Wherein Unsaturated Reactant Contains Only One Free Carboxyl Group Patents (Class 525/531)
  • Patent number: 9266987
    Abstract: A method of making low extractable coatings, varnishes, adhesives or inks comprising the steps of: (a) providing a radiation curable composition, (b) applying said composition onto a surface, and (c) irradiating the surface with actinic radiation or electron beam, wherein the radiation curable composition comprises at least one amino(meth)acrylate obtained by reacting at least one primary and/or secondary amine (A) with at least one (meth)acrylated ethoxylated polyol (B) having a degree of alkoxylation of at least 4.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: February 23, 2016
    Assignee: ALLNEX BELGIUM S.A.
    Inventors: Vincent Stone, Francis Bergiers, Thierry Randoux, Christian Lucot
  • Patent number: 9150666
    Abstract: Disclosed are compositions that comprise vinylarylalkylene ethers of cyclodextrins optionally containing ether-linked adhesion-promoting groups, in combination with copolymerizable monomer or monomers. The copolymerizable monomer or monomers may include vinylarylalkylene ethers of oligohydroxy compounds (for example, sorbitol divinylbenzyl ether and others). The composition further may include stabilizers (for example, 1,3,5-trimethyl-2,4,6-tris(3,5-di-(tert)-butyl-4-hydroxybenzyl)benzene and others), and polymerization initiators (for example, phenylbis[2,4,6-trimethylbenzoyl]phosphine oxide and others) and reinforcing materials (for example, imogolite). Methods of preparing the compositions as well as the components of compositions and methods for their use in dental and other applications are also disclosed.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: October 6, 2015
    Assignee: ADA Foundation
    Inventor: Rafael L. Bowen
  • Patent number: 9122968
    Abstract: The disclosure provides a cross-linkable polymer composition, a core layer for an information carrying card comprising such cross-linked composition, resulting information carrying card, and methods of making the same. A crosslinkable polymer composition comprises a curable base polymer resin in a liquid or paste form, and a particulate thermoplastic filler. The base polymer resin is selected from the group consisting of urethane acrylate, silicone acrylate, epoxy acrylate, urethane, acrylate, silicone and epoxy. The particulate thermoplastic filler may be polyolefin, polyvinyl chloride (PVC), a copolymer of vinyl chloride and at least another monomer, or a polyester such as polyethylene terephthalate (PET), a compound or blend thereof.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: September 1, 2015
    Assignee: X-Card Holdings, LLC
    Inventor: Mark A. Cox
  • Publication number: 20150099829
    Abstract: A polyalkylene carbonate resin composition with interpenetrating network structure includes an aliphatic polycarbonate obtained through a reaction of carbon dioxide with at least one epoxide compound selected from the group consisting of (C2-C10)alkylene oxide substituted or unsubstituted with halogen or alkoxy, (C4-C20)cycloalkylene oxide substituted or unsubstituted with halogen or alkoxy, and (C8-C20)styrene oxide substituted or unsubstituted with halogen, alkoxy, alkyl or aryl, at least one compound selected from a polyol compound, an epoxy compound and an acryl compound, and a curing agent for polymerization or networking.
    Type: Application
    Filed: May 3, 2013
    Publication date: April 9, 2015
    Inventors: Seung Gweon Hong, Jae Young Park, Hye Lim Kim, Ji Yeon Choi, Kwang Jin Chung, Myung Ahn Ok
  • Patent number: 8916656
    Abstract: A glass printing ink and a glass printing lacquer comprising at least one pigment, at least one photoinitiator, at least two resins and radicial photoinitiators. One resin is an epoxy resin having an average molecular weight based on bisphenol A, diluted in a UV hardening monomer. The other resin is a resin which contains free functional amino, hydroxy, epoxy, acid, acid anhydride and/or acrylate groups. Also, the use of the glass printing ink and glass printing lacquer when printing a glass substrate and to a method for printing a glass substrate.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: December 23, 2014
    Assignee: Marabu GmbH & Co., KG
    Inventors: Saskia Lehmann, Wolfgang Schaefer
  • Publication number: 20140336301
    Abstract: The invention provides highly functional epoxy resins that may be used themselves in coating formulations and applications but which may be further functionalized via ring-opening reactions of the epoxy groups yielding derivative resins with other useful functionalities. The highly functional epoxy resins are synthesized from the epoxidation of vegetable or seed oil esters of polyols having 4 or more hydroxyl groups/molecule. In one embodiment, the polyol is sucrose and the vegetable or seed oil is selected from corn oil, castor oil, soybean oil, safflower oil, sunflower oil, linseed oil, tall oil fatty acid, tung oil, vernonia oil, and mixtures thereof. Methods of making of the epoxy resin and each of its derivative resins are disclosed as are coating compositions and coated objects using each of the resins.
    Type: Application
    Filed: February 4, 2011
    Publication date: November 13, 2014
    Inventors: Dean C. Webster, Partha Pratim Sengupta, Zhigang Chen, Xiao Pan, Adlina Paramarta
  • Publication number: 20140336302
    Abstract: A water soluble epoxy acrylate resin composition including a reaction product of (a) at least one diepoxide resin or a diepoxide resin blended with other epoxy resins; (b) at least one carboxylic acid; and (c) at least one basic reagent in an amount sufficient to form a water soluble epoxy acrylate resin product; a process for preparing the above water soluble epoxy acrylate resin composition; a curable water soluble epoxy acrylate resin composition including (i) the epoxy acrylate resin composition described above, and (ii) at least one initiator; a process for preparing the curable water soluble epoxy acrylate resin composition described above; a process for curing the curable water soluble epoxy acrylate resin composition described above; and a cured product made therefrom.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 13, 2014
    Inventors: E. Joseph Campbell, Anthony P. Gies
  • Patent number: 8883938
    Abstract: The present invention provides a resin composition for a fiber-reinforced composite material, which has excellent fluidity at low temperature and which produces a cured product having excellent mechanical strength, and also provides a cured product thereof, a fiber-reinforced composite material, a fiber-reinforced resin molding having excellent heat resistance, and a process for producing a fiber-reinforced resin molding with good productivity. A resin composition for a fiber-reinforced composite material contains, as essential components, an epoxy resin (A), an acid group-containing radical polymerizable monomer (B), a radical polymerization initiator (C), and an amine-based curing agent (D) for an epoxy resin, and has a viscosity of 500 mPa·s or less at 50° C. measured with an E-type viscometer. The composition is impregnated into reinforcing fibers and cured.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: November 11, 2014
    Assignee: DIC Corporation
    Inventors: Atsuko Kobayashi, Ichirou Ogura
  • Patent number: 8865917
    Abstract: A multifunctional aromatic amine hardener composition including the reaction condensation product of (a) at least one aniline and (b) at least one non-aromatic cyclic dicarboxaldehyde; and a reactive thermosettable resin composition including (i) at least one multifunctional aromatic amine hardener composition curing agent, (ii) at least one thermoset resin, and optionally (c) at least one catalyst; and a process for preparing a thermoset product from the thermosettable composition. The hardener composition above and a thermoset resin may be used to prepare a thermoset product with improved thermo-mechanical behavior.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: October 21, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Mark B. Wilson, Stephanie L. Potisek, Ashwin Bharadwaj, Michael J. Mullins, Steven J. Guillaudeu
  • Publication number: 20140308613
    Abstract: The carboxyl-containing resin in accordance with the present invention has a structure resulting from addition of a carboxylic acid to at least one of epoxy groups of a biphenyl novolac epoxy resin. The carboxylic acid includes at least a polybasic acid.
    Type: Application
    Filed: November 13, 2012
    Publication date: October 16, 2014
    Applicant: Goo Chemical Co., Ltd.
    Inventors: Michiya Higuchi, Hisashi Marusawa, Fumito Suzuki, Yoshio Sakai
  • Patent number: 8859695
    Abstract: A hem-curing epoxy resin composition, that includes an epoxy resin A having more than one epoxy group per molecule on average; a curing agent B for epoxy resins, which is activated at a temperature in a range of 100° C. to 220° C.; and an activator C for epoxy resin compositions, wherein activator C is a compound of formula (I), or is a reaction product between a compound of formula (Ia) and an isocyanate or an epoxide.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: October 14, 2014
    Assignee: Sika Technology AG
    Inventors: Karsten Frick, Ulrich Gerber, Juergen Finter, Andreas Kramer
  • Patent number: 8835574
    Abstract: Novel adhesive compositions that can be used in the die attach process. The adhesives include a curable resin component, a curing agent, and a block copolymer additive. The block copolymer additive has a glass transition temperature of at least about 40° C. The block copolymer additive improves the affinity of the adhesive composition to a hydrophilic substrate, such as a silicon wafer, during the die pickup process. Also disclosed is an assembly which includes a hydrophilic substrate and a layer of adhesive and methods of producing the assembly.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: September 16, 2014
    Assignee: Henkel IP Holding GmbH
    Inventors: My Nguyen, Tadashi Takano, Puwei Liu
  • Publication number: 20140228481
    Abstract: A fiber sizing agent is described, which is capable of imparting sufficient sizing properties and fiber spreading properties to reinforced fiber bundles for producing fiber-reinforced composite materials. A fiber sizing agent composition (E) includes a sizing agent (A) having a viscosity of 50 to 3,000 Pa·s at 35° C., and has a thixotropic index of 3 to 15. The sizing agent (A) is preferably an epoxy resin, a polyester resin, a polyurethane resin, a polyether resin or a vinyl ester resin.
    Type: Application
    Filed: September 20, 2012
    Publication date: August 14, 2014
    Applicant: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Masahito Inoue, Kazuki Aoki
  • Patent number: 8748536
    Abstract: Multi-piece, solid golf balls containing an inner core, an intermediate layer surrounding the core, and an outer cover are provided. At least one layer is made from an epoxy composition comprising a curing agent such as zinc diacrylate or zinc dimethacrylate. The epoxy composition is produced by reacting an epoxy prepolymer with a curing agent. Preferably, the epoxy composition is used to form an intermediate and/or cover layer resulting in a golf ball having high resiliency, good impact durability, and soft feel.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: June 10, 2014
    Assignee: Acushnet Company
    Inventors: Brian Comeau, David A. Bulpett
  • Patent number: 8735511
    Abstract: A curing resin composition that cures in two stages: photo cure and thermal cure, hardly contaminates a liquid or liquid crystals when in contact with, and provides high adhesive strength, particularly a curing composition that photocures sufficiently even when shadowed by TFT wires, a black matrix, etc. in photocuring; and a sealant, a sealant for ODF (one-drop-fill), and an LCD containing the curing resin composition.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: May 27, 2014
    Assignee: Adeka Corporation
    Inventors: Hirokatsu Shinano, Hiroya Fukunaga, Kazuyuki Itano
  • Patent number: 8722816
    Abstract: A solder resist having both adequate sensitivity at photo-irradiation and alkali developability, and the solder resist forming a cured product which is excellent in dimensional stability against temperature change, does not exhibit brittleness, and further, is excellent in water resistance, electrical insulation, thermal cycle test resistance (TCT resistance) and the like is provided, and further, a dry film having a solder resist layer, a cured product and a printed wiring board are provided. The solder resist comprising an acid-modified vinyl ester synthesized from an epoxy compound, a phenol compound, an unsaturated monobasic acid and a polybasic acid anhydride, wherein the epoxy compound contains a crystalline epoxy resin having a melting point of 90° C. or more, and the phenol compound contains a compound having a bisphenol S structure.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: May 13, 2014
    Assignees: Nippon Shokubai Co., Ltd., Taiyo Holdings Co., Ltd.
    Inventors: Nobuaki Otsuki, Manabu Akiyama, Shouji Minegishi, Masao Arima
  • Patent number: 8716413
    Abstract: A method for the preparation of a photocurable resin by a reaction comprising the following steps i) reacting a mixture of a novolak type epoxy resin (A) and a dicyclopentadiene-phenol glycidylether resin (B) with ii) an advancement component (C) containing at least 2 phenolic hydroxyl groups per molecule; iii) reacting with an unsaturated monocarboxylic acid (D); and iv) esterification of the unsaturated group containing resin obtained from the steps of i) to iii) with a polycarboxylic acid anhydride or a carboxylic acid anhydride (E) is disclosed.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: May 6, 2014
    Assignee: Huntsman Advanced Materials Americas LLC
    Inventors: Kai Dudde, Sabine Pierau, Martin Roth
  • Patent number: 8674039
    Abstract: The invention relates to a crosslinkable polymer powder composition redispersible in water, obtainable by means of free radical polymerization, in an aqueous medium, of one or more monomers from the group consisting of vinyl esters of straight-chain or branched alkylcarboxylic acids having 1 to 15 C atoms, methacrylates and acrylates of alcohols having 1 to 15 C atoms, vinylaromatics, olefins, dienes and vinyl halides, no epoxide-functional comonomers being copolymerized, and subsequent drying of the polymer dispersion obtained thereby, wherein, before and/or during the polymerization and/or before the drying of the polymer dispersion obtained thereby, an epoxy resin is added and, if appropriate after the drying, a curing agent crosslinking with the epoxy resin is added.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: March 18, 2014
    Assignee: Wacker Chemie AG
    Inventors: Michael Faatz, Reinhard Haerzschel
  • Publication number: 20140072806
    Abstract: The present invention encompasses polymer compositions comprising aliphatic polycarbonate chains containing functional groups that increase the polymer's ability to wet or adhere to inorganic materials. In certain embodiments, chain ends of the aliphatic polycarbonates are modified to introduce silicon-containing functional groups, boron-containing functional groups, phosphorous-containing functional groups, sulfonic acid groups or carboxylic acid groups.
    Type: Application
    Filed: May 9, 2012
    Publication date: March 13, 2014
    Applicant: NOVOMER, INC.
    Inventors: Scott D. Allen, Christopher A. Simoneau, Jay J. Farmer
  • Patent number: 8618194
    Abstract: A resin mortar composition suitable for construction purposes is disclosed. The composition includes a resin component (A) curable with an aliphatic amine and a peroxide and a hardener component (H) with at least one peroxide (B) and at least one amine (C). At least one of the resin component (A) and the hardener component (H) contains at least one inorganic filler and the resin component (A) and the hardener component (H) or the resin composition (A) and the at least one peroxide (B) and the at least one amine (C) of the hardener component (H) are spatially separated from one another. The resin component (A) includes a compound (a) capable of undergoing a radical polymerization, a compound (b) capable of reacting with an amine, a transition metal compound (c), at least one inhibitor (d) to adjust the gel time and a bridging compound (e) having at least two reactive functionalities.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: December 31, 2013
    Assignee: Hilti Aktiengesellschaft
    Inventor: Armin Pfeil
  • Publication number: 20130299747
    Abstract: The invention provides epoxy and oxetane compositions including the novel acyloxy and N-acyl curing agents described herein. Use of invention curing agents result in cured adhesive compositions with remarkably increased adhesion and reduced hydrophilicity when compared to resins cured with other types of curing agents. Furthermore, the curatives of this invention do not interfere with free-radical cure and are thus suited for use in hybrid cure thermoset compositions.
    Type: Application
    Filed: March 11, 2013
    Publication date: November 14, 2013
    Inventor: Stephen M. Dershem
  • Patent number: 8519067
    Abstract: An epoxy resin composition for encapsulating a semiconductor chip according to this invention comprises (A) a crystalline epoxy resin, (B) a phenol resin represented by general formula (1): wherein R1 and R2 are independently hydrogen or alkyl having 1 to 4 carbon atoms and two or more R1s or two or more R2s are the same or different; a is integer of 0 to 4; b is integer of 0 to 4; c is integer of 0 to 3; and n is average and is number of 0 to 10, (C) a (co)polymer containing butadiene-derived structural unit or its derivative, and (D) an inorganic filler in the amount of 80 wt % to 95 wt % both inclusive in the total epoxy resin composition.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: August 27, 2013
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventors: Takahiro Kotani, Hidetoshi Seki, Masakatsu Maeda, Kazuya Shigeno, Yosinori Nishitani
  • Patent number: 8487052
    Abstract: The present invention provides a resin composition for a fiber-reinforced composite material, which has excellent fluidity and impregnation into a fiber base material and which produces a cured product having excellent heat resistance. A resin composition for a fiber-reinforced composite material contains, as essential components, a poly(glycidyloxyaryl) compound (A), a polymerizable monomer (B) which is an unsaturated carboxylic acid or an anhydride thereof and has a molecular weight of 160 or less, an aromatic vinyl compound or a (meth)acrylate (C), and a radical polymerization initiator (D), wherein an equivalent ratio [glycidyloxy group/acid group] of a glycidyloxy group in the component (A) to an acid group in the component (B) is 1/1 to 1/0.48, and a molar ratio [(B)/(C)] of the component (B) to the component (C) is in the range of 1/0.55 to 1/2.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: July 16, 2013
    Assignee: DIC Corporation
    Inventors: Atsuko Kobayashi, Ichirou Ogura
  • Patent number: 8481612
    Abstract: A curing agent for epoxy resins that is comprised of the reaction product of an amine, an epoxy resin, and an elastomer-epoxy adduct; compositions containing the curing agent and an epoxy resin; the compositions are useful in electronic displays, circuit boards, semi conductor devices, flip chips and other applications.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: July 9, 2013
    Assignee: Trillion Science, Inc
    Inventors: Yurong Ying, John J. McNamara, Jing Liang, Rong-Chang Liang
  • Patent number: 8450433
    Abstract: Provided are a resin composition for the manufacture of marble chips including a halogenated epoxy resin binder and showing high heat resistance, high chemical resistance, high impact resistance, high specific gravity and high transparency, a marble chip manufacturing method using the resin composition and an artificial marble made from marble chips.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: May 28, 2013
    Inventor: Young-Min Kim
  • Patent number: 8389630
    Abstract: Provided is a curable composition excellent in curability and mechanical properties as well as a cured product thereof. Specially provided is a curable composition containing a vinyl-based polymer (I) having one or more crosslinkable functional groups at a terminus on average and a nucleophilic agent (II) and a cured product obtained by curing the curable composition. Preferably, the curable composition of the invention further contains an epoxy resin (III).
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: March 5, 2013
    Assignee: Kaneka Corporation
    Inventors: Hitoshi Tamai, Kohei Ogawa, Yoshiki Nakagawa
  • Patent number: 8389652
    Abstract: An epoxy resin hardener composition including a reaction product of (i) a compound having at least one vicinal epoxy group, and (ii) an amino alcohol; an epoxy resin composition including the epoxy resin hardener composition and a compound having at least one vicinal epoxy group; and a powder coating composition including particles of the epoxy resin hardener composition and particles of a compound having at least one vicinal epoxy group.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: March 5, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Joseph Gan, Matthieu M. Eckert, Carola Rosenthal, Bernhard Kainz, Emile C. Trottier
  • Patent number: 8344076
    Abstract: The present invention provides hydrolytically resistant monomers prepared by the reaction of an epoxy compound and a reactive ester and methods for producing the monomers. Also provided are adhesive compositions containing the hydrolytically resistant monomers and methods for use thereof.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: January 1, 2013
    Assignee: Designer Molecules, Inc.
    Inventor: Stephen M Dershem
  • Patent number: 8338536
    Abstract: Novel adhesive compositions that can be used in the die attach process. The adhesives include a curable resin component, a curing agent, and a block copolymer additive. The block copolymer additive has a glass transition temperature of at least about 40° C. The block copolymer additive improves the affinity of the adhesive composition to a hydrophilic substrate, such as a silicon wafer, during the die pickup process. Also disclosed is an assembly which includes a hydrophilic substrate and a layer of adhesive and methods of producing the assembly.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: December 25, 2012
    Assignee: Henkel Corporation
    Inventors: My Nguyen, Tadashi Takano, Puwei Liu
  • Patent number: 8324326
    Abstract: An epoxy resin composition for encapsulating a semiconductor chip according to this invention comprises (A) a crystalline epoxy resin, (B) a phenol resin represented by general formula (1): wherein R1 and R2 are independently hydrogen or alkyl having 1 to 4 carbon atoms and two or more R1s or two or more R2s are the same or different; a is integer of 0 to 4; b is integer of 0 to 4; c is integer of 0 to 3; and n is average and is number of 0 to 10, (C) a (co)polymer containing butadiene-derived structural unit or its derivative, and (D) an inorganic filler in the amount of 80 wt % to 95 wt % both inclusive in the total epoxy resin composition.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: December 4, 2012
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventors: Takahiro Kotani, Hidetoshi Seki, Masakatsu Maeda, Kazuya Shigeno, Yoshinori Nishitani
  • Patent number: 8318870
    Abstract: The disclosure relates to a composition having at least one radically polymerisable monomer M; at least one radical former, at least one epoxide resin A including an average of more than one epoxide group per molecule, and at least one compound of formula (I). Such compositions are suitable as adhesives, sealants or coatings. Shortly after the application thereof, they have a high initial strength and, after further hardening at room temperature, they reach a high level of final strength.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: November 27, 2012
    Assignee: Sika Technology AG
    Inventors: Markus Haufe, Andreas Kramer
  • Publication number: 20120252930
    Abstract: The present invention provides a resin composition for a fiber-reinforced composite material, which has excellent fluidity and impregnation into a fiber base material and which produces a cured product having excellent heat resistance. A resin composition for a fiber-reinforced composite material contains, as essential components, a poly(glycidyloxyaryl) compound (A), a polymerizable monomer (B) which is an unsaturated carboxylic acid or an anhydride thereof and has a molecular weight of 160 or less, an aromatic vinyl compound or a (meth)acrylate (C), and a radical polymerization initiator (D), wherein an equivalent ratio [glycidyloxy group/acid group] of a glycidyloxy group in the component (A) to an acid group in the component (B) is 1/1 to 1/0.48, and a molar ratio [(B)/(C)] of the component (B) to the component (C) is in the range of 1/0.55 to 1/2.
    Type: Application
    Filed: August 6, 2010
    Publication date: October 4, 2012
    Applicant: DIC Corporation
    Inventors: Atsuko Kobayashi, Ichirou Ogura
  • Patent number: 8278401
    Abstract: This invention relates to curable sealants that provide low moisture permeability and good adhesive strength after cure. The composition comprises an aromatic compound having meta-substituted reactive groups and a cationic or radical initiator.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: October 2, 2012
    Assignee: Henkel AG & Co. KGaA
    Inventors: Shengqian Kong, Sarah E. Grieshaber
  • Publication number: 20120232228
    Abstract: Compounds are provided according to structure 1: in which R?H or methyl and R2=optionally substituted C1-C20 alkyl, optionally substituted C6-C20 aryl, part of a oligomeric or polymeric residue (>C20), which can be optionally substituted.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 13, 2012
    Applicant: DSM IP ASSETS B.V.
    Inventors: Joanna KLEIN NAGELVOORT, Cornelis DEN BESTEN, Johan Franz Gradus JANSEN
  • Patent number: 8173726
    Abstract: A process including the polymerization of a reactive diluent, which is present in an aqueous dispersion that further includes an epoxy-amine material, is disclosed. The resulting composition is useful as a coating composition.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: May 8, 2012
    Assignee: Valspar Sourcing, Inc.
    Inventors: Martin Peter Joseph Heuts, Lonnie Jones
  • Patent number: 8114508
    Abstract: The present invention provides a composition of the modified maleic anhydride and the epoxy resins, including (A) one or more of the epoxy resin mixtures, (B) a modified maleic anhydride copolymer, (C) additives and (D) inorganic filler materials, wherein component (A) the epoxy resin mixture accounts for 35%˜56% by weight of the composition solids, component (B) the modified maleic anhydride copolymer accounts for 44%˜65% by weight of the composition solids, based on 100% by weight of total components (A), (B) and (C).
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: February 14, 2012
    Assignee: Nan Ya Plastics Corporation
    Inventor: Ming Jen Tzou
  • Patent number: 8092876
    Abstract: A coating composition for a food or beverage can that includes an emulsion polymerized latex polymer formed by combining an ethylenically unsaturated monomer component with an aqueous dispersion of a water-dispersible polymer.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: January 10, 2012
    Assignee: Valspar Sourcing, Inc.
    Inventors: Robert M. O'Brien, Daniel E. Rardon, Rachael Ann Spynda, George K. Bartley, III, Richard H. Evans, T. Howard Killilea, Carl Cavallin
  • Patent number: 8067484
    Abstract: A curing agent for epoxy resins that is comprised of the reaction product of an amine, an epoxy resin, and an elastomer-epoxy adduct; compositions containing the curing agent and an epoxy resin; the compositions are useful in electronic displays, circuit boards, semi conductor devices, flip chips and other applications.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: November 29, 2011
    Assignee: Trillion Science, Inc.
    Inventors: Yurong Ying, John J. McNamara, Jing Liang, Rong-Chang Liang
  • Patent number: 8067093
    Abstract: The present invention relates to compounds suitable to use as curing agents for epoxy systems which can be obtained by reacting an amine-functional compound with an ?-? unsaturated acid and/or ester and a mono-functional epoxy compound. The invention further relates to coating compositions comprising these curing agents.
    Type: Grant
    Filed: January 15, 2007
    Date of Patent: November 29, 2011
    Assignee: Akzo Nobel Coatings International B.V.
    Inventors: Steve Alister Nixon, Susan Elizabeth Borthwick
  • Patent number: 8039559
    Abstract: The present invention relates to a two-component composition comprising a first component and a second component, wherein the first component being a non-aqueous resin composition comprising an unsaturated polyester resin or vinyl ester resin, a transition metal compound selected from a copper, iron, manganese or titanium compound, a potassium compound, and the resin composition contains less than 0.01 mmol cobalt per kg primary resin system and less than 0.01 mmol vanadium per kg primary resin system; and the second component comprises a peroxide compound.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: October 18, 2011
    Assignee: DSM IP Assets B.V.
    Inventors: Johan Franz Gradus Antonius Jansen, Ronald Ivo Kraeger
  • Patent number: 7989557
    Abstract: The invention is a composition comprising a blend of two or more epoxide containing compositions selected from epoxidized vegetable oils, epoxidized alkyl esters or cycloaliphatic epoxides. In another embodiment, the invention is a blend of one or more epoxidized vegetable oils, epoxidized alkyl esters, or cycloaliphatic epoxides with one or more aromatic epoxides or epoxy functionalized polyoxyalkylene polyols.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: August 2, 2011
    Assignee: Ashland Licensing and Intellectual Property LLC
    Inventors: Robert L. Seats, Carroll G. Reid
  • Patent number: 7951879
    Abstract: Embodiments relate to viscosifiers that are terminated polymers that have functional terminal groups. The polymers being pre-extended by polyepoxides and being reacted to give polymers that are terminated by other functional groups. The viscosifiers have a low content in educts or educt descendants that deteriorate the properties of compositions and considerably reduce or even exclude the formation of high-molecular addition products so that the products obtained have low viscosity and good storage stability.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: May 31, 2011
    Assignee: Sika Technology AG
    Inventors: Andreas Kramer, Jan Olaf Schulenburg, Jürgen Finter
  • Publication number: 20110098395
    Abstract: Disclosed are organic, UV resistant epoxy resins derived largely from vegetable oil based materials. More specifically, the present invention provides a virtually non-toxic, hypoallergenic UV resistant resin and method of producing and using the same that gives off substantially no VOCs and no disagreeable odors. The composition comprises a vegetable oil-based polyfunctional carboxylic acid, a cycloaliphatic anhydride, and an epoxy compound either of bicyclic difunctional epoxy resin, epoxidized vegetable oil or epoxidized polymer chains. The composition further comprises a catalyst and a wetting agent. In its cured state the material is leather like and exhibits high tensile strength as well as unusually high, totally reversible elongation. In an alternative embodiment, the resin comprises a cyclic anhydride (Lindride 16E).
    Type: Application
    Filed: October 27, 2009
    Publication date: April 28, 2011
    Inventors: Arthur Katzakian, Craig Katzakian
  • Patent number: 7932322
    Abstract: The invention relates to viscosifiers, especially terminated polymers that have functional terminal groups, said polymers being pre-extended by polyamines, polymercaptans, (poly)aminoalcohols, (poly)mercaptoalcohols or (poly)aminomercaptans and being reacted to give polymers that are terminated by other functional groups. The viscosifiers have a low content in educts or educt descendants that deteriorate the properties of compositions. They are also charaterized in that the formation of high-molecular addition products is considerably reduced or even excluded so that products obtained have low viscosity and good storage stability. The epoxy-terminated polymer of formula (I) is especially preferred.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: April 26, 2011
    Assignee: Sika Technology AG
    Inventors: Andreas Kramer, Jan Olaf Schulenburg, Jürgen Finter, Norman Blank
  • Patent number: 7927691
    Abstract: A prepreg composite material that includes a fiber layer and a resin comprising a thermoset resin component, a curing agent and a fibrous micropulp. The micropulp component is an aramid fiber having a volume average length of from 0.01 to 100 micrometers. The prepreg is useful in composite panel construction for minimizing fluid permeation into the cured structure. This prepreg is particularly suitable for making honeycomb sandwich panels. Film adhesives, liquid and paste resins containing aramid fiber micropulp are also disclosed.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: April 19, 2011
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Subhotosh Khan, Halvar Young Loken
  • Patent number: 7842756
    Abstract: A copolymer and a process of making the copolymer are disclosed. The copolymer is produced from reacting a glycidyl ester and/or ether with a polyol comprising a functionality of at least 2 wherein at least 50% by weight of the copolymer comprises a minimum of 3n+X repeating units, wherein n is a monomer unit and X is a monomer unit and/or other reactant. The copolymer may also include less than 50% of the polymeric units having the same molecular weight. The present invention is further directed to processes for preparing the copolymer and to coating compositions employing the copolymer.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: November 30, 2010
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Jonathan T. Martz, Erick B. Iezzi
  • Patent number: 7829639
    Abstract: A composition for conductive materials comprises a compound represented by the following general formula (A1): wherein: R1 is the same or different and each independently represents a C2-C8 straight-chain alkyl group; R2 is the same or different and each independently represents a hydrogen atom, a methyl group or an ethyl group; Y represents a group containing at least one substituted or unsubstituted aromatic hydrocarbon ring, or substituted or unsubstituted heterocyle; and X1 is the same or different and each represents a substituent represented by the following general formula (A2): wherein n1 is an integer of from 2 to 8.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: November 9, 2010
    Assignee: Seiko Epson Corporation
    Inventors: Koichi Terao, Yuji Shinohara, Takashi Shinohara
  • Patent number: 7772334
    Abstract: A crosslinker for polymerizing a film-forming material including an alkyl or aromatic compound comprising at least two functional groups reactive with a film-forming resin and at least one pendent group having a nonionic metal coordinating structure. Coating compositions can include a film-forming material and the crosslinker. The coating compositions can be used to coat a substrate, such as a metal substrate. Applied coating layers on substrates can be cured to form coating films.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: August 10, 2010
    Assignee: BASF Coatings GmbH
    Inventors: Timothy S. December, Sergio Gonzalez, Günther Ott, Karl-Heinz Grosse-Brinkhaus
  • Patent number: 7723445
    Abstract: By heating, allowing to stand at normal temperature, or irradiating in the presence of a photo-polymerization initiator, a curable resin composition which contains (A) a resin material having a radical polymerizable unsaturated group and an epoxy group, (C) a radical polymerization initiator, (D) an amine compound and/or a mercaptan compound containing one or more of active hydrogen in one molecule, and (E) a compound, which is an adduct in which the (D) amine compound and/or a mercaptan compound, is reacted with the radical polymerizable unsaturated group of the (A) resin material, thereby a cured product can be obtained.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: May 25, 2010
    Assignee: Showa Highpolymer Co., Ltd.
    Inventors: Shintaro Yamauchi, Kazuo Otani
  • Patent number: 7714042
    Abstract: The present invention provides a coating composition for cans comprising 100 parts by mass of a neutralized acrylic resin-modified epoxy resin (A), and from 1 to 50 parts by mass of anionic polymer crosslinked fine particles (B), (A) and (B) being dispersed in an aqueous medium, wherein the anionic polymer fine particles (B) are polymer fine particles comprising a polymer having an acid value of from 10 to 120 mg KOH/g and being produced by polymerizing radically polymerizable unsaturated monomers comprising from 2 to 30% by mass of a carboxyl group-containing radically polymerizable unsaturated monomer (b1), from 2 to 30% by mass of a polyvinyl compound (b2) and from 40 to 96% by mass of other radically polymerizable unsaturated monomer (b3) in the presence of water.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: May 11, 2010
    Assignee: Kansai Paint Co., Ltd.
    Inventors: Masaaki Saika, Hideki Matsuda, Yuuichi Inada, Naoki Horike, Sumio Noda, Hideki Masuda, Keiichi Shimizu, Hiromi Harakawa