From Propylene Only Patents (Class 526/351)
  • Patent number: 8859450
    Abstract: A solid catalyst component for olefin polymerization, comprising titanium atoms, magnesium atoms, halogen atoms and hydrocarbyloxy groups, wherein the following filtrate contains titanium atoms in a concentration of 0.08 mg-Ti/ml-filtrate or lower, measured according to a method comprising the steps of (1) preparing a suspension of the solid catalyst component for olefin polymerization in heptane having a concentration of 0.1 g-solid catalyst component/ml-suspension, (2) heating the suspension at 70° C. for 30 minutes under stirring, (3) filtering the suspension, thereby obtaining a filtrate, and (4) measuring a concentration of titanium atoms contained in the filtrate; and a production process of the solid catalyst component.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: October 14, 2014
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Shin-ichi Kumamoto
  • Publication number: 20140303339
    Abstract: An apparatus and method are provided for processing hydrocarbon feeds. The method enhances the conversion of hydrocarbon feeds into conversion products, such as ethylene and propylene. In particular, the present techniques utilize a high-severity reactor integrated with another reactor type to convert hydrocarbons to other petrochemical products.
    Type: Application
    Filed: December 20, 2011
    Publication date: October 9, 2014
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz, Jason D. Davis
  • Patent number: 8853118
    Abstract: The invention relates to a catalyst system for polymerization of propylene, the catalyst system comprising a Ziegler Natta procatalyst, an organoaluminium cocatalyst, a monoester of an aromatic carboxylic acid as the internal donor and ethyl-4-isopropoxy benzoate as the selectivity control agent. The invention also relates to a process for polymerization using the catalyst system as well as to polymers prepared by the process.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: October 7, 2014
    Assignee: Reliance Industries Limited
    Inventors: Virendrakumar Gupta, Harshad Ramdas Patil, Dhananjay Ghelabhai Naik
  • Publication number: 20140296442
    Abstract: The invention relates to polymers selected from among polypropylene (PP), polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS), polyvinylchloride (PVC) and polyethylene terephthalate (PET), nylon and polystyrene, having antibacterial properties, wherein the antibacterial effect is obtained by adding a zinc salt selected from among: zinc PCA, zinc oxide, zinc hydroxide, zinc pyrrolidone or zinc pyrithione during the process of polymerization of the monomers. The antibacterial polymers are used to prepare products intended to enter into contact with the skin.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 2, 2014
    Inventors: Michele Fiori, Nunzia Nocerino, Rosanna Capparelli, Andrea Fulgione, Michael Van Der Jagt, Chiara Medaglia, Marco Marchetti, Norberto Roveri, Rocco Mercuri, Marco Lelli, Francesca Rinaldi
  • Patent number: 8846830
    Abstract: The present invention relates to production of polymer, and in particular provides an interlock for use in a process for production of a polymer in a reactor, which process comprises: a. polymerising a monomer and optionally a comonomer in the reactor to produce polymer, optionally in the presence of an inert hydrocarbon, and b. withdrawing produced polymer from the reactor, said interlock being based on the temperature in the reactor, and comprising: 1. measuring the temperature in the reactor or a temperature representative of the temperature in the reactor, and 2. comparing said measured temperature to a threshold temperature, said interlock being characterized in that withdrawal is allowed if the measured temperature is greater than the threshold temperature but is prevented if the measured temperature is lower than the threshold temperature.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: September 30, 2014
    Assignee: Ineos Sales (UK) Limited
    Inventors: Jean-Louis Chamayou, Stephen Kevin Lee
  • Patent number: 8846991
    Abstract: The subject invention pertains to homogeneous liquid low molecular weight ethylene/alpha-olefin polymers having a number average molecular weight (Mn) as determined by gel permeation chromatography, of less than 25,000, a total crystallinity, as measured by DSC, of less than 10%, and a pour point, as measured by ASTM D97, of less than 50° C. The subject invention also pertains to homogeneous gel-like low molecular weight ethylene/alpha-olefin polymers having a number average molecular weight (Mn) as determined by gel permeation chromatography, of less than 25,000, a total crystallinity, as measured by DSC, of less than 50%, and a pour point, as measured by ASTM D97, of less than 90° C.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: September 30, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Teresa P. Karjala, Selim Yalvac, Thomas Karjala, Daniel D. VanderLende, Brian W. Kolthammer, James C. Stevens, Charles F. Diehl
  • Patent number: 8846815
    Abstract: A thermoplastic vulcanizate comprising a dynamically cured rubber, where the rubber is peroxide cured, and a thermoplastic phase, where at least 10% by weight of the thermoplastic phase includes an ultrahigh molecular weight plastic, where the ultrahigh molecular weight plastic is characterized by a Mw that is greater than 0.8×106 g/mole.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: September 30, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Maria Dolores Ellul, Eugene Ronald Uhl, Patrick Brant, Jeffrey Lawrence Brinen, Zerong Lin
  • Patent number: 8841390
    Abstract: Method for the preparation of a sticky high impact heterophasic polypropylene (HECO) in a reactor facility comprising in series (i) a first reaction system, (ii) a first conveying line connecting the first reactor system with a second reactor system comprising an outlet, (iii) a second conveying line connecting the outlet with a purge bin comprising a feeder, and (iv) a conveying system being connected with the feeder, and the preparation of said heterophasic polypropylene (HECO) comprises the steps in the order of (a) producing in said first reactor system the polypropylene matrix (M), (b) transferring at least a part of said polypropylene to said second reactor system via the first conveying line, (c) producing in said second reactor system the elastomeric copolymer obtaining the heterophasic polypropylene (HECO), (d) discharging said heterophasic polypropylene (HECO) from said second reactor system via the outlet, (e) transferring said discharged heterophasic polypropylene (HECO) via the second conveying l
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: September 23, 2014
    Assignee: Borealis AG
    Inventors: Pauli Leskinen, Olli Tuominen, Veli-Matti Keinänen
  • Patent number: 8829128
    Abstract: Process for the preparation of a polypropylene, wherein propylene is polymerized optionally with a comonomer selected from the group consisting of ethylene, a C4-C20 ?-olefin and mixtures thereof, in the presence of a catalyst system comprising solid catalyst particles, wherein the solid catalyst particles (a) comprise a transition metal compound of formula (I) LmRnMXq (I) wherein “M” is a transition metal of anyone of the groups 3 to 10 of the periodic table (IUPAC), each “X” is independently a monovalent anionic ?-ligand, each “L” is independently an organic ligand which coordinates to the transition metal (M), each “R” is a bridging group linking two organic ligands (L), “m” is 2 or 3, preferably 2, “n” is 0, 1 or 2, preferably 1, “q” is 1, 2 or 3, preferably 2, m+q is equal to the valency of the transition metal (M), (c) comprise a cocatalyst (Co) comprising an element (E) of group 13 of the periodic table (IUPAC), preferably a cocatalyst (Co) comprising a compound of A1, wherein further the loss of activ
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: September 9, 2014
    Assignee: Borealis AG
    Inventors: Lauri Huhtanen, Kalle Kallio, Pascal Castro
  • Patent number: 8816027
    Abstract: This invention relates to a homogenous process for making a vinyl terminated propylene polymer, wherein the process comprises: contacting, propylene, under polymerization conditions, with a catalyst system comprising an activator and at least one metallocene compound, where the metallocene compound is represented by the formula: where: M is hafnium or zirconium; each X is a group bound to M as described herein; each R1 and R2 is, independently, a C1 to C10 alkyl group; each R3 is, independently, hydrogen; each R4, R5, and R6, is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group; T is a bridging group as described herein; and further provided that any of adjacent R4, R5, and R6 groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated, wherein the activator comprises a non-coordinating anion.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: August 26, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Patrick Brant, Carlos U. De Garcia, Jacqueline A. Lovell
  • Publication number: 20140235802
    Abstract: A process for the preparation of high purity propylene polymers carried out in the presence of a catalyst comprising the product obtained by contacting: (a) a solid catalyst component comprising Mg, Ti and at least a first internal electron donor compound (HD) selected among the succinates and a second internal electron donor compound (2ID) selected among the 1,3-diethers, wherein the molar ratio of first internal donor over second internal donor 1ID:2ID is comprised between 4:6 and 9:1, with (b) an organo-aluminium compound, and optionally with (c) an external electron donor compound, said process being carried out at a temperature equal or higher than 78° C. and by employing a molar ratio of organo-aluminum compound over solid catalyst component (b):(a) of lower than 5.
    Type: Application
    Filed: September 17, 2012
    Publication date: August 21, 2014
    Applicant: Basell Poliolefine Italia S.r.l.
    Inventors: Monica Galvan, Roberto Pantaleoni, Ofelia Fusco, Benedetta Gaddi, Andreas Neumann, Antonio Mazzucco, Gianni Collina, Gabriella Sartori
  • Patent number: 8809221
    Abstract: The present invention discloses new class of nitrogen containing external donor systems. These donor systems are used in titanium supported on magnesium dichloride pro-catalyst system for polymerization of propylene. The external donor systems of the present invention in combination with silane show the kinetics control for diester catalyst polymerization process along with stereo regularity control of product. The polypropylene produced using nitrogen containing external donor systems of the present invention have broad molecular weight distribution.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: August 19, 2014
    Assignee: Reliance Industries Limited
    Inventors: Harshad Ramdas Patil, Priyanshu Bharatkumar Vyas, Virendrakumar Gupta
  • Publication number: 20140228534
    Abstract: Provided is a method for producing a polypropylene material, which can improve the heat resistance of the polypropylene material. The method for producing a polypropylene material comprises: a melting step of melting a polypropylene material rolled in at least one direction, at a temperature that is higher than Tm+5° C. where Tm is a melting peak temperature of the polypropylene material not rolled yet as measured by differential scanning calorimetry, and is equal to or lower than Tm+60° C.; and a heat treatment step of heat-treating the polypropylene material melted in the melting step, at a temperature that is equal to or higher than Tm?20° C., and is lower than Tm?10° C.
    Type: Application
    Filed: March 8, 2013
    Publication date: August 14, 2014
    Inventors: Akira Nakasuga, Hironori Tabata
  • Patent number: 8802794
    Abstract: Interlock for use in a process for degassing of a polymer powder in a degassing vessel. The interlock includes the steps of 1. measuring the temperature of the polymer powder within or exiting the degassing vessel, 2. comparing the measurement value to a threshold value in order to ascertain whether it is lower than the threshold value or not, and 3. if the measured temperature is lower than the threshold value taking one or more actions to reduce the concentration of hydrocarbons in the polymer powder exiting the degassing vessel and/or to stop the polymer powder withdrawal from that degassing vessel.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 12, 2014
    Assignee: Ineos Commercial Services UK Limited
    Inventors: Jean-Louis Chamayou, Gregori Patrick Liotard, Kevin Peter Ramsay
  • Patent number: 8802781
    Abstract: A polypropylene composition comprising: A) from 30% to 90% by weight of a propylene polymer composition comprising: a1) from 20% to 90% of a propylene homopolymer, or a copolymer of propylene containing 3% or less of derived units of ethylene or C4-C10 ?-olefin(s) or of combinations thereof, said homopolymer or copolymer having a content of isotactic pentads (mmmm), measured by 13C NMR on the fraction insoluble in xylene at 25° C., higher than 96; a2) from 10% to 80%, of a copolymer of ethylene containing from 40% to 70% of derived units of propylene or C4-C10 ?-olefin(s) or of combinations thereof; B) from 10% to 70% by weight of a multimodal ethylene copolymer wherein the comonomer is selected from the derived units of alpha olefins of formula CH2?CHT wherein T is a C3-C10 alkyl group; having the following properties: i) density (with ISO 1183) comprised in the range from 0.850 to 0.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: August 12, 2014
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Giampaolo Pellegatti, Davide Micheletti, Shahram Mihan, Fabiana Fantinel, Gerd Mannebach
  • Patent number: 8802797
    Abstract: Vinyl-terminated macromonomer oligomerization, namely, a process to produce polymacromonomers comprising contacting a vinyl-terminated macromonomer with a catalyst system capable of oligomerizing vinyl-terminated macromonomer, in the presence of an aluminum containing compound, a zinc containing compound, or a combination thereof, under polymerization conditions to produce a polymacromonomer, and polymacromonomers produced thereby. Also, polymacromonomers having a degree of polymerization greater than 10, a glass transition temperature Tg of less than 60° C., and an Mn of greater than or equal to about 5000 Da.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: August 12, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R Hagadorn, Patrick Brant, Robbert Duchateau, Rafael Sablong
  • Publication number: 20140217651
    Abstract: A method for manufacturing a fibre reinforced composite by means of a vacuum assisted resin transfer moulding, comprising the steps of placing a fibre material in a mould, placing a flow distribution medium onto the fibre material, and covering the fibre material and the flow distribution medium with a vacuum foil for forming a closed mould cavity between the mould and the vacuum foil is described. It is characterised in using a flow distribution medium with a thickness depending on a pressure gradient over the vacuum foil.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 7, 2014
    Applicant: Siemens Aktiengesellschaft
    Inventor: ERIK GROVE-NIELSEN
  • Publication number: 20140220280
    Abstract: The present disclosure relates to a process for recycling of plastic waste comprising: segregating plastic waste collected from various sources followed by cleaning of the segregated plastic waste to obtain segregated cleaned waste; grinding of the segregated cleaned waste to obtain grinded waste; introducing the grinded waste into an extrusion line having a venting extruder component as part of the extrusion line, to obtain molten plastic; and removing the impurities by vacuum venting of the molten plastic to obtained recycled plastic free from impurities. The present disclosure further relates to various articles like Industrial Post Recycled (IPR) plastic tubes, blow moulded bottles, pallates, manufactured from the recycled plastic waste.
    Type: Application
    Filed: June 19, 2012
    Publication date: August 7, 2014
    Applicant: ESSEL PROPACK LTD.
    Inventors: Natarasan Sethu, Chandrashekhar Ramchandra Abhyankan, Mrinal Kanti Banerjee
  • Publication number: 20140213745
    Abstract: This invention relates method to prepare and compositions pertaining to an amorphous polymer comprising: at least 95 mol % propylene and 0 to 5 mol % vinyl monomer content, wherein the polymer has a g?vis of less than 0.95, an Mn of about 200 to about 10,000, an ?Hf of less than 10 J/g and has greater than 50% allylic chain end functionality.
    Type: Application
    Filed: January 17, 2014
    Publication date: July 31, 2014
    Inventors: Peijun Jiang, Charles J. Ruff
  • Publication number: 20140200316
    Abstract: The present invention relates to a process for the production of propylene polymers in the presence of a blend of a first Ziegler-Natta catalyst, which comprises a titanium compound having at least one titanium-halogen bond and a diether compound as internal electron donor, and a second Ziegler-Natta catalyst, which comprises a titanium compound having at least one titanium-halogen bond and a succinate compound as internal electron donor.
    Type: Application
    Filed: March 17, 2014
    Publication date: July 17, 2014
    Applicant: Total Research & Technology Feluy
    Inventors: Alain Standaert, Jerome Gromada, David Vandewiele
  • Patent number: 8778826
    Abstract: Disclosed herein are processes for preparing procatalyst compositions and polymers, i.e., propylene-based polymers, produced therefrom. The present procatalyst compositions improve catalyst selectivity and also increase the bulk density of the formant polymer.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: July 15, 2014
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Kelly Gonzalez, Clark C. Williams, Linfeng Chen
  • Publication number: 20140179848
    Abstract: A fire retardant material comprising preferably at least 60% polypropylene having a flexural modulus of 2.8 GPa or above and a fire retardancy rating of UL-94 V-1 or better. The fire retardant material is preferably halogen and glass-fibre free. It may contain a fire retardant agent (e.g. a polymeric APP-crystal phase II type fire retardant fire retardant) and a filler. Also methods for producing such a fire retardant material.
    Type: Application
    Filed: January 16, 2012
    Publication date: June 26, 2014
    Applicant: Auckland Uniservices Limited
    Inventors: Ralph Paul Cooney, Kaluachchl Gamage Karnlka De Silva
  • Publication number: 20140179889
    Abstract: Elevated temperature electrospinning apparatus comprises a pump upstream of or containing a resistance heater, means to shield applied electrostatic field from the resistance heater, and a temperature modulator for modulating temperature in the spinning region.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: Cornell University
    Inventors: Yong Lak JOO, Huajun ZHOU
  • Publication number: 20140178617
    Abstract: The invention relates to a process for the preparation of polypropylene having: a molecular weight of 450,000-950,000, a molecular weight distribution of 3-6, and xylene soluble content of 2-6 wt %, by converting propylene into the polypropylene without pre-polymerization in the presence of a polymerization catalyst under a condition where the volume ratio of H2 to propylene is at most 0.0020, wherein the catalyst comprises a catalyst component and a co-catalyst, wherein the catalyst component is obtained by a process wherein a compound with formula Mg(OAlk)xCly wherein x is larger than 0 and smaller than 2, y equals 2-x and each Alk, independently, represents an alkyl group, is contacted with a titanium tetraalkoxide and/or an alcohol in the presence of an inert dispersant to give an intermediate reaction product and wherein the intermediate reaction product is contacted with titanium tetrachloride in the presence of an internal donor.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 26, 2014
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Abderrahman Meddad, Hesham A. Al-Shobilly, Mansour I. Taftaf
  • Patent number: 8759452
    Abstract: The present invention is directed to a polypropylene composition comprising a propylene homo- or copolymer (A) with a polydispersity index (PI), determined according ISO 6721-1, of at least 5.8 Pa?1; and an inorganic filler (B) in an amount from 2.0 to 20 parts per weight based on 100 parts per weight of (A)+(B); The present invention is furthermore directed to a polypropylene composition comprising a propylene homo- or copolymer (A); and an inorganic filler (B); whereby the following relation is fulfilled (80F+1700)MPa?T wherein F are the parts per weight of component (B) based on 100 parts per weight of the total amount of (A)+(B). T is the tensile modulus in MPa, determined according to ISO 527-2, of the polypropylene composition measured on a test specimen prepared by injection molding according to ISO 1873-2.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: June 24, 2014
    Assignee: Borealis AG
    Inventors: Markus Gahleitner, Bo Malm, Klaus Bernreitner, Juliane Braun
  • Publication number: 20140171606
    Abstract: Slurry polymerization process for the preparation of a polypropylene (PP) having a decaline soluble fraction (DS) of equal or below 2.5 wt.-%, wherein (a) a Ziegler-Natta catalyst (ZN), (b) propylene and optionally ethylene and/or an C4 to C12 ?-olefin, and (c) a diluent (D) comprising a donor agent (DA), are fed into a first reactor vessel (R1) and the polymerization of said polypropylene (PP) takes place in at least said first reactor (R1).
    Type: Application
    Filed: July 5, 2012
    Publication date: June 19, 2014
    Applicant: Borealis AG
    Inventors: Evi De Smet, Lodewijk Hendrickx, Werner Verwimp, Marc Verheijen, Paul Allemeersch, Erwin Vanzeir, Francisus Jacobs, Yvo Daniels, Kristof Storms
  • Publication number: 20140163169
    Abstract: A method for producing a polypropylene fiber, which can produce a high strength polypropylene fiber without using a special raw material and/or means is provided. The method for producing a polypropylene fiber includes the step of spinning a melt extruded fiber, the step of keeping cold, and the step of drawing, in which a ratio of a take-off speed with respect to an extrusion speed in the step of spinning the melt-extruded fiber is 50 to 750.
    Type: Application
    Filed: May 30, 2011
    Publication date: June 12, 2014
    Applicants: THE UNIVERSITY OF TOKYO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tatsuya Kitagawa, Tadahisa Iwata, Chizuru Hongo
  • Publication number: 20140155854
    Abstract: This invention relates to polypropylene fibers and fabrics containing polypropylene fibers, the fibers comprising propylene polymers comprising at least 50 mol % propylene, said polymers having: a) a melt flow rate (MFR, ASTM 1238, 230° C., 2.16 kg) of about 10 dg/min to about 25 dg/min; b) a dimensionless Stress Ratio/Loss Tangent Index R2 [defined by Eq. (8)] at 190° C. from about 1.5 to about 30; c) an onset temperature of crystallization under flow, Tc,rheol, (as determined by SAOS rheology, 190° C., 1° C./min, where said polymer has 0 wt % nucleating agent present), of at least about 123° C.; d) an average meso run length determined by 13C NMR of at least about 55 or higher; and e) optionally, a loss tangent, tan ?, [defined by Eq. (2)] at an angular frequency of 0.1 rad/s at 190° C. from about 14 to about 70.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 5, 2014
    Applicants: ExxonMobil Chemical Patents Inc.
    Inventors: Jeanne Marie MacDonald, Antonios K. Doufas, Jerome Sarrazin, William Michael Ferry, Rahul Ravindra Kulkarni, Derek Wade Thurman, Cynthia Ann Mitchell, Detlef Frey, Peter Schlag, Hans-Georg Geus, Claudio Cinquemani
  • Patent number: 8735519
    Abstract: The invention is directed to a metallocene catalyst system and a process for preparing the system. The metallocene catalyst system comprises a support and metallocene bound substantially throughout the support. The selection of certain supports facilitates the production of metallocene catalyst systems having increased catalytic activity than previously recognized.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: May 27, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Jun Tian, William Gauthier, David Rauscher, Shady Henry
  • Patent number: 8735502
    Abstract: This invention relates to a functionalized co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(?0.94 (mole % ethylene incorporated)+100), when 10 to 60 mole % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mole % ethylene is present in the co-oligomer, and 3) X=(1.83*(mole % ethylene incorporated)?83), when 70 to 90 mole % ethylene is present in the co-oligomer. This invention also relates to a functionalized homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum. This invention also relates to a process of making functionalized homo- or co-oligomer, comprising propylene, wherein the productivity is greater than 4500 g/mmol Hf (or Zr)/hour.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: May 27, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Donna J. Crowther
  • Patent number: 8735523
    Abstract: One embodiment of the present invention provides polymer crystalline materials containing crystals of the polymer and satisfying the following requirements (I) and (II) or the following requirements (I) and (III): (I) the polymer crystalline materials a crystallinity of 70% or greater; (II) the crystals are 300 nm or less in size; and (III) the crystals have a number density of 40 ?m?3 or greater. This allows an embodiment of the present invention to provide polymer crystalline materials which are excellent in properties such as mechanical strength, heat tolerance, and transparency or, in particular, polymer crystalline materials, based on a general-purpose plastic such as PP, which is excellent in properties such as mechanical strength, heat tolerance, and transparency.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: May 27, 2014
    Assignee: Hiroshima University
    Inventors: Masamichi Hikosaka, Kaori Watanabe, Kiyoka Okada
  • Patent number: 8735513
    Abstract: A propylene polymerization reaction apparatus and a production method of a propylene-based polymer are capable of producing a continuous multi-stage polymer in low cost, high productivity and stably, and significantly reducing generation amount of an off-specification product accompanying change of polymerization condition, in multi-stage continuous vapor phase polymerization method of a propylene-based polymer using a catalyst for olefin polymerization. A reaction apparatus for producing a propylene-based polymer by a multi-stage continuous vapor phase polymerization method is used. One or more reactor of a horizontal-type reactor having inside a stirring machine which rotates around a horizontal axis, and a continuous stirred tank reactor to be connected to the horizontal-type reactor are provided, and a production method of a propylene-based polymer using the same.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: May 27, 2014
    Assignee: Japan Polypropylene Corporation
    Inventors: Takanori Nakashima, Katsuhiko Oono, Kenji Mitsutani, Takao Tayano, Tomoyuki Yoshida, Shigeo Mizukami, Yusuke Yamada
  • Patent number: 8729206
    Abstract: A polypropylene homopolymer with a melting point of less than 147° C., a percentage of 2.1 errors of at least 1% and a xylene soluble fraction of less than 0.5 wt %.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: May 20, 2014
    Assignee: Borealis AG
    Inventors: Luigi Resconi, Pascal Castro, Lauri Huhtanen, Norbert Hafner
  • Patent number: 8722787
    Abstract: The present disclosure includes a waterborne polyolefin based coating layer that has improved features as compared to epoxy coatings. The coating composition of the present disclosure include 40 to 80 weight percent (wt. %) of a base polymer; 10 to 30 wt. % of a polymeric stabilizing agent; 5 to 15 wt. % of a polymeric coupling agent; 0 to 35 wt. % of a polymeric performance improving agent; a neutralizing agent that partially or fully neutralize the polymeric stabilizing agent; and a fluid medium, where the wt. % values are based on the total weight of the base polymer, the polymeric coupling agent, the polymeric stabilizing agent and, when present, the polymeric performance improving agent (as used herein, this total weight of the base polymer, the polymeric coupling agent, the polymeric stabilizing agent and, when present, the polymeric performance improving agent may be referred to as the “solid content” of the coating composition).
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 13, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Jay D. Romick, Qing Zhang, David L. Malotky, Richard A. Lundgard, Jodi M. Mecca
  • Patent number: 8715798
    Abstract: A resin composition includes a polyolefin resin. A viscosity of the resin composition is within a range of not less than 500 Pa·s and not more than 2300 Pa·s under measurement conditions of a measurement temperature of 170° C. and a measurement frequency of 1 Hz. A strain hardening rate of the resin composition in uniaxial elongational viscosity measured under measurement conditions of a measurement temperature of 150° C. and a strain rate of 3.0 s?1 is not less than 800%. A foam insulated wire includes a conductor, and a foam insulation of the resin composition extruded on an outer periphery of thereof. A diameter of the conductor is 3.5 to 18 mm, and an outer diameter of the foam insulation is not less than 8 mm.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: May 6, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hideyuki Suzuki, Yuju Endo, Sohei Kodama, Masahiro Abe, Akinari Nakayama
  • Patent number: 8710163
    Abstract: Pyridyldiamido transition metal complexes are disclosed for use in alkene polymerization.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: April 29, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Matthew S. Bedoya
  • Patent number: 8697827
    Abstract: Disclosed herein are procatalyst compositions, catalyst compositions and polymers, i.e., propylene-based polymers, produced therefrom. The present procatalyst compositions contain a halo-malonate and a 2-fluoro-malonate in particular. The present catalyst compositions improve catalyst selectivity, improve catalyst activity, and also improve hydrogen response during polymerization. Propylene-based polymer produced from the present catalyst composition has a melt flow rate greater than 50 g/10 min.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: April 15, 2014
    Assignee: W. R. Grace & Co.-Conn
    Inventors: Linfeng Chen, Tak W. Leung, Tao Tao
  • Publication number: 20140090990
    Abstract: A protective cover for an electronic device that has an interactive control panel includes a protective shell having a first member and a second member. The second member is configured to join with the first case. An aperture defined by the protective shell aligns with the interactive control panel. A protective membrane for an electronic device includes a sheet of engineered thermoplastic having dimensions corresponding to features of a surface of the electronic device, and has a combination of sufficient thinness and a dielectric constant that together permit capacitive inputs on a front side of the protective membrane to be transmitted to the capacitance sensing interactive control panel. The protective cover and/or the protective membrane include a metalized coating or metallic additive.
    Type: Application
    Filed: November 27, 2013
    Publication date: April 3, 2014
    Applicant: Otter Products, LLC
    Inventors: Curtis R. Richardson, Douglas A. Kempel
  • Publication number: 20140088261
    Abstract: This invention relates to a polyolefin composition comprising one or more of the following formulae: wherein the PO is the residual portion of a vinyl terminated macromonomer (VTM) having had a terminal unsaturated carbon of an allylic chain and a vinyl carbon adjacent to the terminal unsaturated carbon; and wherein the VTM is preferably a vinyl terminated polymer having greater than 30% allyl chain ends with an Mn of greater than 10,000.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 27, 2014
    Inventors: Donna J. Crowther, Patrick Brant
  • Publication number: 20140087169
    Abstract: An apparatus for forming particles from a liquid, including a rotor assembly having at least one surface sized and shaped so as to define at least one capillary. Each capillary has an inner region adjacent an axis of rotation of the rotor assembly, an outer region distal from the axis of rotation, and an edge adjacent the outer region. The rotor assembly is configured to be rotated at an angular velocity selected such that when the liquid is received in the inner region of the at least one capillary, the liquid will move from the inner region to the outer region, adopt an unsaturated condition on the at least one surface such that the liquid flows as a film along the at least one surface and does not continuously span the capillary, and, upon reaching the edge, separates from the at least one surface to form at least one particle.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 27, 2014
    Inventor: Evan E. Koslow
  • Patent number: 8680222
    Abstract: The present invention relates to a process for the production of propylene polymers in the presence of a Ziegler-Natta catalyst comprising a titanium compound having at least one titanium-halogen bond, and a blend of a diether compound and a succinate compound as internal electron donor, all supported on a magnesium halide in active form, an organoaluminium compound and an optional external donor.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: March 25, 2014
    Assignee: Total Research & Technology Feluy
    Inventors: Alain Standaert, Jerome Gromada, David Vandewiele
  • Publication number: 20140080991
    Abstract: The invention relates to a reactor assembly for the production of polymers including a fluidized bed reactor (1) comprising a bottom zone (5), a middle zone (6) and an upper zone (7), an inlet (8) for the fluidization gas located in the bottom zone (5), an outlet (9) for the fluidization gas located in the upper zone (7); the outlet (9) for the fluidization gas being coupled with the fluidized bed reactor (1) via inlet (8); the equivalent cross-sectional diameter of the bottom zone (5) being monotonically increasing with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the middle zone (6) having an essentially constant equivalent cross-sectional diameter with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the equivalent cross-sectional diameter of the upper zone (7) being monotonically decreasing with respect to the flow direction of the fluidization gas through the fluidized bed reactor; wherein that the ratio of the height of
    Type: Application
    Filed: March 2, 2012
    Publication date: March 20, 2014
    Applicant: BOREALIS AG
    Inventors: Erik Eriksson, Michiel Bergstra, Klaus Nyfors, Günter Weickert
  • Publication number: 20140051315
    Abstract: The present invention relates to fibers comprising at least 98 wt % of a propylene polymer having, in particular, a specific molecular weight distribution Mw/Mn and xylene solubles content. The present invention also relates to nonwovens, laminates and composites comprising such fibers. Furthermore, the present invention relates to a process for producing such fibers, nonwovens, laminates and composites.
    Type: Application
    Filed: December 12, 2008
    Publication date: February 20, 2014
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Alain Standaert, Hugues Haubruge, GuilLaume Pavy, Jerome Gromada
  • Patent number: 8653209
    Abstract: This invention relates to a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(?0.94(mole % ethylene incorporated)+100), when 10 to 60 mole % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mole % ethylene is present in the co-oligomer, and 3) X=(1.83*(mole % ethylene incorporated)?83), when 70 to 90 mole % ethylene is present in the co-oligomer. This invention also relates to a homo-oligomer, comprising propylene, wherein the oligomer has: at least 93% allyl chain ends, an Mn of about 500 to about 20,000 g/mol, an isobutyl chain end to allylic vinyl group ratio of 0.8:1 to 1.2:1.0, and less than 100 ppm aluminum. This invention also relates to a process of making homo-oligomer, comprising propylene, wherein the productivity is greater than 4500 g/mmol Hf (or Zr)/hour.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: February 18, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Donna J. Crowther, Andrew G. Narvaez, Jr.
  • Publication number: 20140031480
    Abstract: The invention relates to a polypropylene composition showing a high melt flow rate and simultaneously high stiffness and a process for the production thereof. The invention further relates to a material comprising the inventive polypropylene.
    Type: Application
    Filed: October 24, 2011
    Publication date: January 30, 2014
    Applicant: BOREALIS AG
    Inventors: Cornelia Kock, Petar Doshev
  • Publication number: 20140031508
    Abstract: Solid-state shear pulverization of semi-crystalline polymers and copolymers thereof and related methods for enhanced crystallization kinetics and physical/mechanical properties.
    Type: Application
    Filed: April 1, 2013
    Publication date: January 30, 2014
    Applicant: Northwestern University
    Inventors: John M. Torkelson, Cynthia Pierre, Amanda Flores
  • Patent number: 8623261
    Abstract: A method of preparing a thermoformed article which is relatively isotropic in terms of shrinkage of the final thermoformed article along the sheet extrusion flow path (the longitudinal direction) and the transverse direction. The article is prepared from an isotactic polypropylene produced by the polymerization of propylene with an isospecific metallocene catalyst. The polymer has a melt flow rate within the range of 1-5 grams/10 minutes and a melting temperature of no more than 160° C. The polypropylene is extruded to provide a sheet which is oriented in at least one direction and has a thickness of 10-100 mils. The sheet is heated to a temperature of 135-160° C, and thermoformed in contact with a template having the desired configuration to produce the thermoformed article. The thermoformed article is then cooled and retrieved from the template to arrive at the final product.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: January 7, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Mahesh Patkar, Michael Musgrave
  • Patent number: 8623962
    Abstract: This invention relates to a process to functionalize propylene co-oligomer comprising contacting an alkene metathesis catalyst with a heteroatom containing alkene, and a propylene a co-oligomer having an Mn of 300 to 30,000 g/mol comprising 10 to 90 mol % propylene and 10 to 90 mol % of ethylene, wherein the oligomer has at least X % allyl chain ends, where: 1) X=(?0.94 (mol % ethylene incorporated)+100), when 10 to 60 mol % ethylene is present in the co-oligomer, and 2) X=45, when greater than 60 and less than 70 mol % ethylene is present in the co-oligomer, and 3) X=(1.83*(mol % ethylene incorporated)?83), when 70 to 90 mol % ethylene is present in the co-oligomer.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: January 7, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Matthew W. Holtcamp, Andrew G. Narvaez, Jr., Donna J. Crowther, Patrick Brant
  • Patent number: 8609571
    Abstract: Disclosed is a method for preparing a solid catalyst for polymerization of polypropylene. The method includes: a) reacting a magnesium halide compound with alcohol and then adding a phthalic acid compound thereto to prepare a magnesium compound solution; b) mixing an aliphatic or alicyclic hydrocarbon solvent with an aromatic hydrocarbon solvent to prepare a mixed solvent, dispersing a titanium compound in the mixed solvent, and then reacting the titanium compound dispersed with the magnesium compound solution prepared in step a), and heating to produce a support; and c) reacting the support with the titanium used before disperse in step b) compound and an electron donor to obtain a solid product. When a catalyst prepared by the present disclosure is used, polypropylene with high activity and high bulk density characteristics may be prepared.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: December 17, 2013
    Assignee: Lotte Chemical Corporation
    Inventors: Seong Soo Lim, Young Kook Kim
  • Patent number: 8604146
    Abstract: Disclosed herein are catalyst compositions and polymers, i.e., propylene-based polymers, produced therefrom. The present catalyst compositions include an internal electron donor with a compounded alkoxyalkyl ester and optionally a mixed external electron donor. The present catalyst compositions improve catalyst selectivity, improve catalyst activity, and/or improve hydrogen response. Propylene-based polymer produced from the present catalyst composition has a melt flow rate greater than 10 g/10 min.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: December 10, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Kelly Gonzalez