Non-metal Material Is Organic Oxygen-containing Compound Patents (Class 526/142)
  • Patent number: 5883203
    Abstract: In gas phase polymerizations and copolymerizations of ethylene, reagents or cofeeds control the molecular weight, expressed as MI (wherein MI is measured according to ASTM D-1238 Condition E), of the resin product. Use of isopentane and electron donating compounds decrease MI; whereas, electron withdrawing compounds increase MI.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: March 16, 1999
    Assignee: Mobil Oil Coporation
    Inventors: Subrahmanyam Cheruvu, Frederick Y. Lo, Shih-May Christine Ong
  • Patent number: 5859156
    Abstract: By utilizing the vapor phase polymerization techniques of the present invention, numerous distinct and highly beneficial advantages are realized. For instance, cis-1,4-polyisoprene rubber and high cis-1,4-polybutadiene rubber having a consistent and controllable molecular weight can be easily and practically prepared without utilizing a solvent. The subject invention more specifically discloses a method for vapor phase polymerizing isoprene into cis-1,4-polyisoprene in a process comprising the steps of:(1) charging into a reaction zone said isoprene and a preformed catalyst system which is made by reacting an organoaluminum compound with titanium tetrachloride, preferably in the presence of at least one ether; wherein the isoprene is maintained in the vapor phase in said reaction zone by a suitable combination of temperature and pressure;(2) allowing said isoprene to polymerize into cis-1,4-polyisoprene in said reaction zone at a temperature within the range of about 0.degree. C. to about 100.degree. C.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: January 12, 1999
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Nissim Calderon, Joel Muse, Jr., Howard Allen Colvin, Kenneth Floyd Castner
  • Patent number: 5834573
    Abstract: By utilizing the techniques of this invention, trans-1,4-polybutadiene can be synthesized continuously to a high level of conversion utilizing a low level of a highly active cobalt-based catalyst system. The trans-1,4-polybutadiene made with the cobalt-based catalyst system of this invention also typically has a molecular weight which is acceptable for use in tire applications without the need for employing a molecular weight regulator. It is also not typically necessary to utilize a gel inhibitor, such as carbon disulfide, in the polymerizations of this invention. Since a low level of residual cobalt is present in the trans-1,4-polybutadiene which is made utilizing the catalyst system of this invention, it is much more stable than trans-1,4-polybutadiene made with standard cobalt-based catalyst systems.
    Type: Grant
    Filed: May 21, 1997
    Date of Patent: November 10, 1998
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Kenneth Floyd Castner
  • Patent number: 5824754
    Abstract: Cocatalytic composition resulting from bringing an organoaluminium halide (A) into contact with an electron-donating organic compound (ED) selected from esters, amides and ketones, the organoaluminium halide (A) possessing an atomic ratio halogen (X)/aluminium (Al) of greater than 1 and less than 1.3, the halide (A) and the compound (ED) being employed in a mole ratio halide (A)/compound (ED) of greater than 20. Catalytic systems which are usable for the polymerization of alpha-olefins, comprising such a cocatalytic composition and a solid based on titanium trichloride complexed with an electron-donating compound.
    Type: Grant
    Filed: February 23, 1996
    Date of Patent: October 20, 1998
    Assignee: Solvay Polyolefins Europe - Belgium (Societe Anonyme)
    Inventors: Paul Fiasse, Herve Collette
  • Patent number: 5811499
    Abstract: It has been determined that 1,3-butadiene monomer can be polymerized into cis-l,4-polybutadiene rubber utilizing a cobalt-based catalyst system which is comprised of (a) an organocobalt compound, (b) a trialkylaluminum compound and (c) hexafluoro-2-propanol. The use of this catalyst system results in extremely fast rates of polymerization. The molecular weight of the cis-1,4- polybutadiene rubber made utilizing this cobalt-based catalyst system can be regulated by conducting the polymerization in the presence of 1,5-cyclooctadiene. This present invention more specifically discloses a catalyst system which is particularly useful for polymerizing 1,3-butadiene monomer into cis-1,4-polybutadiene, said catalyst system being comprised of (a) an organocobalt compound, (b) a trialkylaluminum compound and (c) hexafluoro-2-propanol.
    Type: Grant
    Filed: October 6, 1997
    Date of Patent: September 22, 1998
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Kenneth Floyd Castner
  • Patent number: 5807940
    Abstract: The present invention provides a catalyst for polymerization comprising (A) a transition metal compound containing at least one linkage represented by the general formula (I):M.sup.1 --Z--C (I)wherein M.sup.1 represents a metal element of Groups 3 to 6 or the lanthanide series, and Z represents an element of Group 15, in one molecule, (B) (a) a compound which can form an ionic complex by the reaction with the transition metal compound or (b) a specific oxygen-containing compound, and (C) a metal compound containing alkyl group which is optionally used; and a process for producing a styrenic polymer, particularly a styrenic polymer having a highly syndiotactic configuration, comprising using this catalyst for polymerization.
    Type: Grant
    Filed: July 11, 1996
    Date of Patent: September 15, 1998
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Yoshiaki Aoyama, Norio Tomotsu
  • Patent number: 5798309
    Abstract: Process for preparing a poly-1-olefinBy means of a highly active spherical Ziegler catalyst based on a dialkylmagnesium, spherical polymers can be obtained in the polymerization of alpha-olefins. A further advantage of the catalyst of the invention lies in the high catalyst activity, so that only very small amounts of the catalyst are required for the polymerization. The residual titanium and/or zirconium content in the polymers prepared according to the invention is less than 10 ppm. Owing to its good responsiveness to hydrogen, the catalyst is particularly suited to two-stage processes for preparing polymers having a broad bimodal molecular weight distribution. The replacement of sulfur-containing electron donors such as diethyl sulfite by alcohols such as ethanol leads to less odor problems and broadened opportunities for use of the polymer.
    Type: Grant
    Filed: December 22, 1995
    Date of Patent: August 25, 1998
    Assignee: Hostalen Polyethylen GmbH
    Inventors: Werner Breuers, Rainer Lecht, Ludwig Bohm
  • Patent number: 5780379
    Abstract: Process for the polymerization of alpha-olefins, which is carried out in the presence of a catalyst system comprising:(1) a solid based on completed titanium trichloride;(2) an organometallic compound of metals of groups IA, IIA, IIB and IIIB of the Periodic Table, and(3) an electron-donor organic compound, the solid (1) based on complexed titanium trichloride having been preactivated by being brought into contact with a preactivator comprising the product of reaction of a trialkylaluminum or alkylaluminum chloride compound (a) and of a compound (b) chosen from hydroxyaromatic compounds whose hydroxyl group is sterically hindered, then isolating the predetermined solid (1) from the medium in which it was found.This process enables propylene to be polymerized with an improved stereospecificity without any significant decrease in catalyst activity.
    Type: Grant
    Filed: May 13, 1997
    Date of Patent: July 14, 1998
    Assignee: Solvay Polyolefins Europe-Belgium (Societe Anonyme)
    Inventor: Paul Fiasse
  • Patent number: 5777056
    Abstract: A polyolefinic resin which is a homopolymer of an olefin or a copolymer of olefins, has (i) intrinsic viscosity ?.eta.! measured in decaline at the temperature of 135.degree. C. in the range of 0.5 to 10 deciliter/g and (ii) content of insoluble fraction in boiling n-heptane (W) in the range of 10 to 99 weight % and shows (iii) relation between relaxation time of rubber component measured by pulse NMR at the temperature of 30.degree. C. ?T.sub.2H.sup.R (30):.mu.s!, relaxation time of rubber component measured by pulse NMR at the temperature of 80.degree. C. ?T.sub.2H.sup.R (80):.mu.s! and the content of insoluble fraction in boiling n-heptane (W) satisfying the following equations:T.sub.2H.sup.R (80).ltoreq.670-2.2.times.WT.sub.2H.sup.R (80)/T.sub.2H.sup.R (30).ltoreq.8.8+0.086.times.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: July 7, 1998
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Masayuki Tsuruoka, Akira Tanaka, Masaru Nakagawa
  • Patent number: 5777050
    Abstract: A process is disclosed for the homopolymerization of ethylene or copolymerization of ethylene with one or more .alpha.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: July 7, 1998
    Assignee: DSM N.V.
    Inventors: Nicolaas H. Friederichs, Johannus A. M. van Beek, Rutgerus A. J. Postema, Joseph A. J. Hahnraths
  • Patent number: 5756606
    Abstract: Syndiotactic 1,2-polybutadiene is a thermoplastic resin which has double bonds attached in an alternating fashion to its polymeric backbone. Films, fibers and molded articles can be made utilizing syndiotactic 1,2-polybutadiene. It can also be blended into rubbers and cocured therewith. It is generally preferred to synthesize syndiotactic 1,2-polybutadiene in an aqueous medium by suspension or emulsion polymerization. In such aqueous polymerization techniques reactor fouling and particle size control problems are frequently encountered. This invention is based upon the unexpected finding that reactor fouling can be greatly reduced or eliminated and that particle size can be regulated by conducting such aqueous polymerizations in the presence of a controlled amount of dissolved oxygen which is within the range of about 0.01 ppm to about 4 ppm.
    Type: Grant
    Filed: May 22, 1997
    Date of Patent: May 26, 1998
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Tang Hong Wong
  • Patent number: 5747613
    Abstract: The present invention relates to a process for efficiently producing an aromatic vinyl compound-based copolymer having a high degree of syndiotactic configuration in its aromatic vinyl chain by copolymerizing an aromatic vinyl compound with an olefin, etc. in the presence of a catalyst comprising (A) a transition metal compound, (B) an ionic compound comprising a non-coordinate anion and a cation of a typical metal belonging to the group 4 and (C) a Lewis acid to be used as the case may be. It is made possible by the use of the highly active catalyst according to the above process to efficiently produce an aromatic vinyl compound-based copolymer which is minimized in residual amounts of ash and toxic substances a high degree of syndiotactic configuration in its aromatic vinyl chain, while dispensing with an expensive aluminoxane.
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: May 5, 1998
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Mizutomo Takeuchi, Hajime Shouzaki, Norio Tomotsu
  • Patent number: 5741862
    Abstract: Highly flexible propylene/ethylene copolymers having a high rubber content are obtainable by two-stage polymerization from the gas phase in an agitated fixed bed by means of a Ziegler-Natta catalyst system which, in addition to a titanium-containing solid component, also contains an aluminum compound as a cocatalyst, in a first polymerization stage, propylene being polymerized at from 15 to 40 bar and from 50.degree. to 90.degree. C. and during an average residence time of the reaction mixture of from 0.5 to 5 hours and then, in a second polymerization stage, a mixture of propylene and ethylene being polymerized with the polymer discharged from the first polymerization stage, at from 5 to 30 bar, this pressure being at least 2 bar below the pressure of the first polymerization stage, and at from 60.degree. to 100.degree. C. and during an average residence time of the reaction mixture of from 0.
    Type: Grant
    Filed: January 13, 1997
    Date of Patent: April 21, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Patrik Muller, Meinolf Kersting
  • Patent number: 5728785
    Abstract: Methods of forming polycycloolefins having high crosslink density are disclosed. Olefins are polymerized via a metathesis mechanism in the presence of a crosslinking agent and a catalyst. The crosslinking agent generally comprises a peroxide that decomposes into reactive species forming crosslinks during post-cure. The catalyst is a ruthenium or osmium carbene complex of the formula: ##STR1## wherein M is Os or Ru; R and R.sup.1 are independently selected from hydrogen or a hydrocarbon selected from the group consisting of C.sub.1 -C.sub.20 alkyl, C.sub.2 -C.sub.20 alkenyl, C.sub.2 -C.sub.20 alkynyl, C.sub.2 -C.sub.20 alkoxycarbonyl, aryl, C.sub.1 -C.sub.20 carboxylate, C.sub.1 -C.sub.20 alkoxy, C.sub.2 -C.sub.20 alkenyloxy, C.sub.2 -C.sub.20 alkynyloxy and aryloxy; X and X.sup.1 are independently selected from any anionic ligand; and L and L.sup.1 are independently selected from any neutral electron donor. Preferably, L and L.sup.
    Type: Grant
    Filed: July 2, 1996
    Date of Patent: March 17, 1998
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Charles S. Woodson, Jr.
  • Patent number: 5726262
    Abstract: A solid titanium catalyst component ?Ia! containing magnesium, halogen, titanium and a compound having at least two ether linkags with a plurality of intermediately existing bonding atoms; a catalyst and a prepolymerized olefin-containing catalyst prepared by using the solid titanium catalyst component ?Ia!; a method for preparing a polyolefin wherein said catalyst or prepolymerized olefin containing catayst is used. A catalyst and a prepolymerized olefin containing catalyst prepared by using a solid titanium catalyst component ?Ib! containing magnesium, halogen, titanium and a specific electron donor (a1), and a compound having at least two ether linkags with a plurality of intermediately existing bonding atoms; a method for preparing a polyolefin wherein said catalyst or prepolymerized olefin containing catayst is used.
    Type: Grant
    Filed: December 24, 1996
    Date of Patent: March 10, 1998
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Mamoru Kioka, Tetsunori Shinozaki
  • Patent number: 5703181
    Abstract: Disclosed are a catalyst for olefin polymerization comprising (A) a compound of a transition metal in Group IVB of the periodic table which contains a ligand having a cyclopentadienyl skeleton, (B) an organoaluminum compound and any one of (C1) a Br.o slashed.nsted acid; (C2) a material obtained by contacting (c-1) a magnesium compound with (c-2) an electron donor; and (C3) a material obtained by contacting (c-1) a magnesium compound, (c-2) an electron donor and (c-3) an organometallic compound with each other. Also disclosed are processes for polymerizing an olefin in the presence of the above-mentioned catalysts for olefin polymerization. Such catalysts and processes for olefin polymerization as described above are excellent in olefin polymerization activity and economical efficiency.
    Type: Grant
    Filed: January 16, 1996
    Date of Patent: December 30, 1997
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Takashi Tashiro, Takashi Ueda
  • Patent number: 5698643
    Abstract: There is disclosed a process for the regulation of the molecular weight of a high-cis 1,4-polybutadiene prepared by polymerizing 1,3-butadiene in a solution of an aliphatic and/or cycloaliphatic or aromatic solvent system employing as a catalyst system a mixture of (1) an organonickel compound, (2) an organoaluminum compound, and (3) a fluorine containing compound selected from the group consisting of hydrogen fluoride and hydrogen fluoride complexes which are prepared by complexing hydrogen fluoride with a ketone, an aldehyde, a nitrile, a mineral acid containing oxygen, an ester, an ether, an alcohol, a phenol or water; said polymerization being conducted in the presence of small amounts of olefins selected from the group consisting of 1-butene, isobutylene, cis and trans-2-butene and allene.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: December 16, 1997
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Ken Weikart Donbar, William Mose Saltman, Morford Church Throckmorton
  • Patent number: 5691429
    Abstract: A process for the manufacture of linear, substantially gel free, high cis 1,4 poly(butadiene) comprising polymerization in the presence of (a) a catalyst comprising at least one cobalt compound, at least one organoaluminium compound, and water, and (b) a cycloalkane as main solvent component, and (c) at least one substituted benzene as polymerization regulator of the general formula ##STR1## wherein n is an integer in the range of from 3 to 5, and wherein each R represents a lower alkoxy group containing from 1 to 6 carbon atoms.
    Type: Grant
    Filed: October 17, 1996
    Date of Patent: November 25, 1997
    Assignee: Shell Oil Company
    Inventors: Johannes Cornelis Maria Van Der Arend, Marijke De Boer-Wildschut, Adriaan Albert Van Der Huizen, Maria Johanna Elisabeth Kersten
  • Patent number: 5686543
    Abstract: A process for producing a polybutadiene rubber having a cis-1,4 content of 94% or more, a ratio of weight average molecular weight to number average molecular weight of 2.5 to 3.5 as measured by a gel permeation chromatography and a Mooney viscosity (ML.sub.1+4, 100.degree. C.) of 20 to 100, which process comprises polymerizing 1,3-butadiene in an inert organic solvent with a catalyst comprising as the main components (a) a nickel compound; (b) a specific fluorine compound; (c) a trialkylaluminum; and (d) a halogenated aldehyde and/or a quinone compound. The use of the specific catalyst enables the production in a high yield of a polybutadiene rubber which maintains the abrasion resistance, high impact resilience and low heat buildup which are the characteristics of polybutadiene rubber and has a small die swell when extruded in the form of a blend with a natural rubber and is excellent in physical properties of vulcanizate.
    Type: Grant
    Filed: May 30, 1996
    Date of Patent: November 11, 1997
    Assignee: Japan Synthetic Rubber Co., Ltd.
    Inventors: Kyouyu Yasuda, Akio Takashima
  • Patent number: 5677400
    Abstract: In a process for producing syndiotactic-1,2-polybutadiene by suspension polymerization wherein a mixture composed of 1,3-butadiene, a cobalt compound, and an organometallic compound or metal hydride containing a metal of group I, II or III of the periodic table is contacted with an initiator selected from the group consisting of carbon disulfide, phenyl isothiocyanate and xanthogenic compounds in an aqueous medium, the improvement comprising, after the preparation of the mixture, adding thereto an anti gelling agent selected from the group consisting of alcohols, aldehydes, ketones, carboxylic acid esters, nitriles, sulfoxides, amides and phosphoric acid esters, whereby the formation of a rubber-like gelation product in the mixture is inhibited.
    Type: Grant
    Filed: May 1, 1996
    Date of Patent: October 14, 1997
    Assignee: UBE Industries, Ltd.
    Inventors: Nobuhiro Tsujimoto, Yoshisuke Baba, Osamu Kimura, Shuichi Sakaue
  • Patent number: 5670589
    Abstract: In accordance with the present invention, there is provided an organoaluminoxy product prepared by the process comprising reacting an organoaluminoxane with an ene-ol compound. In another embodiment, the organoaluminoxane can be prepared in situ by the process comprising reacting a hydrocarbylaluminum compound, water, and the ene-ol compound. Further there is provided olefin polymerization catalyst systems comprising the organoaluminoxy product and at least one transition metal-containing catalyst. Optionally, the catalyst system is prepolymerized in the presence of at least one olefin to form a prepolymerized catalyst system. Still further there is provided processes for the polymerization of olefins using the catalyst systems.
    Type: Grant
    Filed: February 8, 1995
    Date of Patent: September 23, 1997
    Assignee: Phillips Petroleum Company
    Inventors: Rolf L. Geerts, M. Bruce Welch, Syriac J. Palackal, Helmut G. Alt, Bernd Peifer, Harold R. Deck
  • Patent number: 5652304
    Abstract: By utilizing the vapor phase polymerization techniques of the present invention, numerous distinct and highly beneficial advantages are realized. For instance, cis-1,4-polyisoprene rubber and high cis-1,4-polybutadiene rubber having a consistent and controllable molecular weight can be easily and practically prepared without utilizing a solvent. The subject invention more specifically discloses a method for vapor phase polymerizing isoprene into cis-1,4-polyisoprene in a process comprising the steps of:(1) charging into a reaction zone said isoprene and a preformed catalyst system which is made by reacting an organoaluminum compound with titanium tetrachloride, preferably in the presence of at least one ether; wherein the isoprene is maintained in the vapor phase in said reaction zone by a suitable combination of temperature and pressure;(2) allowing said isoprene to polymerize into cis-1,4-polyisoprene at a temperature within the range of about 35.degree. C. to about 70.degree. C.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: July 29, 1997
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Nissim Calderon, Kenneth Floyd Castner, Howard Allen Colvin, Joel Muse, Jr.
  • Patent number: 5621047
    Abstract: This invention relates to a process for preparation of non-crosslinked linear monofunctional and telechelic difunctional unsaturated polymers wherein the functional groups are acrylate or methacrylate groups. The average functionality number of the monofunctional unsaturated polymers is at least 0.7, as determined by nuclear magnetic resonance spectroscopy (NMR). The average functionality number of the telechelic difunctional polymers is at least 1.7, as determined by NMR. Alkyl acrylates or alkyl methacrylates are reacted with cyclic olefinic non-conjugated compounds or unsaturated hydrocarbon polymers to prepare monofunctional and difunctional polymers. The process is substantially free of side reactions comprising double bond migration and cyclization.
    Type: Grant
    Filed: October 13, 1995
    Date of Patent: April 15, 1997
    Assignee: Amoco Corporation
    Inventors: Philip O. Nubel, Howard B. Yokelson, Steven A. Cohen, William G. Bouslog
  • Patent number: 5596053
    Abstract: Diene polymers having a high content of trans-1,4 addition and two distinct melting points in the ranges of 30.degree. C. to 50.degree. C. and 70.degree. C. to 130.degree. C. are prepared by polymerizing a 1,3-diene monomer in a hydrocarbon solvent in the presence of a catalyst composition comprising (a) a carboxylated nickel oxy borate compound; (b) an orKanoaluminum compound; (c) a triaryloxy phosphorus compound and (d) a carboxylic acid preferably a fluorinated carboxylic acid. The resultant polymers are useful as additives to tire rubbers to improve processability by reducing compound Mooney viscosity and reducing the shrinkage of various compound stocks.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: January 21, 1997
    Assignee: Bridgestone/Firestone, Inc.
    Inventors: Jung W. Kang, Jason T. Poulton
  • Patent number: 5589555
    Abstract: A solution process for the preparation of high molecular weight polymers of alpha-olefins selected from the group consisting of homopolymers of ethylene and copolymers of ethylene and C.sub.3 -C.sub.12 higher alpha-olefins is disclosed. Ethylene and/or mixtures of ethylene and C.sub.3 -C.sub.12 higher alpha-olefins are polymerized under non-isothermal conditions in a tubular reactor or in a system of reactors which operate under different conditions, in the presence of a catalytic amount of a titanium-containing coordination catalyst in an inert solvent at a temperature in excess of 105.degree. C. The improvement is characterized in that:(a) the catalyst is activated with a solution of a mixture of aluminum alkyl and alkoxy aluminum alkyl in inert solvent; and(b) the process is controlled by adjusting the ratio of aluminum alkyl to alkoxy aluminum alkyl in the mixture of (a). The aluminum alkyl is of the formula AlR.sub.n X.sub.3-n and the alkoxy aluminum alkyl is of the formula AlR'.sub.m OR".sub.
    Type: Grant
    Filed: July 7, 1995
    Date of Patent: December 31, 1996
    Assignee: Novacor Chemicals (International) S.A.
    Inventors: Vaclav G. Zboril, Stephen J. Brown
  • Patent number: 5589548
    Abstract: This invention relates to difunctional telechelic linear non-crosslinked polyolefins without pendant chain branched groups. The polyolefin compounds of this invention are useful for preparing high molecular weight polyesters, polyamides, polyureas and polyurethanes of high density without branching of the polymer chains, and with low permeability to gases and solvents.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: December 31, 1996
    Assignee: Amoco Corporation
    Inventors: Philip O. Nubel, Howard B. Yokelson
  • Patent number: 5587439
    Abstract: The present invention is directed to a supported metallocene catalyst useful in the polymerization of .alpha.-olefins which is obtained by tethering a metallocene catalyst component to the surface of a particulate, functionalized copolymeric support material.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: December 24, 1996
    Assignee: Quantum Chemical Corporation
    Inventor: Anthony-J. DiMaio
  • Patent number: 5583189
    Abstract: In accordance with the present invention, there is provided catalyst systems and processes for preparing such catalyst systems comprising reacting a metallocene compound, a solid organoaluminoxy product, and an organometal compound. Further there is provided processes for the polymerization of olefins using the catalyst systems.
    Type: Grant
    Filed: May 16, 1995
    Date of Patent: December 10, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Rolf L. Geerts, Syriac J. Palackal, Ted M. Pettijohn, Robert M. Infield
  • Patent number: 5543481
    Abstract: There are disclosed a catalyst which comprises (A) a titanium compound having one .pi. electron-based ligand (e.g. pentamethylcyclopentadienyl group) or two same .pi. electron-based lignads and (B) an ionic compound comprising a non-coordinate anion and a cation of an element typifying the group 4 elements of the Periodic Table (e.g. triphenylcarbonium tetra(pentafluorophenyl)borate; a catalyst comprising (C) an alkylating agent (e.g. triisobutylaluminum) in addition to the components (A) and (B); and a process for producing a styrenic polymer by the use of any of the aforesaid catalysts. By using the aforementioned catalyst and process, a highly syndiotactic styrenic polymer can be efficiently produced.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: August 6, 1996
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Mizutomo Takeuchi, Norio Tomotsu
  • Patent number: 5539069
    Abstract: An olefin polymerization catalyst of the present invention comprises (A) a metallocene compound, (B) an organoaluminum oxy compound, and (C) at least one kind of carbonyl-containing compound selected from ketoalcohol and .beta.-diketone, and optionally (D) an organoaluminum compound, and therefore, the catalyst is excellent in polymerization activity per catalyst unit weight, and is capable of giving olefin (co)polymers having high molecular weight.A supported olefin polymerization catalyst and its olefin prepolymerized catalyst of the present invention are excellent in polymerization activity per catalyst unit weight, and is capable of giving olefin (co)polymers having uniform particle size.
    Type: Grant
    Filed: August 9, 1994
    Date of Patent: July 23, 1996
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Toshiyuki Tsutsui, Ken Yoshitsugu
  • Patent number: 5532325
    Abstract: A process for producing polypropylene is provided which comprises polymerizing propylene in multiple stages, in the presence of a catalyst which is prepared by reacting a first organoaluminum compound (i), or a reaction product (vi) formed between the first organoaluminum compound (i) and an electron donor (a), with titanium tetrachloride (c) to obtain a first solid product (ii), reacting the resulting first solid product (ii) with the electron donor (a) and an electron acceptor (b) to obtain a second solid product (iii), and combining the resulting second solid product (iii) with a second organoaluminum compound (iv) and an aromatic carboxylic acid ester (v) at a molar ratio of the aromatic carboxylic acid ester to the second solid product (v/iii molar ratio) of from 0.1 to 10.
    Type: Grant
    Filed: October 19, 1995
    Date of Patent: July 2, 1996
    Assignee: Chisso Corporation
    Inventors: Takahiro Oka, Hiromasa Chiba
  • Patent number: 5527751
    Abstract: A polymerization catalyst comprising a reaction product of an organic rare earth metal compound of the formula (I),Cp.sub.a Lx.sub.b M.sub.c D.sub.d (I)(wherein in the formula (I), Cp is a substituted or unsubstituted cyclopentadienyl group, indenyl group, fluorenyl group or their derivatives, or a multidentate coordination compound residue obtained by bonding these groups by way of hydrocarbon or silicon,L is a metal selected from the group consisting of elements having an atomic number of 39 and 57-71,X is a halogen atom,M is an alkaline metal or alkaline earth metal,D is an electron donor,a is 1-2,b is 1-2,c is 0-1, andd is 0-3) with a Grignard reagent of the formula (II),RMgX (II)wherein in the formula (II), R is a hydrocarbon group, and X is a halogen atom); a method for producing a polyolefin or an olefin block copolymer by using the above-mentioned catalyst; and an olefin block copolymer produced by the above-mentioned method.
    Type: Grant
    Filed: June 27, 1994
    Date of Patent: June 18, 1996
    Assignee: Maruzen Petrochemical Co., Ltd.
    Inventors: Kunihiro Inamatsu, Tsuyoshi Matsumoto, Kazuo Soga
  • Patent number: 5519101
    Abstract: A polymerization process for preparation of oligomers and polymers having at least one internal carbon-to-carbon double bond and containing functional groups comprising terminal carbon-to-carbon double bonds is disclosed. The polymerization process is substantially free of side reactions comprising double bond migration. The oligomers and polymers are prepared from acyclic polyenes of from 2 to about 30 carbon atoms. The catalyst system comprises a metathesis catalyst (A) comprising a transition metal compound, an activator (B) selected from the group consisting of organic tin compounds and organic aluminum halides and (C) an organic Lewis base. Yields are at least 60% of theoretical based on acyclic polyene reactant.
    Type: Grant
    Filed: May 27, 1993
    Date of Patent: May 21, 1996
    Assignee: Amoco Corporation
    Inventors: Philip O. Nubel, Vahid Bagheri
  • Patent number: 5519098
    Abstract: The present invention relates to a method for activating coordination catalysts suitable for the polymerization of alpha olefins using a alkoxy aluminum alkyl compound prepared by mixing an alcohol and an alkyl aluminum. The activator retains its activity and is easy to prepare simplifying the polymerization process.
    Type: Grant
    Filed: October 12, 1994
    Date of Patent: May 21, 1996
    Assignee: Novacor Chemicals (International) SA
    Inventors: Stephen J. Brown, Reginald K. Ungar, Vaclav G. Zboril
  • Patent number: 5516862
    Abstract: A process for producing ethylene-.alpha.-olefin copolymer rubbers which comprises mixing a vanadium compound-containing solution and an alcohol-containing solution with stirring for 10-600 seconds to obtain a mixed solution, immediately feeding the mixed solution into a polymerization vessel containing an organoaluminum compound, and copolymerizing ethylene and an .alpha.-olefin, or ethylene, an .alpha.-olefin and a non-conjugated diene compound in the polymerization vessel. According to this process, the activity of polymerization catalyst can be maintained at a high level, no by-product of the reaction of the vanadium compound and the alcohol is deposited as precipitate in the apparatus and no such additional operations as bubbling is necessary.
    Type: Grant
    Filed: September 7, 1994
    Date of Patent: May 14, 1996
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Keisaku Yamamoto, Kizuku Wakatsuki, Hayato Saba, Tadaaki Nishiyama
  • Patent number: 5514761
    Abstract: Disclosed are unsaturated .alpha.-olefin/.alpha., .omega.-diene copolymers, and a method of preparation thereof. The copolymers are generally crystalline, free of gel and cross-links, and contain unsaturated side chains and long chain branching. The copolymers contain up to 5 mole percent diene incorporated therein, and may be prepared by copolymerization using a solid-phase, insoluble coordination catalyst, without a solvent, and below the crystalline melting point of the copolymer.
    Type: Grant
    Filed: February 10, 1995
    Date of Patent: May 7, 1996
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Bradley P. Etherton, James J. McAlpin, Terrence Huff, Edward N. Kresge
  • Patent number: 5512635
    Abstract: This invention relates to a process for preparation of non-crosslinked linear monofunctional and telechelic difunctional unsaturated polymers wherein the functional groups are reactive terminal groups other than vinyl groups. The average functionality number of the monofunctional unsaturated polymers is at least 0.7, as determined by nuclear magnetic resonance spectroscopy (NMR). The average functionality number of the telechelic difunctional polymers is at least 1.7, as determined by NMR. Monofunctional olefins and difunctional olefins are reacted with cyclic olefins or unsaturated polymers to prepare difunctional polymers. The process is substantially free of side reactions comprising double bond migration and cyclization.
    Type: Grant
    Filed: December 15, 1993
    Date of Patent: April 30, 1996
    Assignee: Amoco Corporation
    Inventors: Philip O. Nubel, Howard B. Yokelson, Steven A. Cohen, Raymond T. Behrends, William G. Bouslog, James P. Nelson
  • Patent number: 5502126
    Abstract: The subject invention relates to a technique for synthesizing rubbery non-tapered, random, copolymers of 1,3-butadiene and isoprene. These rubbery copolymers exhibit an excellent combination of properties for utilization in tire sidewall rubber compounds for truck tires. By utilizing these isoprene-butadiene rubbers in tire sidewalls, tires having improved cut growth resistance can be built without sacrificing rolling resistance. Such rubbers can also be employed in tire tread compounds to improve tread wear characteristics and decrease rolling resistance without sacrificing traction characteristics.
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: March 26, 1996
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Anthony J. Bell, Barry A. Matrana, Adel F. Halasa
  • Patent number: 5496781
    Abstract: In accordance with the present invention, there is provided catalyst systems and processes for preparing such catalyst systems comprising reacting a metallocene compound, a solid organoaluminoxy product, and an organometal compound. Further there is provided processes for the polymerization of olefins using the catalyst systems.
    Type: Grant
    Filed: May 16, 1994
    Date of Patent: March 5, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Rolf L. Geerts, Syriac J. Palackal, Ted M. Pettijohn, Robert M. Infield
  • Patent number: 5492983
    Abstract: This catalyst consists of the reaction product, with at least one organomagnesium compound and/or organolithium compound R.sup.1 Li (R.sup.1 =alkyl) or ArLi (Ar=phenyl or benzyl), of the reaction product of (Cp).sub.2 MX.sub.2 Li(OR.sub.2).sub.2 (M=lanthanide, Sc, Y; (Cp)=optionally substituted cyclopentadienyl; and R=alkyl), with at least one bidentate ligand, such as .beta.-diketone or .beta.-keto imine CZ.sub.3 COCHZCDCZ.sub.3, Z selected from halogen, alkyl and H, D=O, NH or NR.sup.3 (R.sup.3 =alkyl or aryl); and phosphorus ylid R.sup.2.sub.3 P.dbd.CA--CO--R.sup.2, R.sup.2 chosen from alkyl and aryl; A=alkyl or H. It advantageously takes the form of a solution at least partially containing an aromatic hydrocarbon. The process for the polymerization of ethylene may be carried out at 20.degree.-250.degree. C. at a pressure which may range up to approximately 200 bars, in solution or in suspension in an at least C.sub.
    Type: Grant
    Filed: June 7, 1994
    Date of Patent: February 20, 1996
    Assignee: ECP Enichem Polymeres France
    Inventors: Xavier Olonde, Karel Bujadoux, Andre Mortreux, Francis Petit, deceased
  • Patent number: 5480948
    Abstract: In accordance with the present invention, there is provided a solid organoaluminoxy product prepared by reacting an organoaiuminoxane with an oxygen-containing compound selected from the group consisting of organic peroxide, alkylene oxide, or organic carbonate. Further there is provided olefin polymerization catalyst systems comprising the solid organoaluminoxy product and a transition metal-containing catalyst. Still further there is provided processes for the polymerization of olefins using the catalyst systems.
    Type: Grant
    Filed: March 28, 1995
    Date of Patent: January 2, 1996
    Assignee: Phillips Petroleum Company
    Inventor: Rolf L. Geerts
  • Patent number: 5468822
    Abstract: A 1,2-polybutadiene composition having an excellent reinforcing effect for rubber and synthetic resin materials including at least two polybutadiene components different in melting point from each other and each having, as a main structure, a 1,2-polybutadiene structure, produced by polymerizing a 1,3-butadiene-containing monomer in a water-containing polymerization system in the presence of a catalyst comprising a transition metal compound, an organic compound of one of the Group I to III metals, and one of carbon disulfide, phenyl isothiocyanate, and xanthic acid compounds, while adding a melting point-regulating agent comprising at least one of ketones, aldehydes, alcohols, esters, nitriles, sulfoxides, amides, and phosphoric acid esters in one or two or more separate adding operations or a continuous adding operation.
    Type: Grant
    Filed: February 8, 1994
    Date of Patent: November 21, 1995
    Assignee: UBE Industries, Ltd.
    Inventors: Nohiro Tsujimoto, Kenichi Hongyo, Yoshisuke Baba, Michinori Suzuki, Kazuhiro Akikawa
  • Patent number: 5448002
    Abstract: Trans-1,4-polybutadiene is normally synthesized utilizing transition metal or rare earth catalysts. However, molecular weight control is difficult to achieve with such catalysts and the molecular weight of the polymer produced is frequently much higher than desired. By utilizing the catalyst system and techniques of this invention, trans-1,4-polybutadiene can be synthesized continuously to a high level of conversion with molecular weight control being possible. This invention specifically relates to a process for synthesizing trans-1,4-polybutadiene by polymerizing 1,3-butadiene monomer in the presence of a catalyst system which is comprised of an organocobalt compound, an organoaluminum compound and a para-substituted phenol with molecular weight being controlled by conducting the polymerization in the presence of at least one dialkyl sulfoxide, diaryl sulfoxide or dialkaryl sulfoxide. Such polymerizations can be conducted on a batch or a continuous basis.
    Type: Grant
    Filed: August 12, 1994
    Date of Patent: September 5, 1995
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Kenneth F. Castner
  • Patent number: 5436212
    Abstract: In accordance with the present invention, there is provided a solid organoaluminoxy product prepared by reacting an organoaluminoxane with an oxygen-containing compound selected from the group consisting of organic peroxide, alkylene oxide, or organic carbonate. Further there is provided olefin polymerization catalyst systems comprising the solid organoaluminoxy product and a transition metal-containing catalyst. Still further there is provided processes for the polymerization of olefins using the catalyst systems.
    Type: Grant
    Filed: April 15, 1994
    Date of Patent: July 25, 1995
    Assignee: Phillips Petroleum Company
    Inventor: Rolf L. Geerts
  • Patent number: 5424379
    Abstract: A catalyst for production of 1,4-polybutadiene which comprisesas the catalyst component (A) a transition metal compound represented by the formula M(R).sub.l (OR').sub.m X.sub.n-(l+m), wherein M denotes a transition metal atom, R and R' each denote a hydrocarbon group of 1-20 carbon atoms, X denotes a halogen atom, and l, m and n denote numerals satisfying the equations l.gtoreq.0, m.gtoreq.0 and n-(l+m).gtoreq.0, n corresponding to the valence of the transition metal,as the catalyst component (B) an organoaluminum compound represented by the formula AlR.sup.1.sub.a X'.sub.3-a, wherein R.sup.1 denotes a hydrocarbon group of 1-20 carbon atoms, X denotes a halogen atom, and a denotes a numeral satisfying the equation 1.gtoreq.a.gtoreq.3, or an aluminoxane obtained by the reaction of said organoaluminum compound with water, andas the catalyst component (C) an organic compound having at least two hydroxyl groups.
    Type: Grant
    Filed: May 16, 1994
    Date of Patent: June 13, 1995
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Masahiro Kakugo, Tatsuya Miyatake, Koozi Mizunuma, Yoshio Yagi, Kazuhiro Watanabe
  • Patent number: 5422407
    Abstract: A catalyst for producing styrene-based polymers, containing (A) a titanium compound, (B) a contact product of an organoaluminum compound and water, and (C) an organic polyhydroxy compound, or (A) a titanium compound and (B) a contact product of an organoaluminum compound, water and a organic polyhydroxy compound, and a process for producing styrene-based polymers by the use of the above catalyst.
    Type: Grant
    Filed: July 19, 1993
    Date of Patent: June 6, 1995
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Norio Tomotsu, Hiroshi Maezawa
  • Patent number: 5416053
    Abstract: A process for the production of polyethylenes or EPRs comprising contacting a mixture comprising ethylene, one or more alpha-olefins, and, optionally, a diene, under polymerization conditions, with a catalyst system comprising:(A) a catalyst precursor comprising:(i) a vanadium compound, which is the reaction product of(a) VX.sub.3 wherein each X is independently chlorine, bromine, or iodine; and(b) an electron donor, which is a liquid, organic Lewis base in which VX.sub.3 is soluble;(ii) a modifier having the formula BX.sub.3 or AlR.sub.(3-a) X.sub.a wherein each R is independently alkyl having 1 to 14 carbon atoms; each X is as defined above; and a is 0, 1, or 2; and(iii) a support for said vanadium compound and modifier,said catalyst precursor being in an independent or prepolymerized state,(B) a cocatalyst consisting of a compound having the formula AlR.sub.(3-a) X.sub.
    Type: Grant
    Filed: June 28, 1993
    Date of Patent: May 16, 1995
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Xinlai Bai, Kevin J. Cann
  • Patent number: 5409875
    Abstract: A polymer supported catalyst comprises Ziegler-Natta catalysts immobilized on a magnesium-modified polymer support. The catalyst support is prepared by (1) dissolving a carboxyl group-containing polymer in a solvent and precipitating the polymer in a polar non-solvent, (2) wet-grinding the precipitated polymer, and (3) mixing the ground polymer with an organomagnesium compound or a complex of an organomagnesium compound and an organoaluminum compound to give a magnesium-modified polymer support. Optionally, the resulting magnesium-modified support is treated with a halogen-containing silicon compound. The catalysts may be loaded onto the support by reacting the magnesium-modified support with a transition metal compound to form a catalyst constituent, and then combining the catalyst constituent with an appropriate organo-metallic compound.
    Type: Grant
    Filed: March 8, 1993
    Date of Patent: April 25, 1995
    Assignee: Queen's University
    Inventors: Cheng C. Hsu, Lixin Sun
  • Patent number: 5405815
    Abstract: The subject invention relates to a technique for synthesizing rubbery non-tapered, random, copolymers of 1,3-butadiene and isoprene. These rubbery copolymers exhibit an excellent combination of properties for utilization in tire sidewall rubber compounds for truck tires. By utilizing these isoprene-butadiene rubbers in tire sidewalls, tires having improved cut growth resistance can be built without sacrificing rolling resistance. Such rubbers can also be employed in tire tread compounds to improve tread wear characteristics and decrease rolling resistance without sacrificing traction characteristics.
    Type: Grant
    Filed: June 17, 1993
    Date of Patent: April 11, 1995
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Anthony J. Bell, Barry A. Matrana, Adel F. Halasa
  • Patent number: RE35289
    Abstract: A process for production of styrene polymers of high syndiotactic configuration is disclosed, comprising polymerizing styrene or styrene derivatives by the use of a catalyst comprising: (A) a titanium compound, e.g., at least one compound selected from those represented by the formulae: TiR.sup.1.sub.a R.sup.2.sub.b R.sup.3.sub.c X.sup.1.sub.4 -(a+b+c) and TiR.sup.1.sub.d R.sup.2.sub.e X.sup.1.sub.3-(d+e) (all the symbols are as defined in the appended claims); and (B) a contact product of an organoaluminum compound and a condensation agent, e.g., a product resulting from modification of trimethylaluminum with water. Because of such high syndiotactic configuration, the styrene polymers are greater in thermal resistance and solvent resistance than conventional atactic polystyrene.
    Type: Grant
    Filed: June 1, 1993
    Date of Patent: July 2, 1996
    Assignee: Idemitsu Kosan Company Limited
    Inventors: Nobuhide Ishihara, Masahiko Kuramoto, Michitake Uoi