomer, the fraction of comonomer in the soft segment blocks being between 10 and 20 mol %, and the fraction of the hard segment blocks in the ethylene multi-block copolymer being not more than 45% (w/w).Type: GrantFiled: August 12, 2008Date of Patent: September 6, 2011Assignee: tesa SEInventor: Nicole Behrens
-
Publication number: 20110150965Abstract: According to one aspect of the invention, a method of forming a medical device is provided, which includes: (a) contacting a substrate with a solution that contains (i) one or more types of polymers, (ii) a solvent that contains one or more types of solvent species, and (iii) one or more optional agents, for example, one or more therapeutic agents, among others; and (b) removing the solvent from the solution, thereby forming a polymeric layer on the substrate. The composition of the solution is changed over the course of forming the polymeric layer. In another aspect of the invention, a medical device is provided, which includes a substrate and a polymeric layer over the substrate. The polymeric layer contains a copolymer that contains differing first and second monomers. The lower surface of the polymeric layer contacting the substrate has a surface concentration of the first monomer relative to the second monomer that is higher than that of the upper surface of the polymeric layer opposite the substrate.Type: ApplicationFiled: February 28, 2011Publication date: June 23, 2011Applicant: Boston Scientific Scimed, Inc.Inventors: Derek Sutermeister, Jay Rassat, James Anderson
-
Patent number: 7893166Abstract: Embodiments of the invention provide a class of ethylene/?-olefin block interpolymers. The ethylene/?-olefin interpolymers are characterized by an average block index, ABI, which is greater than zero and up to about 1.0 and a molecular weight distribution, Mw/Mn, greater than about 1.3. Preferably, the block index is from about 0.2 to about 1. In addition or alternatively, the block ethylene/?-olefin interpolymer is characterized by having at least one fraction obtained by Temperature Rising Elution Fractionation (“TREF”), wherein the fraction has a block index greater than about 0.3 and up to about 1.0 and the ethylene/?-olefin interpolymer has a molecular weight distribution, Mw/Mn, greater than about 1.3.Type: GrantFiled: September 11, 2009Date of Patent: February 22, 2011Assignee: Dow Global Technologies, Inc.Inventors: Colin Li Pi Shan, Lonnie G. Hazlitt, Yunwa Wilson Cheung, Benjamin C. Poon, Phillip D. Hustad, Roger L. Kuhlman, Edmund M. Carnahan, Xiao Hua Qiu, Angela N. Taha
-
Publication number: 20110021712Abstract: The object of the present invention is to provide a process for producing a high-quality polymer microparticle having uniform particle size of the order of several micrometers to tens of micrometers by inverse suspension polymerization at high productivity while keeping excellent dispersion stability without causing aggregation among particles. The process is one for the production of polymer microparticles by inverse polymerization of a vinyl monomer and is characterized in that the inverse suspension polymerization is conducted dividing at least two steps, an oil-soluble oxidizing agent and a water-soluble reducing agent are used as a polymerization initiator, and the oil-soluble oxidizing agent is fed after the water-soluble reducing agent is fed.Type: ApplicationFiled: January 20, 2009Publication date: January 27, 2011Applicant: Toagosei Co., Ltd.Inventors: Akihiro Gotou, Hideo Matsuzaki
-
Patent number: 7872071Abstract: The invention relates to a polyethylene molding composition which has a multimodal molar mass distribution and is particularly suitable for producing protective coatings on steel pipes. The molding composition has a density at a temperature of 23° C. in the range from 0.94 to 0.95 g/cm3 and an MFI190/5 in the range from 1.2 to 2.1 dg/min. It comprises from 45 to 55% by weight of a low molecular weight ethylene homopolymer A, from 30 to 40% by weight of a high molecular weight copolymer B of ethylene and another olefin having from 4 to 8 carbon atoms and from 10 to 20% by weight of an ultra high molecular weight ethylene copolymer C.Type: GrantFiled: November 17, 2005Date of Patent: January 18, 2011Assignee: Basell Polyolefine GmbHInventors: Joachim Berthold, Ludwig Böhm, Heinz Vogt
-
Patent number: 7868097Abstract: A hybrid polymer has a structure in which a polyolefin segment and a polar polymer segment are connected not via a bonding group containing a heteroatom. A method of the invention produces the hybrid polymer with industrial advantages. The hybrid polymer includes a polyolefin segment (A) and a polar polymer segment (B), the polar polymer segment being obtained by radical polymerization of a radically polymerizable monomer.Type: GrantFiled: February 21, 2006Date of Patent: January 11, 2011Assignee: Mitsui Chemicals, Inc.Inventors: Hideyuki Kaneko, Shinichi Kojoh, Nobuo Kawahara, Shingo Matsuo, Tomoaki Matsugi, Norio Kashiwa
-
Patent number: 7858707Abstract: A polymerization process and the resulting polymer composition, said process comprising polymerizing one or more addition polymerizable monomers and a polymerizable shuttling agent in the presence of at least one addition polymerization catalyst comprising a metal compound or complex and a cocatalyst under conditions characterized by the formation of a branched polymer, preferably comprising pseudo-block molecular architecture.Type: GrantFiled: September 14, 2006Date of Patent: December 28, 2010Assignee: Dow Global Technologies Inc.Inventors: Daniel J. Arriola, Edmund M. Carnahan, David D. Devore, Phillip D. Hustad, Brian A. Jazdzewski, Roger L. Kuhlman, Francis J. Timmers, Timothy T. Wenzel
-
Patent number: 7858706Abstract: A composition for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.Type: GrantFiled: March 17, 2005Date of Patent: December 28, 2010Assignee: Dow Global Technologies Inc.Inventors: Daniel J. Arriola, Edmund M. Carnahan, Yunwa Wilson Cheung, David D. Devore, David D. Graf, Phillip D. Hustad, Roger L. Kuhlman, Colin Li Pi Shan, Benjamin C. Poon, Gordon R. Roof, James C. Stevens, Pamela J. Stirn, Timothy T. Wenzel
-
Publication number: 20100197865Abstract: A propylene-ethylene-butene block copolymer is provided which includes from 60 to 85% by weight of a polypropylene portion and from 15 to 40% by weight of a propylene-ethylene-butene random copolymer portion, wherein the copolymer satisfies the requirements (1) and (2) given below. In addition, a molded article including such a propylene-ethylene-butene block copolymer is provided. (1) The random copolymer portion includes a propylene-ethylene random copolymer component (EP) and a propylene-ethylene-butene random copolymer component (EPB) and the copolymer component (EP) has an intrinsic viscosity of from 1.5 to 8 dl/g and an ethylene unit content of from 20 to 50% by weight, and the copolymer component (EPB) has an intrinsic viscosity of from 0.5 to 8 dl/g, an ethylene unit content of from 47 to 77% by weight and a butene unit component of from 3 to 33% by weight and the total of the ethylene unit content and the butene unit content is from 50 to 80% by weight.Type: ApplicationFiled: August 29, 2006Publication date: August 5, 2010Applicant: SUMITOMO CHEMICAL COMPANY, LIMITEDInventors: Hideki Oshima, Takashi Sanada, Kazuki Wakamatsu
-
Publication number: 20100167058Abstract: A process for producing a heterophasic copolymer is provided. The process includes introducing an antifoulant to a second polymerization reactor which operates in series with a first polymerization reactor. The antifoulant may be a multicomponent antifoulant and/or a coating agent. Provision of either antifoulant enables the production of a heterophasic copolymer with an Fc value from about 10% to about 50% by inhibiting reactor fouling during polymerization.Type: ApplicationFiled: December 21, 2009Publication date: July 1, 2010Inventors: Jan W. Van Egmond, Roger B. Painter, Zuzanna Kulik, Joel D. Wieliczko
-
Publication number: 20100120931Abstract: A pressure sensitive adhesive formed from a blend of an acrylate polymer having at least one crosslinkable functional group, and a liquid oligomer having at least one crosslinkable functional group, wherein at least one of the acrylate polymer and the oligomer is crosslinked in the presence of the other.Type: ApplicationFiled: March 20, 2008Publication date: May 13, 2010Applicant: AVERY DENNISON CORPORATIONInventors: Michael J. Zajaczkowski, Christopher Lee Lester
-
Publication number: 20100108357Abstract: The present invention relates to a crosslinkable polymer composition comprising an unsaturated polyolefin having a total amount of carbon-carbon double bonds/1000 carbon atoms of at least 0.38, and at least one crosslinking agent being a carbon-carbon initiator that is free of peroxide groups and capable of thermally decomposing into carbon-based free radicals by breaking at least one carbon-carbon single bond, such as 3,4-dimethyl-3,4-diphenylhexane.Type: ApplicationFiled: December 19, 2007Publication date: May 6, 2010Applicant: BOREALIS TECHNOLOGY OYInventors: Annika Smedberg, Bill Gustafsson
-
Patent number: 7678860Abstract: The present invention provides a polymer solid electrolyte excellent in thermal properties, physical properties and ion conductivity and being close to practical level; especially, a totally solid electrolyte and a composition for producing the same.Type: GrantFiled: January 23, 2004Date of Patent: March 16, 2010Assignee: Nippon Soda Co., Ltd.Inventors: Hiroo Muramoto, Takeshi Niitani, Koichiro Aoyagi
-
Publication number: 20100041832Abstract: The present invention provides functionalized styrene oligomers and polymers prepared by Friedel-Crafts chemistry, as well as epoxidation products thereof. In particular, the invention provides allyl functional TPE. The invention also provides methods for making the functionalized styrene oligomers and polymers of the invention as well as epoxidation products thereof, compositions containing the same, and methods for using the functionalized and epoxified styrene oligomers that take advantage of the unique properties of the compounds and compositions of the invention.Type: ApplicationFiled: August 13, 2009Publication date: February 18, 2010Applicant: Designer Molecules, Inc.Inventor: Stephen M. Dershem
-
Patent number: 7629418Abstract: Preparation of butyl rubber based graft co-polymers from halobutyl elastomers using phase transfer catalysts in the presence of a solution of an alkali metal salt of an oxygen or sulfur nucleophile that is bound to a polymeric substrate. Graft co-polymers can be produced of a butyl polymer (isobutene-co-isoprene) and polymeric substrates such as polyethylene, polypropylene, polystyrene, polybutadiene, polysilanes, polysiloxanes, polyethylene glycol, polyethylene oxide, polyphosphazenes, polyferrocenes or their hybrids.Type: GrantFiled: August 17, 2006Date of Patent: December 8, 2009Assignees: LANXESS Inc., Queen's University at KingstonInventors: John Scott Parent, Sergio A. Guillén-Castellanos, Ralph Allen Whitney, Rui Resendes