Non-metal Material Is Organic Oxygen-containing Compound Patents (Class 526/142)
  • Patent number: 7649062
    Abstract: A solid titanium catalyst component (I) of the present invention is characterized in that it contains titanium, magnesium, halogen, and a cyclic ester compound (a) represented by the following formula (1): wherein n is an integer of 5 to 10; R2 and R3 are each independently COOR1 or R, and at least one of R2 and R3 is COOR1; a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is R) in the cyclic backbone may be replaced with a double bond; a plurality of R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms; and a plurality of R's are each independently a hydrogen atom or a substituent, but at least one of R's is not a hydrogen atom. When using this solid titanium catalyst component (I), an olefin polymer having a broad molecular weight distribution can be produced.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: January 19, 2010
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kazuhisa Matsunaga, Hisao Hashida, Toshiyuki Tsutsui, Kunio Yamamoto, Atsushi Shibahara, Tetsunori Shinozaki
  • Patent number: 7649061
    Abstract: The invention relates to a process for preparing a poly-1-olefin by polymerization of a 1-olefin of the formula R4CH?CH2, where R4 is hydrogen or an alkyl radical having from 1 to 10 carbon atoms, in suspension, in solution or in the gas phase, at a temperature of from 20 to 200° C. and a pressure of from 0.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: January 19, 2010
    Assignee: Basell Polyolefine GmbH
    Inventor: Friedhelm Gundert
  • Publication number: 20090264607
    Abstract: The present invention relates to a process for the production of a high melt flow propylene homopolymer or random copolymer with low odor and low volatiles content, which is suitable for thin-walled injection molding applications, said process comprising the step of polymerizing propylene and one or more optional comonomers in presence of a Ziegler-Natta catalyst comprising a titanium compound having at least one titanium-halogen bond, and a diether compound as internal electron donor, both supported on a magnesium halide in active form, an organoaluminium compound and an optional external donor.
    Type: Application
    Filed: April 24, 2007
    Publication date: October 22, 2009
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Valerie Terreur, Jerome Gromada
  • Patent number: 7598333
    Abstract: Low-viscosity drag reducers, systems for delivering low-viscosity drag reducers, and methods of making low-viscosity drag reducers are disclosed. The low-viscosity drag reducers have a viscosity less than 350 cP at a shear rate of 250 sec?1 and a temperature of 60° F. This low-viscosity allows the drag reducers to be delivered through a long and relatively small diameter conduit of a subsea umbilical line without an unacceptable level of pressure drop or plugging of the conduit. The low-viscosity drag reducers can be delivered to a subsea flowline carrying fluids produced from a subterranean formation to thereby provide significant drag reduction in the flowline.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: October 6, 2009
    Assignee: ConocoPhillips Company
    Inventors: Timothy L. Burden, Kenneth L. Smith, Allan Browne, William F. Harris
  • Patent number: 7582712
    Abstract: Methods and apparatus to form a catalyst precursor, comprising combining in a reactor magnesium, an alkoxysilane compound, a halogenized silicon compound, a halogenized transition metal compound, a substituted aromatic furan compound having a structural formula, and an alkyl halide or aromatic halide compound to obtain a solid catalyst precursor, wherein the alkoxysilane compound and halogenized silicon compound are combined prior to either being exposed to the halogenized transition metal compound, and wherein the alkyl halide or aromatic halide compound is introduced to the reactor as the final step.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: September 1, 2009
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Guangxue Xu, Honglan Lu
  • Patent number: 7566676
    Abstract: The present invention relates to a preparation method of solid titanium catalyst for olefin polymerization comprising the steps of: (1) preparing a magnesium compound solution by dissolving a magnesium halide compound into a mixed solvent of a cyclic ether and one or more of alcohol; (2) preparing a carrier by adding firstly a titanium halide compound to the magnesium compound solution at low temperature, elevating the temperature of the resulted solution or aging it, and then thereto adding secondly the titanium halide compound additionally; (3) preparing a titanium catalyst by reacting the carrier with a titanium compound and an electron donor; and (4) washing the titanium catalyst with hydrocarbon solvent at high temperature.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: July 28, 2009
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: Chun-Byung Yang, Ho-Sik Chang, Ki-Hwa Lee
  • Patent number: 7560521
    Abstract: A catalyst component for the polymerization of olefins comprising a titanium compound, a Mg-dihalide, a difunctional electron donor compound (ED) selected from diesters, diketones, diamines or diethers, and a monofunctional electron donor compound (MD) selected from ethers, esters, amines or ketones, wherein a molar ratio ED/MD is higher than 10.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: July 14, 2009
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Gianni Collina, Ofelia Fusco, Diego Brita
  • Patent number: 7482413
    Abstract: The present invention relates to MgCl2.(EtOH),m(ROH)n(H2O)p adduct in which R is a C1-C15 hydrocarbon group different from ethyl, n and m are indexes, higher than 0, satisfying the equations (n+m)?0.7 and 0.05?n/(n+m)?0.95 and p is a number ranging from 0 to 0.7 with the proviso that when R is methyl and (n+m) is in the range of 0.7 to 1, the value of n/(n+m) ranges from 0.05 to 0.45. The catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity with respect to the catalysts prepared from the adducts of the prior art.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: January 27, 2009
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Giampiero Morini, Giulio Balbontin, Fabrizio Piemontesi, Maria Fusto, Gianni Vitale, Giansiro Prini
  • Publication number: 20080319148
    Abstract: A process for producing a modified particle, which comprises the step of contacting a compound (a) defined by the formula, M1L13, a compound (b) defined by the formula, R1t-1TH, a compound (c) or (e) defined by the formula, R2m-uM2(OH)u or R24-nJ(OH)n, respectively, and a particle (d) with one another; a carrier comprising a modified particle produced by said process; a catalyst component (A) comprising a modified particle produced by said process; a process for producing a catalyst for addition polymerization, which comprises the step of contacting said catalyst component (A), a transition metal compound (B) and an optional organoaluminum compound (C) with one another; and a process for producing an addition polymer, which comprises the step of addition polymerizing an addition-polymerizable monomer in the presence of a catalyst for addition polymerization produced by said process.
    Type: Application
    Filed: April 7, 2008
    Publication date: December 25, 2008
    Inventors: Hideki Oshima, Makoto Satoh
  • Patent number: 7465776
    Abstract: High melt flow rate high crystallinity polypropylene homopolymer are produced in a bulk polymerization process using a Ziegler-Natta catalyst containing a combination of two internal electron donors and selected external donors. The high melt flow rate, high crystallinity polypropylene homopolymers produced according to the current invention display improved flexural modulus and tensile yield stress when nucleated.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: December 16, 2008
    Assignee: Sunoco, Inc. (R&M)
    Inventors: Craig Meverden, Andrew Schnitgen, Sehyun Kim
  • Patent number: 7417098
    Abstract: Process for the emulsion polymerization of one or more olefins by reacting a quinoid compound with a metal compound and a phosphine compound which is substituted by at least one polar radical and subsequently using the reaction product for the polymerization or copolymerization of olefins in water or in a solvent mixture which contains at least 50% by weight of water and at least one emulsifier.
    Type: Grant
    Filed: November 6, 2004
    Date of Patent: August 26, 2008
    Assignee: BASF SE
    Inventors: Mubarik Mahmood Chowdhry, Xavier Sava, Monica Haag, Jacob Wildeson, Stefan Mecking, Ludmila Kolb
  • Patent number: 7402638
    Abstract: The present invention relates to a propylene random copolymer which satisfies the following requirements [1] to [4], and to various useful molded products obtained by molding the propylene random copolymer: [1] the concentration (Pa, % by mole) of a skeletal constituent derived from propylene (a), and the concentration (Px, % by mole) of a skeletal constituent derived from at least one olefin selected from ethylene (b) and ?-olefins having 4 to 20 carbon atoms (c), each of which is contained in the propylene random copolymer, satisfy the following relational expressions (Eq-1) to (Eq-3): 85?Pa<100??(Eq-1) 0<Px?15??(Eq-2) Pa+Px=100;??(Eq-3) [2] the concentration (Pa, % by mole) of the skeletal constituent derived from propylene (a) contained in the propylene random copolymer, and the melting point (Tm) measured with a differential scanning calorimeter satisfy the following relational expression (Eq-4): 135?4×(100?Pa)<Tm<165?4×(100?Pa);??(Eq-4) [3] the total amount of 2,1-bonded and 1,3-bon
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: July 22, 2008
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Shuji Matsumura, Keita Itakura, Satoshi Hashizume, Akihiro Inukai, Kouichirou Yamamoto, Ayako Kadosaka, Yoshio Sasaki, Masashi Higuchi, Hiroshi Nishikawa
  • Patent number: 7388061
    Abstract: The present invention provides a solid catalyst component for the polymerization of olefins, comprising magnesium, titanium, a halogen and an electron donor, wherein said electron donor comprises at least one selected from the group consisting of ester of polyol of the formula (I): R1CO—O—CR3R4—A—CR5R6—O—CO—R2??(I) wherein, R1 and R2 groups, which may be identical or different, can be substituted or unsubstituted hydrocarbyl having 1 to 20 carbon atoms, R3-R6 groups, which may be identical or different, can be selected from the group consisting of hydrogen, halogen or substituted or unsubstituted hydrocarbyl having 1 to 20 carbon atoms, R1-R6 groups optionally contain one or more hetero-atoms replacing carbon, hydrogen atom or the both, said hetero-atom is selected from the group consisting of nitrogen, oxygen, sulfur, silicon, phosphorus and halogen atom, two or more of R3-R6 groups can be linked to form saturated or unsaturated monocyclic or polycyclic ring A is a single bond or bivalent linking group wit
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: June 17, 2008
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Mingzhi Gao, Haitao Liu, Zhulan Li, Jun Wang, Juxiu Yang, Tianyi Li, Xiaodong Wang, Changxiu Li, Chunming Ding
  • Patent number: 7351678
    Abstract: The invention relates to the use of nitrogenous aluminium organyl complexes of general formula (I) as co-catalysts in heterogeneous polymerisation reactions of propene. In said formula: R, R?, R1 and R1? independently of one another represent branched or unbranched C1-C7 alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl or alkynyl; R2 represents unsubstituted, monoalkylated or polyalkylated and/or monofluorinated or polyfluorinated aromatic hydrocarbons from group (II); R3 and R4 independently of one another represent CH2, CF2 oder C(R1)2; m stands for 0, 1 or 2; n stands for 0, 1 or 2; o stands for 0 or 1, all independently of one another.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: April 1, 2008
    Assignee: Merck Patent GmbH
    Inventors: Kartin Köhler, Herbert Schumann, Birgit Corinna Wassermann, Wilfried Wassermann, Katharina Lange, Sebastian Dechert, Markus Hummert, Stefan Schutte, Walter Kaminsky, Andrea Eisenhardt, Björn Heuer, Andre Laban
  • Patent number: 7351778
    Abstract: The present invention provides a catalyst component for polymerization of olefin CH2?CHR, in which R is hydrogen or C1-C12 alkyl or aryl, comprising magnesium, titanium, a halogen and an electron donor compound (a) which is at least one selected from the group consisting of dibasic ester compounds of the formula (I), and said catalyst component optionally further comprising an electron donor compound (b) selected from the group consisting of aliphatic dicarboxylic esters and aromatic dicarboxylic esters, and/or an electron donor compound (c) selected from the group consisting of 1,3-diether compounds of formula (IV): wherein, R1, R? and A are as defined in the description, wherein RI-RVIII are as defined in the description, and a catalyst comprising the catalyst component.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: April 1, 2008
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry China Petroleum & Chemical Corporation
    Inventors: Mingzhi Gao, Haitao Liu, Tianyi Li, Xianzhong Li, Changxiu Li, Jiyu Li, Lingyan Xing, Juxiu Yang, Jing Ma, Xiaodong Wang, Chunmin Ding
  • Patent number: 7329713
    Abstract: Zero VOC compositions are described and may include: one of vinyl ester solids, unsaturated polyester solids (e.g., isophthalic polyester, orthophthalic polyester, terephthalic polyester, and mixtures thereof), and mixtures thereof; polymerizable solids (e.g., a monomer, an oligomer, and mixtures thereof); and/or at least one photochemical catalyst. Zero VOC compositions may be produced by: heating polymerizable solids to a range of about 300° F. to about 500° F.; and adding one of vinyl ester solids, unsaturated polyester solids, and mixtures thereof. Additional steps may include reducing the heat to about 70° F. to about 100° F. and adding at least one photochemical catalyst and/or at least one additive. Zero VOC compositions may be curable without requiring evaporation of a VOC there from upon exposure to ultraviolet light and/or mixing with at least one thermal catalyst.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: February 12, 2008
    Inventor: Ronald A. Schorr
  • Patent number: 7329626
    Abstract: A method for making a solid catalytic component for a Ziegler-Natta catalyst includes contacting a particulate porous support with a solution of a hydrocarbon soluble organomagnesium precursor compound in a hydrocarbon solvent; and reacting said hydrocarbon soluble organo-magnesium precursor compound with an amount of aliphatic or aromatic alcohol, said amount being within an acceptable range of a molar equivalent of aliphatic or aromatic alcohol calculated according to formula (I): Equ Alkanol = 2 ? · [ ( mmole ? ? MgR ? / ? g ? ? support ) - 2.1 - 0.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: February 12, 2008
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Frank Wolf Spaether, David Andrew Presken
  • Patent number: 7319083
    Abstract: A composition is provided that includes a product of combining, in the presence of a free radical initiator a catalyst precursor and at least one monomer wherein the monomer and the catalyst precursor are poiymerizable by free-radical polymerization and wherein the catalyst precursor compound is represented by the formula: wherein each X is an abstractable ligand; each R, R?, R?, R??, Rp1 and Rp2 is independently hydrogen or a hydrocarbyl group provided at least one of Rp1, Rp2, and R?? can be polymerized by a free radical initiator; and M is a Group-4-11 metal.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: January 15, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guo-Xin Jin, Zerong Lin, Robert J. Wittenbrink, Chang-Kun Liu
  • Patent number: 7316987
    Abstract: Catalyst component for the polymerization of olefins obtainable by contacting: (i) a magnesium halide, or a suitable precursor; (ii) a monofunctional electron donor compound (MD) selected from ethers, esters, amines or ketones, used in such amounts to have Mg/MD molar ratios of at least 50; (iii) a titanium compound of formula Ti(ORI)n-yXy, where n is the valence of titanium, y is a number between 1 and n, X is halogen, and RI is a C1-C15 hydrocarbon group and, optionally, (iv) an electron donor compound (ED). The said catalyst component shows improved activity in the polymerization of olefins.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: January 8, 2008
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Gianni Collina, Ofelia Fusco, Diego Brita
  • Patent number: 7288319
    Abstract: Chemically cross-linked polymeric particles are formed using mechanical rather than chemical processes, facilitating production of small-diameter particles in a manner largely independent of the viscosity or density of the polymer. For example, an uncross-linked resin may be provided in particulate form, agglomerated, and compressed into a mass of a desired shape with a desired diameter, and subsequently cross-linked.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: October 30, 2007
    Assignee: Boston Scientific SciMed Inc.
    Inventors: Samuel P. Baldwin, Robert P. Skribiski
  • Patent number: 7262258
    Abstract: There are provided (I) a process for producing a copolymer of ethylene, an ?-olefin having from 3 to 20 carbon atoms and optionally a polyene, which comprises the step of copolymerizing those monomers in a polymerization reactor by feeding the following components (A), (B), (C1) and (D) to the polymerization reactor: (A) a transition metal complex, (B) an organic aluminum compound, (C1) a halogen-containing compound, and (D) a Lewis base, wherein those components are fed to the polymerization reactor without a preliminary contact of (1) the component (A) with the component (B), (2) the component (A) with the component (C1), (3) the component (B) with the component (C1), and (4) the component (B) with the component (D); and (II) a process for producing said copolymer, which comprises the step of copolymerizing those monomers in a polymerization reactor (i) by feeding to the polymerization reactor the components (A), (B), (D), (C2) a halogen-containing compound, which is a derivative of an aryl group-contai
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: August 28, 2007
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Jun Kawashima, Katsunari Inagaki, Tatsuo Sassa
  • Patent number: 7256150
    Abstract: A process for producing a Gp 2/transition metal olefin polymerisation catalyst component, in which a Gp 2 complex is reacted with a transition metal compound so as to produce an oil-in-oil emulsion, the disperse phase containing the preponderance of the Gp 2 metal being selectively sorbed on a carrier to provide a catalyst component of excellent morphology. Polymerisation of olefins using a catalyst containing such a component is also disclosed.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: August 14, 2007
    Assignee: Borealis Polymers Oy
    Inventors: Peter Denifl, Timo Leinonen
  • Patent number: 7238756
    Abstract: Methods of controlling the flow index and/or molecular weight split of a polymer composition are disclosed. The method of producing a polymer composition in one embodiment comprises incorporating a high molecular weight polymer into a low molecular weight polymer to form the polymer composition in a single polymerization reactor in the presence of polymerizable monomers, a bimetallic catalyst composition and at least one control agent; wherein the control agent is added in an amount sufficient to control the level of incorporation of the high molecular weight polymer, the level of low molecular weight polymer, or both. Examples of control agents include alcohols, ethers, amines and oxygen.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: July 3, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Fred D. Ehrman, Pradeep P. Shirodkar, Mark Bradley Davis, Daniel P. Zilker, Jr., Porter C. Shannon
  • Patent number: 7223712
    Abstract: An internal electron-donor compound selected from the 1,3-diethers of formula (I) in which R is a C1–C10 alkyl group, R1 is a linear or branched primary alkyl radical having at least three carbon atoms, optionally containing a heteroatom, and R2 is a secondary alkyl or cycloalkyl radicals different from i-propyl, optionally containing a heteroatom.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: May 29, 2007
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin, Ronald R. Andrea, Van Loon Jan Dirk
  • Patent number: 7220694
    Abstract: The invention relates to a magnesium compound effective in producing olefin polymers having an increased bulk density and a narrowed particle size distribution, not lowering the stereospecificity of the polymers produced and not lowering the polymerization activity in producing the polymers, to an olefin polymerization catalyst comprising the compound, and to a method for producing such olefin polymers. The olefin polymerization catalyst comprises (A) a solid catalyst component prepared by contacting a magnesium compound having a specific particle size distribution index (P), a titanium compound and an electron donor compound with each other, (B) an organometallic compound, and (C) an electron donor. The olefin polymerization method comprises polymerizing an olefin in the presence of the catalyst to give olefin polymers.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: May 22, 2007
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Shohjiroh Tanase, Takehiro Tsuda, Tsuyoshi Ota, Hideo Funabashi
  • Patent number: 7214744
    Abstract: A catalyst system comprising (i) a bulky ligand catalyst compound; and (ii) a novel borate activator is active for olefin polymerization. The novel borate contains at least one chelating (divalent) ligand and contains at least one fluorine atom. Preferred borate activators are provided as anilinium or carbonium salts. Highly preferred borate salts contain two perfluorinated alkoxy chelating ligands. The catalyst system may be used to produce polyethylene for “end use” applications such as polyethylene film and molded polyethylene goods.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: May 8, 2007
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Isam Jaber
  • Patent number: 7208559
    Abstract: An ethylene-based polymer which is an ethylene/C4 to C10 ?-olefin copolymer and satisfies the following requirements [k1] to [k3]: [k1] melt flow rate (MFR) under a loading of 2.16 kg at 190° C. is in the range of 1.0 to 50 g/10 minutes; [k2] LNR defined as a scale of neck-in upon film molding is in the range of 0.6 to 1.4; and [k3] take-up speed at break [DS (m/min)] at 160° C. and melt flow rate (MFR) satisfy the following relationship (Eq-1): 12×MFR0.577?DS?165×MFR0.577 (Eq-1), and a thermoplastic resin composition containing the ethylene-based polymer, provide a molded product, preferably a film, excellent in moldability and mechanical strength.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: April 24, 2007
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasuo Satoh, Mamoru Takahashi, Hideki Bando, Yoshiho Sonobe, Yasushi Nakayama
  • Patent number: 7202314
    Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2?CHR in which R is hydrogen or a hydrocarbon radical with 1–12 carbon atoms, comprising Mg, Ti, halogen and an electron donor selected from succinates, said catalyst component being obtainable by a process comprising the following steps: (a) dissolving a halide of magnesium in a solvent system comprising an organic epoxy compound or an organic phosphorus compound and optionally an inert diluent to form a solution; (b) mixing the obtained solution with a titanium compound to form a mixture; (c) precipitating a solid from the mixture obtained in step (b) in the presence of a succinate and/or an auxiliary precipitant; (d) if a succinate is not used in step (c), contacting the solid obtained in (c) with a succinate, and (e) treating the solid obtained in (c) or (d) with a titanium compound optionally in the presence of an inert diluent.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: April 10, 2007
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin, Gianni Vitale
  • Patent number: 7202316
    Abstract: A modified particle obtained by a process containing contacting a Bi compound, a compound having an electron-withdrawing group and an active hydrogen and particle; and a catalyst component for addition polymerization containing the modified particle; a catalyst for addition polymerization prepared by a process containing contacting the modified particle (A) and a transition metal compound of Groups 3 to 11 or lantanide series (B); and a catalyst for addition polymerization prepared by a process containing contacting the modified particle (A) and a transition metal compound of Groups 3 to 11 or lantanide series (B) and an orbanoaluminum compound (C); and a process for producing an addition polymer with the catalyst.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: April 10, 2007
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Kazuo Takaoki
  • Patent number: 7169871
    Abstract: The present invention relates to propylene polymers made by using catalyst components for the polymerization of olefins comprising Mg, Ti, halogen and at least two electron donor compounds, said catalyst component being characterized by the fact that at least one of the electron donor compounds, present in an amount from 20 to 50% by mol with respect to the total amount of donors, is selected from esters of succinic acids which are not extractable, under the conditions described below, for more than 25% by mol and at least another electron donor compound which is extractable, under the same conditions, for more than 35%. The said catalyst component are capable to give polymers with high xylene insolubility, high stereoblock content and broad MWD suitable for making the polymers usable in the BOPP sector.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: January 30, 2007
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Giampiero Morini, Giulio Balbontin
  • Patent number: 7166682
    Abstract: A process for the preparation of an olefin polymerisation catalyst comprising: a) reacting an aluminoxane and a Lewis base in an optionally halogenated hydrocarbon solvent to form a particulate suspension; b) reacting said suspension with a metallocene complex in an optionally halogenated hydrocarbon solvent; and optionally c) isolating the olefin polymerisation catalyst.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 23, 2007
    Assignee: Borealis Technology Oy
    Inventors: Jarmo Lindroos, Siw Bodil Fredriksen, Pål Christian Bentzrød
  • Patent number: 7160964
    Abstract: A liquid-phase process for polymerizing ?-olefins of the formula CH2?CHR, where R is H or an alkyl radical C1–C6, to produce a polymer that is soluble in the reaction medium, comprising the steps of: a) continuously polymerizing in liquid phase the ?-olefin in the presence of a catalyst system based on a transition metal compound; b) continuously withdrawing from step a) a solution of polymer in the liquid reaction medium; c) mixing in one or more mixing stages said solution of polymer in the reaction medium with an organic deactivator having: at least a hydroxy group, a boiling point higher than 150° C., and a ratio between the molecular weight (MW) and the number of hydroxy groups (OH) comprised between 20 and 100.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: January 9, 2007
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Daniele Bigiavi, Gabriele Mei, Nicolo' Arich De Finetti, Giuseppe Penzo, Gianni Vitale, Massimo Covezzi
  • Patent number: 7135532
    Abstract: There are disclosed a process for producing a solid catalyst component and a catalyst for ?-olefin polymerization, and a process for producing an ?-olefin polymer, wherein the process for producing a solid catalyst component comprises the steps of: (1) reducing a specific titanium compound with an organomagnesium compound in the presence of an organosilicon compound having an Si—O bond (and an ester compound), thereby obtaining a solid product, and (2) contacting the solid product with a halogeno compound of the 14 group element, at least one member selected from the group consisting of an electron donor compound and an organic acid halide, and a compound having a Ti-halogen bond, thereby obtaining the solid catalyst component.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: November 14, 2006
    Assignee: Sunitomo Chemical Company, Limited
    Inventors: Yasuki Fujiwara, Makoto Satoh
  • Patent number: 7129303
    Abstract: The present invention provides a method for producing homo- and co-polymers of ethylene, or more particularly a method for producing homo- and copolymers of ethylene in the presence of (a) a solid titanium catalyst produced by preparing a magnesium solution by contact-reacting a halogenated magnesium compound with an alcohol; reacting thereto an ester compound having at least one hydroxyl group and a silicon compound having at least one alkoxy group; and adding a mixture of a titanium compound and a silicon compound; (b) organometallic compounds of Group II or III of the Periodic Table; and (c) an alkoxysilane compound and a haloalkne compound. The catalyst for homo- and co-polymerization of ethylene, produced according to the present invention, exhibits a high activity and the polymers produced by the method of the present invention using said catalyst have the advantages of exhibiting a high bulk density and a narrow molecular weight distribution.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: October 31, 2006
    Assignee: Samsung Atofina Co., Ltd.
    Inventors: Chun-Byung Yang, Won-Young Kim, Weon Lee
  • Patent number: 7125939
    Abstract: Disclosed is a process for polymerizing olefins. The process comprises polymerizing one or more olefins with a single-site catalyst in two or more polymerization stages. The catalyst comprises a transition metal complex, an activator, and a hydroxyl functional polymer. The complex, the activator, or both are chemically bound to the hydroxyl functional polymer.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: October 24, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Shao-Hua Guo
  • Patent number: 7112642
    Abstract: Propylene polymers having a content of isotactic pentads (mmmm) higher than 97%, molecular weight distribution, expressed by the formula (a) ratio, equal to or higher than 6 and a value of formula (b) ratio equal to or lower than 5.5. The said polymers are prepared in the presence of a particular combination of Ziegler-Natta solid catalyst components and highly stereoregulating electron-donor compounds. Laminated articles, in particular bi-axially oriented films and sheets, can be prepared with the said polymers {overscore (M)}w/{overscore (M)}n ??(a) {overscore (M)}z/{overscore (M)}w.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: September 26, 2006
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Els Meesters, Jean News, Alessandro Guidicini
  • Patent number: 7084221
    Abstract: A modified aluminoxane is disclosed. Aluminoxane compounds are modified with glycol ethers or polyethers. The modified aluminoxanes are effective activators for single-site catalysts. Catalyst activated with the modified aluminoxane produces polyolefin with increased melt flow index, broadened molecular weight distribution, and improved thermal processability.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: August 1, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Shao-Hua Guo, Shaotian Wang
  • Patent number: 7049263
    Abstract: There are provided a process for producing a catalyst for ?-olefin polymerization, which comprises the step of contacting (1) a solid catalyst component having Ti, Mg and a halogen as essential components, (2) an organoaluminum compound and (3) a compound having a —C—O—C—O—C— bond group in a closed ring structure with one another; and a process for producing an ?-olefin polymer, which comprises the step of homopolymerizing or copolymerizing an ?-olefin in the presence of a catalyst for ?-olefin polymerization produced by the above process.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: May 23, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Shin-ichi Kumamoto
  • Patent number: 7022796
    Abstract: A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: April 4, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, Luis Paulo Barthel-Rosa, Shabbir Ahmedbhai Malbari, David J. Rauscher, Michel M. Daumerie
  • Patent number: 7005487
    Abstract: A solid catalyst component for the polymerization of olefins, comprising: an inert porous support, Mg, Ti, halogen and an electron donor selected from succinates of formula (I) wherein the radicals R1 and R2 equal to or different form each other, are hydrocarbon groups, the radicals R3, R4, R5 and R6, equal to or different from each other, are hydrogen or hydrocarbon groups.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: February 28, 2006
    Assignee: Basell Poliolefine Italia S.R.L.
    Inventors: Giulio Balbontin, Giampiero Morini
  • Patent number: 7001961
    Abstract: The present invention relates to a catalyst composition and a method for making the catalyst composition which comprises a polymerization catalyst and at least one gelling agent. The invention is also directed to the use of the catalyst composition in the polymerization of olefin(s). In particular, the polymerization catalyst system is supported on a carrier.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: February 21, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Agapios Kyriacos Agapiou, Chi-I Kuo, David M. Glowczwski, Steven K. Ackerman
  • Patent number: 6956093
    Abstract: The present invention relates to the preparation of syndiotactic 1,2-polybutadiene polymer using a catalyst containing a carbon disulfide in which the polymerizate thereof is treated with hydrogen peroxide, to preparation of a composite of conjugated diene-based elastomer and syndiotactic 1,2-polybutadiene polymer using a catalyst containing a carbon disulfide which the polymerizate thereof is treated with hydrogen peroxide, a rubber composition containing said syndiotactic 1,2-polybutadiene polymer and/or said composite and a tire having at least one rubber component thereof.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: October 18, 2005
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Wen-Liang Hsu, Adel Farhan Halasa
  • Patent number: 6841632
    Abstract: Solid catalyst components comprising Ti,Mg, halogen and internal electron-donor compound selected from the 1,3-diethers of formula (I) in which R is a C1-C10 alkyl group, R1 is a linear or branched primary alkyl radical having at least three carbon atoms, optionally containing a heteroatom, and R2 is a secondary alkyl or cycloalkyl radicals different from i-propyl, optionally containing a heteroatom. The catalysts obtained by using as internal electron-donor compound the said 1,3-diethers display in the (co)polymerization of olefins an excellent balance of activity and stereospecificity that cannot be reached with the ethers known in the art.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: January 11, 2005
    Assignee: Basell Poliolefine Italis S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin, Ronald R. Andrea, Van Loon Jan Dirk
  • Patent number: 6841503
    Abstract: There are disclosed a process for producing a solid catalyst component and a catalyst for ?-olefin polymerization, and a process for producing an ?-olefin polymer, wherein the process for producing a solid catalyst component comprises the steps of: (1) reducing a specific titanium compound with an organomagnesium compound in the presence of an organosilicon compound having an Si—O bond (and an ester compound), thereby obtaining a solid product, and (2) contacting the solid product with a halogeno compound of the 14 group element, at least one member selected from the group consisting of an electron donor compound and an organic acid halide, and a compound having a Ti-halogen bond, thereby obtaining the solid catalyst component.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: January 11, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasuki Fujiwara, Makoto Satoh
  • Patent number: 6841633
    Abstract: A lower ?-alkene polymerization heterogeneous solid catalyst which comprises a hydrated magnesium chloride derived procatalyst, a cocatalyst comprising an organoaluminium compound and a selectivity control agent comprising an ester or ether. The procatalyst comprises a titanium tetrahalide supported on a magnesium chloride ester complex precursor. Magnesium chloride alcoholate is reacted with an activated carbonyl compound in the presence of a hydrocarbon and/or halohydrocarbon solvent to generate insitu an internal electron donor ester component of the precursor. The precursor is reacted with a titanium tetrahalide optionally in the presence of a hydrocarbon and/or halohydrocarbon solvent.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: January 11, 2005
    Assignee: Reliance Industries Limited
    Inventors: Sumit Bhaduri, Virendra Kumar Gupta
  • Patent number: 6828395
    Abstract: Methods of controlling rheological properties of polymer compositions comprising at least one high molecular weight polymer and one low molecular weight polymer are disclosed. The polymer compositions are produced by polymerizing monomers in a single reactor using a bimetallic catalyst composition. A control agent such as, for example, an alcohol, ether, oxygen or amine is added to the reactor to control the rheological properties of the reactor. The polymerization takes place in the presence of rheological-altering compounds such as alkanes and aluminum alkyls. The control agents are added in an amount sufficient to counter the influences of the rheological-altering compounds.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: December 7, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Fred D. Ehrman, Pradeep P. Shirodkar, Robert Lynn Santana, Porter C. Shannon
  • Patent number: 6828396
    Abstract: There are provided: (I) a solid catalyst component (A-1) for olefin polymerization, which is obtained by a process comprising the step of contacting: (a-1) a carrier of carboxyl group-carrying polymer particles having an average particle diameter of from 1 to 300 &mgr;m, and (b) a transition metal compound of the number 4 group of metals in the periodic table of elements; (II) a catalyst for olefin polymerization, which is obtained by a process comprising the step of contacting: (A-1) the above solid catalyst component, and (B) at least one compound selected from the group consisting of an organoaluminum compound and an organoaluminumoxy compound; (III) a process for producing an olefin polymer, which comprises the step of polymerizing an olefin in the presence of the above catalyst; and (IV) a process for producing the above solid catalyst component (A-1), which comprises the step of contacting: (a-1) the above carrier, and (b) the above transition metal compound.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: December 7, 2004
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tatsuya Miyatake, Masaaki Nabika, Seiki Kiuchi
  • Patent number: 6825309
    Abstract: The present invention relates to catalyst components for the polymerization of olefins comprising Mg, Ti, halogen and at least two electron donor compounds, said catalyst component being characterized by the fact that at least one of the electron donor compounds, present in an amount from 20 to 50% by mol with respect to the total amount of donors, is selected from esters of succinic acids which are not extractable, for more than 25% by mol and at least another electron donor compound which is extractable, for more than 35%. The said catalyst component are capable to give polymers with high xylene insolubility, high stereoblock content and broad MWD suitable for making the polymers usable in the BOPP sector.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: November 30, 2004
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin
  • Patent number: 6822058
    Abstract: A thermosetting in-mold coating composition and a method of using the same. The in-mold coating composition is curable at a temperature below 300° F. and includes a polymerizable resin, a promoted peroxide that includes a tertiary organic perester, a polymer-bound catalyst that includes a transition metal physically bound to a polymeric composition, and an amine synergist that includes at least one aromatic tertiary amine.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: November 23, 2004
    Assignee: The Sherwin-Williams Company
    Inventors: David Kramer, Brad A. Haskell
  • Patent number: 6818711
    Abstract: A process for polymerizing olefins using a catalyst system comprising a conventional Ziegler-Natta catalyst and an external election donor selected from the group consisting of diethers and combinations thereof. The catalyst system comprises a Ziegler-Natta catalyst having a transition metal compound generally represented by the formula: MR′x where M is a transition metal, R′ is a halogen or a hydrocarboxyl, and x is the valence of the transition metal. The transition metal compound can be TiCl4. The Ziegler-Natta catalyst may comprise an internal electron donor, such as phthalate. The catalyst system further includes an external electron donor selected from the group consisting of diethers and a co-catalyst selected from the group of organoaluminum compounds. In one embodiment, the external electron donor is 2,2-diisobutyl-1,3-dimethoxypropane, and the co-catalyst is triethylaluminum.
    Type: Grant
    Filed: January 1, 2003
    Date of Patent: November 16, 2004
    Assignee: Fina Technology, Inc.
    Inventor: Christopher G. Bauch