Contains Non-transition Elemental Metal, Hydride Thereof, Or Carbon To Non Transition Metal Atom Bond Patents (Class 526/114)
  • Publication number: 20120264889
    Abstract: A production process of an olefin polymerization catalyst, comprising steps of (1) contacting a defined zinc compound, Zn(L1)2, with a defined halogenated alcohol, thereby forming a zinc atom-containing compound, and (2) contacting the zinc atom-containing compound with a defined transition metal compound and an optional organoaluminum compound; and a production process of an olefin polymer using such an olefin polymerization catalyst.
    Type: Application
    Filed: December 14, 2010
    Publication date: October 18, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Kazuo Takaoki, Takahiro Hino
  • Patent number: 8288487
    Abstract: The present invention provides a polymerization process utilizing a dual metallocene catalyst system for the production of broad or bimodal molecular weight distribution polymers, generally, in the absence of added hydrogen. Polymers produced from the polymerization process are also provided, and these polymers can have a Mn in a range from about 9,000 to about 30,000 g/mol, and a short chain branch content that decreases as molecular weight increases.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: October 16, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Youlu Yu
  • Publication number: 20120259077
    Abstract: The present invention relates to a mixed metallocene catalyst composition including a first metallocene catalyst and a second metallocene catalyst, and a method for preparing a polyolefin using the catalyst composition. According to the catalyst composition and the preparation method, provided is a polyolefin having a wide molecular weight distribution and superior mechanical properties and processability.
    Type: Application
    Filed: November 5, 2010
    Publication date: October 11, 2012
    Inventors: Jong-Joo Ha, Choong-Hoon Lee, Don-Ho Kum, Eun-Jung Lee, Beom-Doo Seo
  • Publication number: 20120252991
    Abstract: The present invention provides a method for preparing a supported metallocene catalyst, a supported metallocene catalyst prepared by the method, and a method for preparing a polyolefin using the supported metallocene catalyst. The supported metallocene catalyst according to the present invention contains catalyst components uniformly distributed deep into the whole porous carrier particles to secure a high catalytic activity and facilitates polymerization of polyolefins with high bulk density.
    Type: Application
    Filed: October 19, 2010
    Publication date: October 4, 2012
    Inventors: Hyeon-Gook Kim, Ki-Soo Lee, Eun-Kyoung Song, Yong-Ho Lee, Dae-Sik Hong
  • Patent number: 8278403
    Abstract: Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: October 2, 2012
    Assignee: Fina Technology, Inc.
    Inventors: Tim Coffy, Kenneth Blackmon, Joseph Thorman, David Rauscher, Jun Tian, William Gauthier, Nathan Williams
  • Patent number: 8268944
    Abstract: This invention relates to catalyst compositions, methods, and polymers encompassing at least one first Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, in combination with at least one second Group 4 metallocene with non-bridging ?5-cyclopentadienyl-type ligands, typically in combination with at least one cocatalyst, and at least one activator. The compositions and methods disclosed herein provide ethylene polymers with a bimodal molecular weight distribution.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: September 18, 2012
    Assignee: Chevron Phillips Company, L.P.
    Inventors: Qing Yang, Kumudini C. Jayaratne, Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Matthew G. Thorn, Jerry T. Lanier, Tony R. Crain
  • Patent number: 8247342
    Abstract: A highly active supported chromium catalyst composition for ethylene and other olefins polymerization and also for ethylene copolymerization with efficient incorporation of comonomer, produces polymers with superior spherical morphology, improved bulk density and almost 0% fines. The catalyst composition component includes at least one chromium compound, mainly chromium acetylacetonate, or chromium hexaflouroacetonylacetonate, or chromium diethylmalonate. One magnesium compound, or aluminum compound, metal alkoxy compound and defined polymer particles mainly chloromethylated cross linked styrene-DVB copolymer or polyvinylchloride. The catalyst composition, when used in conjunction with an organoaluminum compound or a mixture of organoaluminum compounds, can be used for olefin polymerization to produce medium or high density polyethylene and copolymers of ethylene with alpha-olefins having about 3 to 18 carbon atoms.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: August 21, 2012
    Inventor: Abdullah Saad N. Al-Arifi
  • Publication number: 20120190804
    Abstract: This invention relates to catalyst compositions, methods, and polymers encompassing at least one first Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, in combination with at least one second Group 4 metallocene with non-bridging ?5-cyclopentadienyl-type ligands, typically in combination with at least one cocatalyst, and at least one activator. The compositions and methods disclosed herein provide ethylene polymers with a bimodal molecular weight distribution.
    Type: Application
    Filed: February 15, 2012
    Publication date: July 26, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: QING YANG, KUMUDINI C. JAYARATNE, MICHAEL D. JENSEN, MAX P. MCDANIEL, JOEL L. MARTIN, MATTHEW G. THORN, JERRY T. LANIER, TONY R. CRAIN
  • Patent number: 8207280
    Abstract: The present invention provides dual catalyst systems containing a metallocene catalyst and a hydrogen scavenging catalyst, and polymerization processes employing these dual catalyst systems. Due to a reduction in hydrogen levels in the polymerization processes, olefin polymers produced from these polymerization processes may have a higher molecular weight, a lower melt index, and higher levels of unsaturation.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: June 26, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, William B. Beaulieu, Qing Yang, Errun Ding, Gary L. Glass, Alan L. Solenberger, Steven J. Secora
  • Patent number: 8188199
    Abstract: The method of promoting olefin polymerization uses a nanoparticle filler to increase the activity of a metallocene catalyst for in situ polymerization of polyolefins. The filler may be nanoparticles of manganese, or nanoparticles of manganese-doped titanium dioxide. The method includes the steps of (a) mixing a metallocene catalyst, e.g., zirconocene dichloride, with nanoparticles of the filler in an organic solvent, e.g., toluene, in a reactor to form a reaction mixture; (b) immersing the reactor in a temperature bath for a period of time sufficient to bring the mixture to an optimal polymerization reaction temperature; (c) adding monomer to the mixture in the reactor; (d) adding methylaluminoxane (MAO) as a co-catalyst to the reaction mixture to initiate polymerization; and (e) quenching the polymerization, e.g., by adding methanol containing 5% hydrochloric acid by volume to the reactor.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: May 29, 2012
    Assignees: King Fahd University of Petroleum & Minerals, King Abdulaziz City for Science & Technology
    Inventors: Mamdouh Ahmad Al-Harthi, Abdul Kaleel Sulaiman Haniffa, Bijal Kottukkal Bahuleyan, Sadhan Kumar De, Masihullah Jabarulla Khan
  • Patent number: 8178634
    Abstract: The present invention discloses a catalyst system based on a metallocene catalyst component and a new single site catalyst component for the production in a single reactor of improved polyolefins having a bimodal molecular weight distribution.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: May 15, 2012
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Abbas Razavi
  • Patent number: 8163853
    Abstract: This invention relates to new transition metal complexes for use in olefin polymerization and oligomerization. The active complex is a pyridine amide having a metallocenyl substituent as part of the ligand structure. The invention also relates to novel precursors for the ligand systems of such complexes obtained from metallocenyl-substituted pyridine compounds through sequences involving addition-condensation or lithium-halogen exchange (with subsequent metathesis) reactions.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: April 24, 2012
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventor: John R. Hagadorn
  • Patent number: 8148588
    Abstract: The invention relates to a continuous process for preparing polyolefins having a bimodal or multimodal molar mass distribution in suspension in at least two reactors R1, R2.x, R3.y which are connected in series and in which different reaction conditions are set. In this process, the offgases A1, A2.x, A3.y, A4 and A5 leaving all the reactors connected in series are firstly collected, the collected offgases are then compressed in a compression stage 10, the compressed offgases are subsequently cooled and the cooled material is separated into a gaseous fraction and a liquid fraction. The separated fractions are then recirculated to the polymerization process at different points. The process of the invention allows the total conversion of the polymerization, based on monomer and comonomer used, to be increased to a surprising extent.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: April 3, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Joachim Berthold, Frank Peter Alt, Kaspar Evertz, Peter Kölle
  • Patent number: 8148482
    Abstract: A process for forming tactic polymers employing at least one olefin polymerization catalyst comprising a non-racemic mixture of the R- and S-enantiomers of a metal complex containing at least one asymmetrically substituted (chiral) carbon atom, and a chain shuttling agent, a polar aprotic organic compound, or both a chain shuttling agent and a polar aprotic organic compound.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: April 3, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Vincenzo Busico, Harold W. Boone, James C. Stevens, Francesca Alfano, Roberta Cipullo
  • Patent number: 8143353
    Abstract: This invention relates to a propylene polymer comprising a component having a crystallinity of 10% or less and a component having a crystallinity of 20% or more, said propylene polymer having: a) a melting point of X ° C. or more where X=?0.0038(Tp)2+0.36(Tp)+150, where Tp is the temperature of polymerization in ° C.; b) an Mw of 10,000 g/mol or more; c) a heat of fusion of from 1-70 J/g; d) Stereodefects per 10,000 monomer units of Y or less where Y=2.35(Tp)?100 (where Tp is the temperature of polymerization in ° C.) for the portion of the blend that is insoluble in hexane at 23° C.; e) a dot T-Peel on Kraft paper of 1 N or more; and f) a branching factor of 0.98 or less, where the branching factor is the ratio of g? measured at Mz to g? measured at Mw, and process to produce such polymers.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: March 27, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jo Ann M. Canich, Peijun Jiang
  • Patent number: 8138113
    Abstract: This invention relates to catalyst compositions, methods, and polymers encompassing at least one first Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, in combination with at least one second Group 4 metallocene with non-bridging ?5-cyclopentadienyl-type ligands, typically in combination with at least one cocatalyst, and at least one activator. The compositions and methods disclosed herein provide ethylene polymers with a bimodal molecular weight distribution.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: March 20, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Kumudini C. Jayaratne, Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Matthew G. Thorn, Jerry T. Lanier, Tony R. Crain
  • Patent number: 8129487
    Abstract: A process for forming a high molecular weight, multi-block copolymer comprising two or more chemically distinguishable segments or blocks, the process comprising polymerizing one or more olefin monomers in the presence of a chain shuttling agent and a catalyst composition comprising two or more olefin polymerization catalysts capable of preparing polymers having differing chemical or physical properties under equivalent polymerization conditions, or a catalyst composition comprising at least one olefin polymerization catalyst containing multiple active catalyst sites capable of preparing polymers having differing chemical or physical properties.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: March 6, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Vincenzo Busico, Francesca Alfano, Harold W. Boone, Roberta Cipullo, James C. Stevens
  • Patent number: 8119747
    Abstract: The present invention relates to an ethylene/?-olefin interpolymer product comprising at least one ?-olefin interpolymerized with ethylene and, characterized in at least one aspect, as having improved properties when utilized in a hot melt adhesive formulation. The invention also relates to a process for manufacturing the interpolymer product wherein the process comprises employing two or more single site catalyst systems in at least one reaction environment (or reactor) and wherein the at least two catalyst systems have (a) different comonomer incorporation capabilities or reactivities and/or (b) different termination kinetics, both when measured under the same polymerization conditions. The interpolymer products are useful, for example, in applications such as hot melt adhesives, and also for impact, bitumen and asphalt modification, adhesives, dispersions or latexes and fabricated articles such as, but not limited to, foams, films, sheet, moldings, thermoforms, profiles and fibers.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: February 21, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Teresa P. Karjala, Brian W. Kolthammer
  • Patent number: 8106139
    Abstract: Embodiments of the invention provide a class of mesophase separated propylene/?-olefin block interpolymers with controlled block sequences. The propylene/?-olefin interpolymers are characterized by an average block index, ABI, which is greater than zero and up to about 1.0 and a molecular weight distribution, Mw/Mn, greater than about 1.4. Preferably, the block index is from about 0.2 to about 1. In addition or alternatively, the block propylene/?-olefin interpolymer is characterized by having at least one fraction obtained by Temperature Rising Elution Fractionation (“TREF”), wherein the fraction has a block index greater than about 0.3 and up to about 1.0 and the propylene/?-olefin interpolymer has a molecular weight distribution, Mw/Mn, greater than about 1.4.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: January 31, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Gary R. Marchand, Yunwa W. Cheung, Benjamin C. Poon, Jeffrey D. Weinhold, Kim L. Walton, Pankaj Gupta, Colin Li Pi Shan, Phillip D. Hustad, Roger L. Kuhlman, Edmund M. Carnahan, Eddy I. Garcia-Meitin, Patricia L. Roberts
  • Patent number: 8097682
    Abstract: A 1-butene/propylene copolymer composition having a content of propylene derived units from 4 to 10% by weight, wherein at least 50% of the polymer is present in the thermodynamically stable, trigonal form I after 100 hours at room temperature, said composition comprising: a) from 5% by weight to 95% by weight of an atactic 1-butene propylene copolymer having the following features: i) distribution of molecular weight Mw/Mn equal to or lower than 4; ii) no enthalpy of fusion detectable at a differential scanning calorimeter (DSC); and iii) infrared crystallinity lower than 0.5%; b) from 5% by weight to 95% by weight of an isotactic 1-butene propylene copolymer having the following features: i) isotactic pentads (mmmm) measured by 13C-NMR, higher than 80%; ii) melting point (Tm(II)) higher than 70° C.; and iii) distribution of molecular weight Mw/Mn equal to or lower than 4.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: January 17, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Giampaolo Pellegatti, Daniele Bigiavi, Rita Martelli, Maria Silvia Tonti, Luigi Resconi, Simona Guidotti
  • Patent number: 8097681
    Abstract: A 1-butene/propylene copolymer composition having a content of propylene derived units from 1 to 4% by weight, wherein at least 50% of the crystalline polymer is present in the thermodynamically stable, trigonal Form I (detected by DSC analysis) after 100 hours of the first melting at room temperature comprising: b) from 5% by weight to 95% by weight of an atactic 1-butene propylene copolymer having the following features: i) distribution of molecular weight Mw/Mn equal to or lower than 4; ii) no enthalpy of fusion detectable at a differential scanning calorimeter (DSC); and iii) infrared crystallinity lower than 0.5%; b) from 5% by weight to 95% by weight of an isotactic 1-butene propylene copolymer having the following features: i) isotactic pentads (mmmm) measured by 13C-NMR, higher than 80%; ii) melting point (Tm(II)) higher than 70° C.; and iii) distribution of molecular weight Mw/Mn equal to or lower than 4.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: January 17, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Giampaolo Pellegatti, Daniele Bigiavi, Rita Martelli, Maria Silvia Tonti, Luigi Resconi, Simona Guidotti
  • Publication number: 20120010375
    Abstract: The present invention provides a polymerization process utilizing a dual metallocene catalyst system for the production of broad or bimodal molecular weight distribution polymers, generally, in the absence of added hydrogen. Polymers produced from the polymerization process are also provided, and these polymers can have a Mn in a range from about 9,000 to about 30,000 g/mol, and a short chain branch content that decreases as molecular weight increases.
    Type: Application
    Filed: July 6, 2010
    Publication date: January 12, 2012
    Applicant: CHERVON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Youlu Yu
  • Patent number: 8088867
    Abstract: The invention relates to a polymer blend prepared by the process of combining under polymerization conditions: (A) a first catalyst capable of producing a first crystalline polymer having an Mw of 100,000 or less, (B) a second catalyst capable of preparing a second amorphous polymer having an Mw of 100,000 or less and differing in chemical or physical properties from the first polymer under equivalent polymerization conditions, (C) a cocatalyst, activator, scavenger, or combination thereof, and (D) one or more olefins; wherein the polymer blend is formed in-situ, comprises crystalline polymer segments and amorphous polymer segments, and has an Mw of 100,000 or less.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: January 3, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peijun Jiang, Armenag Hagop Dekmezian, Jo Ann Marie Canich, Charles Lewis Sims, Ramin Abhari, Cesar Alberto Garcia-Franco, David Raymond Johnsrud
  • Patent number: 8088871
    Abstract: A method of polymerizing olefins with catalyst systems, such as, for example, a multimodal catalyst system, wherein the catalyst system is stored at a controlled temperature to minimize loss of catalyst system productivity.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: January 3, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Natarajan Muruganandam, Jeevan Abichandani, Kersten A. Terry, Hemant G. Patel, George Rodriguez
  • Publication number: 20110319575
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Application
    Filed: September 8, 2011
    Publication date: December 29, 2011
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy L. Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yáng, Matthew G. Thorn
  • Patent number: 8080624
    Abstract: A propylene-based polymer which is suitably applicable to foam molding, sheet molding, blow molding or the like, because of having good flow characteristics, high melt tension, high swell ratio and thus good molding workability. It is attained by a propylene-based polymer or the like characterized by satisfying the following requirements (i) to (vi). Requirement (i): MFR is 0.1 g/10 minutes to 100 g/10 minutes. Requirement (ii): Q value by GPC is 3.5 to 10.5. Requirement (iii): ratio of components with a molecular weight of equal to or higher than 2,000,000, in a molecular weight distribution curve obtained by GPC, is equal to or larger than 0.4% by weight and less than 10% by weight. Requirement (iv): components, which elute at a temperature of equal to or lower than 40° C., are equal to or less than 3.0% by weight, in temperature rising elution fractionation by ODCB. Requirement (v): isotactic triad fraction (mm) measured with 13C-NMR is equal to or higher than 95%.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: December 20, 2011
    Assignee: Japan Polypropylene Corporation
    Inventors: Masaaki Ito, Hideshi Uchino, Yoshiyuki Ishihama, Masaru Aoki, Masato Nakano, Fusaaki Katou, Kazuo Asuka
  • Publication number: 20110288248
    Abstract: Fouling in a dispersed phase reactor in the presence of a phosphinimine catalyst and MAO may be reduced by reducing the loading of the phosphinimine catalyst to provide from 0.02 to 0.031 mmol of transition M per g of catalyst while still maintaining a productivity of not less than 2500 g of polymer/gram of catalyst. The catalyst may optionally be used in the presence of an antistatic agent.
    Type: Application
    Filed: May 16, 2011
    Publication date: November 24, 2011
    Inventors: Xiaoliang Gao, Benjamin Milton Shaw, Cliff Robert Baar
  • Patent number: 8039569
    Abstract: Monomodal molding compositions based on polymers of ethylene, wherein the density of the molding compositions is in the range from 0.940 to 0.96 g/cm3, the Mi is in the range from 0.5 to 10.0 g/10 min. the polydispersity Mw/Mn is in the range from 3 to 20, the branches/1000 carbon atoms is in the range from 0.1 to 10 and the weight average molar mass Mw is in the range from 50 000 g/mol to 150 000 g/mol, and also injection-molded shaped bodies as well as screw closures comprising the molding compositions.
    Type: Grant
    Filed: April 15, 2006
    Date of Patent: October 18, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Jennifer Kipke, Shahram Mihan, Rainer Karer
  • Publication number: 20110230108
    Abstract: A process for preparing polymers, especially multi-block copolymer containing therein two or more segments or blocks differing in chemical or physical properties, by contacting propylene, 4-methyl-1-pentene, or other C4-8 ?-olefins and one or more copolymerizable comonomers, especially ethylene in the presence of a composition comprising the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
    Type: Application
    Filed: April 19, 2011
    Publication date: September 22, 2011
    Applicant: Dow Global Technologies LLC
    Inventors: Daniel J. Arriola, Edmund M. Carnahan, David D. Devore, Phillip D. Hustad, Roger L. Kuhlman, Timothy T. Wenzel
  • Patent number: 8008403
    Abstract: A polyethylene which comprises ethylene homopolymers and/or copolymers of ethylene with 1-alkenes and has a molar mass distribution width Mw/Mn of from 5 to 30, a density of from 0.92 to 0.955 g/cm3, a weight average molar mass Mw of from 50000 g/mol to 500 000 g/mol and has from 0.01 to 20 branches/1000 carbon atoms and a z-average molar mass Mz of less than 1 million g/mol, a process for its preparation, catalysts suitable for its preparation and also films in which this polyethylene is present.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: August 30, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Jennifer Kipke, Shahram Mihan, Rainer Karer, Dieter Lilge
  • Patent number: 8003740
    Abstract: Method of preparing olefin polymers, which comprises the polymerization of at least one ?-olefin in the presence of a hybrid catalyst to produce a polymer comprising at least a higher molecular weight polymer component and a lower molecular weight polymer component in the presence of water in an amount of from 2 to 100 mol ppm and/or carbon dioxide in an amount of from 2 to 100 mol ppm, in each case based on the total reaction mixture, in order to alter the ratio of the higher molecular weight polymer component to the lower molecular weight polymer component. This enables the ratio of the higher molecular weight component to the lower molecular weight component to be controlled selectively.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: August 23, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Rainer Karer, Harald Schmitz, Dieter Lilge
  • Patent number: 7981992
    Abstract: Copolymers, especially multi-block copolymer containing therein two or more segments or blocks, are prepared by polymerizing propylene, 4-methyl-1-pentene, or another C4-8 ?-olefin in the presence of a composition comprising the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers having increased incidence of regio-irregular branching compared to the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: July 19, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Daniel J. Arriola, Edmund M. Carnahan, David D. Devore, Phillip D. Hustad, Roger L. Kuhlman, Timothy T. Wenzel
  • Patent number: 7964681
    Abstract: A process is disclosed for the preparation of zinc alkyl chain growth products via a catalysed chain growth reaction of an alpha-olefin on a zinc alkyl, wherein the chain growth catalyst system employs a group 3-10 transition metal, or a group 3 main group metal, or a lanthanide or actinide complex, and optionally a suitable activator. The products can be further converted into alpha-olefins by olefin displacement of the grown alkyls as alpha-olefins from the zinc alkyl chain growth product, or into primary alcohols, by oxidation of the resulting zinc alkyl chain growth product to form alkoxide compounds, followed by hydrolysis of the alkoxides.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: June 21, 2011
    Assignee: Ineos Europe Limited
    Inventors: George Johan Peter Britovsek, Steven Alan Cohen, Vernon Charles Gibson
  • Patent number: 7960487
    Abstract: This invention relates to catalyst compositions, methods, and polymers encompassing at least one first Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, in combination with at least one second Group 4 metallocene with non-bridging ?5-cyclopentadienyl-type ligands, typically in combination with at least one cocatalyst, and at least one activator. The compositions and methods disclosed herein provide ethylene polymers with a bimodal molecular weight distribution.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: June 14, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Kumudini C. Jayaratne, Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Matthew G. Thorn, Jerry T. Lanier, Tony R. Crain
  • Patent number: 7947793
    Abstract: Embodiments of the invention provide a class of ethylene/?-olefin block interpolymers. The ethylene/?-olefin interpolymers are characterized by an average block index, ABI, which is greater than zero and up to about 1.0 and a molecular weight distribution, Mw/Mn, greater than about 1.3. Preferably, the block index is from about 0.2 to about 1. In addition or alternatively, the block ethylene/?-olefin interpolymer is characterized by having at least one fraction obtained by Temperature Rising Elution Fractionation (‘TREF’), wherein the fraction has a block index greater than about 0.3 and up to about 1.0 and the ethylene/?-olefin interpolymer has a molecular weight distribution, Mw/Mn, greater than about 1.4.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: May 24, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Gary R. Marchand, Yunwa W. Cheung, Benjamin C. Poon, Jeffrey D. Weinhold, Kim L. Walton, Pankaj Gupta, Colin Lipishan, Phillip D. Hustad, Roger L. Kuhlman, Edmund M. Carnahan, Eddy I. Garcia-Meitin, Patricia L. Roberts
  • Patent number: 7943711
    Abstract: In a process for producing an elastomer composition, ethylene, at least one alpha-olefin, and at least one diene is contacted with a catalyst system comprising at least two metallocene catalyst compounds and a non-coordinating anion activator wherein one of the metallocene catalyst compounds is an indenyl complex having the general formula: (In1R1m)R3(In2R2p)MXq, and at least one metallocene catalyst compound comprises a compound having the general formula: wherein M is a transition metal from Group 3, 4, or 5 of the Periodic Table of the Elements and other deatures defined herein.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: May 17, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Periagaram Srinivasan Ravishankar
  • Patent number: 7928051
    Abstract: Polyethylene which comprises ethylene homopolymers and/or copolymers of ethylene with 1-alkenes and has a molar mass distribution width Mw/Mn of from 3 to 30, a density of from 0.945 to 0.965 g/cm3, a weight average molar mass Mw of from 50 000 g/mol to 200 000 g/mol, a HLMI of from 10 to 300 g/10 min and has from 0.1 to 15 branches/1000 carbon atoms, wherein the 1 to 15% by weight of the polyethylene having the highest molar masses have a degree of branching of more than 1 branch of side chains larger than CH3/1000 carbon atoms, a process for its preparation, catalysts suitable for its preparation and also injection moldings in which this polyethylene is present.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: April 19, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Jennifer Kipke, Shahram Mihan, Rainer Karer, Dieter Lilge
  • Patent number: 7915192
    Abstract: A composition for use in forming a multi-block copolymer from a single polymerizable monomer, said copolymer containing therein two or more segments or blocks differing in branching index, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first olefin polymerization catalyst, (B) a second olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, at least one of catalyst (A) or catalyst (B) being capable of forming a branched polymer by means of chain walking or reincorporation of in situ formed olefinic polymer chains, and (C) a chain shuttling agent.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: March 29, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Daniel J. Arriola, David D. Devore, Edmund M. Carnahan, Phillip D. Hustad, Roger L. Kuhlman, Timothy T. Wenzel
  • Patent number: 7897706
    Abstract: The present invention relates to a supported, treated catalyst system and its use in a process for polymerizing olefin(s). More particularly, it provides a supported, treated catalyst system produced by a process comprising the steps of: (a) forming a supported bimetallic catalyst system comprising a first catalyst component and a metallocene catalyst compound; and (b) contacting the supported bimetallic catalyst system of (a) with at least one methylalumoxane-activatable compound.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: March 1, 2011
    Assignee: Univation Technologies, LLC
    Inventor: Sun-Chueh Kao
  • Publication number: 20110021726
    Abstract: The purpose of the invention is to provide a process for producing a prepolymerization catalyst component which is homogeneous and does not a tendency that it adheres to a wall surface of a dryer and that the prepolymerization catalyst component are aggregated with each other. The process comprises the following steps (1) to (4): step (1): heat-treating a solution containing a metallocene-based compound (B1), which is prepared by dissolving the metallocene-based compound (B1) shown below in a saturated hydrocarbon solvent, at 40° C. or above to obtain a heat-treated material (1); step (2): heat-treating a mixture of the heat-treated material (1) and a metallocene-based compound (B2) shown below at 40° C.
    Type: Application
    Filed: March 16, 2009
    Publication date: January 27, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasutoyo Kawashima, Yoshinobu Nozue, Naoko Ochi
  • Patent number: 7842763
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: November 30, 2010
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yang, Matthew G. Thorn
  • Patent number: 7816478
    Abstract: A thick film and process to prepare polyethylene useful for the film are disclosed. Ethylene is polymerized in two reaction zones with a C6-C10 ?-olefin in the presence of a catalyst system comprising an activator, a supported bridged zirconium complex, and a supported non-bridged zirconium complex. The process yields medium density to linear low density polyethylene having a melt index from 0.20 to 1.0 dg/min. Thick films from the polyethylene have a superior combination of high impact strength and high modulus.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: October 19, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Bradley P. Etherton, Stephen M. Imfeld, Mohan Sasthav
  • Patent number: 7799878
    Abstract: A dinuclear transition metal compound of Formula 1 is provided: where R1, R2, R3, R4, R5, R, L, A, B, X, M, z, and n are the same as in the description of the present invention. The dinuclear transition metal compound includes two transition metal compounds connected each other by a bridging group so that a decrease in catalyst activation due to a polar functional group can be prevented. A catalyst composition including the dinuclear transition metal compound is highly active for a monomer having a polar functional group.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: September 21, 2010
    Assignee: LG Chem, Ltd.
    Inventors: Heon Yong Kwon, Ki-soo Lee, Yonggyu Han, Byoungho Jeon, You Young Jung, Baekun Shin
  • Publication number: 20100227987
    Abstract: A propylene-based polymer which is suitably applicable to foam molding, sheet molding, blow molding or the like, because of having good flow characteristics, high melt tension, high swell ratio and thus good molding workability. It is attained by a propylene-based polymer or the like characterized by satisfying the following requirements (i) to (vi). Requirement (i): MFR is 0.1 g/10 minutes to 100 g/10 minutes. Requirement (ii): Q value by GPC is 3.5 to 10.5. Requirement (iii): ratio of components with a molecular weight of equal to or higher than 2,000,000, in a molecular weight distribution curve obtained by GPC, is equal to or larger than 0.4% by weight and less than 10% by weight. Requirement (iv): components, which elute at a temperature of equal to or lower than 40° C., are equal to or less than 3.0% by weight, in temperature rising elution fractionation by ODCB. Requirement (v): isotactic triad fraction (mm) measured with 13C-NMR is equal to or higher than 95%.
    Type: Application
    Filed: May 16, 2008
    Publication date: September 9, 2010
    Applicant: JAPAN POLYPROPYLENE CORPORATION
    Inventors: Masaaki Ito, Hideshi Uchino, Yoshiyuki Ishihama, Masaru Aoki, Masato Nakano, Fusaaki Katou, Kazuo Asuka
  • Patent number: 7767771
    Abstract: A process is disclosed for the preparation of zinc alkyl chain growth products via a catalysed chain growth reaction of an alpha-olefin on a zinc alkyl, wherein the chain growth catalyst system employs a group 3-10 transition metal, or a group 3 main group metal, or a lanthanide or actinide complex, and optionally a suitable activator. The products can be further converted into alpha-olefins by olefin displacement of the grown alkyls as alpha-olefins from the zinc alkyl chain growth product, or into primary alcohols, by oxidation of the resulting zinc alkyl chain growth product to form alkoxide compounds, followed by hydrolysis of the alkoxides.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: August 3, 2010
    Assignee: Ineos Europe Limited
    Inventors: George Johan Peter Britovsek, Steven Alan Cohen, Vernon Charles Gibson
  • Publication number: 20100190936
    Abstract: Polyethylene is made by (co)polymerizing ethylene in a gas-phase reactor using a mixed catalyst system comprising a chromium catalyst supported on silica and a Group 4 transition metal catalyst, separately supported on silica. The Group 4 transition metal catalyst is defined by the formula shown, wherein M is a Group 4 metal, PI is a phosphinimide or ketimide ligand (shown), L is a monoanionic ligand which is a cyclopentadienyl or a bulky heteroatom type ligand, m is 1 or 2, n is 0 or 1, and p is an integer. The mixed catalyst system gives access to polyethylene having a broad or bimodal molecular weight distribution. In the copolymerization of ethylene, reversed or partially reversed comonomer distribution is achieved: the supported Group 4 component provides polymer segments having higher molecular weight and also higher comonomer incorporation than polymer segments produced at the supported chromium sites.
    Type: Application
    Filed: March 25, 2010
    Publication date: July 29, 2010
    Inventors: Peter Phung Minh Hoang, Victoria Ker, Bradley Funk
  • Publication number: 20100160581
    Abstract: The present invention relates to a supported catalyst composition for polymerization of olefins comprising at least two catalytic components; and a polymerization process using that catalyst composition; and a method for its preparation.
    Type: Application
    Filed: August 11, 2006
    Publication date: June 24, 2010
    Inventors: Wei Xu, Syriac J. Palackal, Atieh Abu-Ruqabah, Maneet Muktibodh, Bing Wang, Nicolaas Hendrika Friederichs
  • Patent number: 7741420
    Abstract: This invention relates to a process to polymerize olefins comprising contacting, under supercritical conditions, olefin monomers with a catalyst compound, an activator, optional comonomer, and optional hydrocarbon diluent or solvent.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: June 22, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Patrick Brant
  • Publication number: 20100144910
    Abstract: Catalyst systems for producing olefin polymers, methods of making such catalyst systems, and processes for producing olefin polymers using such catalyst systems are provided. The catalyst system comprises a first component and a second component, where the first component comprises chromium on a support, where the support comprises phosphated alumina, and the second component comprises: (1) a metal halide compound, a transition metal compound, and a precipitating agent, or (2) a substituted or unsubstituted dicyclopentadienyl chromium compound deposited onto a calcined oxide carrier, where the carrier includes silica, alumina, aluminophosphate, or any mixed oxide thereof.
    Type: Application
    Filed: February 11, 2010
    Publication date: June 10, 2010
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe
  • Patent number: RE41897
    Abstract: Catalyst compositions and methods, useful in polymerization processes, utilizing at least two metal compounds are disclosed. At least one of the metal compounds is a Group 15 containing metal compound and the other metal compound is preferably a bulky ligand metallocene-type catalyst. The invention also discloses a new polyolefin, generally polyethylene, particularly a multimodal polymer and more specifically, a bimodal polymer, and its use in various end-use applications such as film, molding and pipe.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: October 26, 2010
    Assignee: Univation Technologies, LLC
    Inventors: Donald R. Loveday, David H. McConville, John F. Szul, Kersten Anne Terry, Simon Mawson, Tae Hoon Kwalk, Frederick J. Karol, David James Schreck