From Propylene Only Patents (Class 526/351)
  • Patent number: 8604145
    Abstract: Group 4 metal complexes comprising a polyvalent, heteroaryl donor ligand and their use as components of olefin polymerization catalysts, especially suited for preparing propylene/ethylene copolymer products having high isotacticity and low molecular weight, are disclosed.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: December 10, 2013
    Assignee: Dow Global Technologies, LLC
    Inventors: Harold W. Boone, Kevin A. Frazier, Daniel D. VanderLende, Paul C. Vosejpka
  • Patent number: 8604117
    Abstract: A resin composition is provided which is improved in fluidability, stiffness and impact resistance and therefore can achieve the reduction in wall thickness of a resin product for automotive interior/exterior applications comprising a polypropylene resin; and a resin product produced from the resin composition. The resin composition comprises 30 to 65 mass % of an ethylene-propylene block copolymer having a melt flow rate of 60 to 120 g/10 minutes and a Charpy impact strength of 3 kJ/m2 or more; 0 to 25 mass % of a homopolypropylene resin having a melt flow rate of 10 g/10 minutes or more and a modulus of elasticity of 2000 MPa or more; 5 to 20 mass % of an ethylene-?-olefin copolymer rubber having a Mooney viscosity of 20 to 75 or a styrene-ethylene butylenes-styrene copolymer having a styrene component content of 15 to 30 mass %; and 23 to 37 mass % of talc having an average particle diameter of 8 ?m or less.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: December 10, 2013
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masao Kobayashi, Koichi Ogiso, Katsushi Ito, Kiyoshi Suenaga
  • Patent number: 8598242
    Abstract: Disclosed is an expanded polypropylene copolymer resin particle whose base resin is a polypropylene random copolymer resin having a melting point of not more than 145° C., the base resin having a H/W ratio of not more than 8 where H (%) is a maximum height of an elution peak and W (° C.) is a peak width at half a height of the peak in an elution curve obtained from a differential value of eluted content measured by cross fractionation chromatography, and a ratio (Mw/Mn) of a weight-average molecular weight (Mw) and a number-average molecular weight (Mn) being not less than 3.5 in a molecular weight distribution measurement of a whole of eluted components. With such an expanded polypropylene copolymer resin particle, it is possible to provide expanded polypropylene copolymer resin particles which are capable of producing an in-mold expansion-molded article with a low molding heating vapor pressure, and which causes few deformation or shrinkage of an obtained in-mold expansion-molded article (i.e.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: December 3, 2013
    Assignee: Kaneka Corporation
    Inventor: Kenichi Senda
  • Patent number: 8598241
    Abstract: Provided are polypropylene resin pre-foamed particles including, as base resin, polypropylene resin that satisfies the following requirements (a) through (c): (a) in cross fractionation chromatography, an amount of components eluted at a temperature of not more than 40° C. is not more than 2.0% by weight; (b) a melting point is not less than 100° C. but not more than 160° C.; and (c) propylene monomer units are present in an amount of not less than 90 mol % but not more than 100 mol %, and olefin units each having a carbon number of 2 or 4 or more are present in an amount of not less than 0 mol % but not more than 10 mol %. The polypropylene resin pre-foamed particles can be molded by in-mold foaming molding at a not high molding heating steam pressure, and a polypropylene resin in-mold foaming molded product excellent in dimensional stability at high temperatures can be prepared from the polypropylene resin pre-foamed particles.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: December 3, 2013
    Assignee: Kaneka Corporation
    Inventors: Toru Yoshida, Hiroshi Tsuneishi
  • Publication number: 20130316138
    Abstract: Provided is a protective sheet for glasses, which has excellent workability, visibility and transparency. A protective sheet for glasses, characterized by having a distinctness of image of 70% or more and an internal haze of 3.0% or less as measured in accordance with JIS K7136.
    Type: Application
    Filed: January 26, 2012
    Publication date: November 28, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Hiroko Ikenaga, Takeshi Igarashi, Toshitaka Suzuki, Akifumi Kido, Yuki Saitou
  • Patent number: 8592536
    Abstract: The invention refers to a process for preparing a Group 2 metal/transition metal olefin polymerization catalyst component in particulate form having improved polymerization properties due to the use of H2 during catalyst component preparation and the use of such catalyst components in a process for polymerizing olefins.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: November 26, 2013
    Assignee: Borealis AG
    Inventors: Timo Leinonen, Peter Denifl, Anssi Haikarainen
  • Publication number: 20130302608
    Abstract: A new class of high modulus polypropylene multifilament fiber and/or yarn is provided. Such a multifilament fiber and/or yarn exhibits an exceptional combination of high strength and toughness with low weight and density. The inventive fibers thus permit replacement of expensive polymeric fibers within certain applications with lower cost alternatives, or replacement of high density components with such low density fibers, without sacrificing strength or durability. Such multifilament fibers are produced through melt-spinning processes and exhibit highly unique microstructures therein, including significant void volumes, interspersed and crossed voids, and nanofilament bridges within such voids. Such microstructural characteristics appear to impart the exceptional properties noted above.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 14, 2013
    Applicant: John K. Fort, Chapter 7 Trustee of NMFC, LLC, f/k/a Innegrity, LLC
    Inventor: Brian G. Morin
  • Publication number: 20130296520
    Abstract: In the most preferred embodiments, the polypropylene jackets will meet the following specifications: a tensile strength of greater than or equal to 1500 psi (or greater than or equal to 10.3 MPa); and elongation at break of 150% or greater. Additionally, the aged requirements (121° C. for 168 hours) in most preferred embodiments are a retained tensile strength that is 70% of the original, and a retained elongation that is 70% of the original. Additionally, in most 10 preferred embodiments, the heat distortion at 131° C. is less than or equal to 30%. Additionally, in most preferred embodiments then carbon black percentage is 2% or greater. It should be understood, that in other embodiments of the polypropylene jackets, the various specifications and or requirements may fall outside some or all of these ranges.
    Type: Application
    Filed: March 26, 2013
    Publication date: November 7, 2013
    Inventor: CINDY L. FLENNIKEN
  • Publication number: 20130276816
    Abstract: A polypropylene part of a device for packaging and/or applying a product, including a body having at least one wall covered, at least partly, with at least one finishing coat, the resilience of said polypropylene being greater than or equal to 7 kJ/m2.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 24, 2013
    Applicant: L'OREAL
    Inventor: Guillaume COUCHE
  • Patent number: 8563673
    Abstract: A propylene-based resin molded article satisfying the following requirements (1) through (4): Requirement (1) Lc/La?1.50 Requirement (2) Lc?10.0 Requirement (3) F1?0.07 Requirement (4) F2?0.06 wherein in Requirements (1) through (4), La denotes the distance (unit: nm) between crystalline lamellae calculated from the long-period distance calculated from a small-angle X-ray scattering profile and the degree of crystallization calculated from the amount of heat of fusion measured by differential scanning calorimetry, Lc denotes the thickness (unit: nm) of a crystalline lamella calculated from the distance between crystalline lamellae and the long-period distance, F1 denotes the degree of orientation calculated from the infrared dichroic ratio measured at a wave number of 997 cm?1, and F2 denotes the degree of orientation calculated from the infrared dichroic ratio measured at a wave number of 973 cm?1.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: October 22, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Takafumi Iwata, Hideki Oshima, Satoru Moritomi
  • Patent number: 8557917
    Abstract: The present invention relates to a process for the preparation of a propylene homo- or copolymer, comprising the following steps: (i) feeding propylene and hydrogen, and optionally one or more comonomers, to a reactor R1, wherein the hydrogen is fed to the reactor R1 in a periodically varying amount, (ii) preparing a first fraction of the propylene homo- or copolymer in the reactor R1 in the presence of a catalyst, (iii) transferring the first fraction to a reactor R2, and (iv) preparing a second fraction of the propylene homo- or copolymer in the reactor R2, wherein the melt flow rate MFR (2.16 kg, 230° C.) of the propylene homo- or copolymer is higher than the melt flow rate MFR (2.16 kg, 230° C.) of the first fraction.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: October 15, 2013
    Assignee: Borealis AG
    Inventors: Pauli Leskinen, Michiel Bergstra
  • Publication number: 20130261277
    Abstract: This invention relates to a process for polymerization, comprising (i) contacting, at a temperature greater than 35° C., one or more monomers comprising ethylene and/or propylene, with a catalyst system comprising a metallocene catalyst compound and an activator, (ii) converting at least 50 mol % of the monomer to polyolefin; and (iii) obtaining a branched polyolefin having greater than 50% allyl chain ends, relative to total unsaturated chain ends. The invention also relates to the branched polyolefins and functionalized branched polyolefins.
    Type: Application
    Filed: May 23, 2013
    Publication date: October 3, 2013
    Inventors: Peijun Jiang, Patrick Brant
  • Patent number: 8545980
    Abstract: A polypropylene resin having: (1) a melt flow rate (MFR) of 6 to 100 g/10 minutes, (2) a molecular weight distribution (Mw/Mn), measured by gel permeation chromatography, of 3 to 6, and (3) a 116° C. non-eluted component content (100-W116(%)) of 50% or more and a content of components eluted at 90° C. or less (W90) of 10 to 30%, measured by temperature-rising fractional chromatography (TREF).
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: October 1, 2013
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Takeharu Tajima, Toshitaka Kanai, Tomoaki Takebe, Yutaka Minami
  • Patent number: 8546497
    Abstract: A propylene polymerization reaction apparatus and a production method of a propylene-based polymer are capable of producing a continuous multi-stage polymer in low cost, high productivity and stably, and significantly reducing generation amount of an off-specification product accompanying change of polymerization condition, in multi-stage continuous vapor phase polymerization method of a propylene-based polymer using a catalyst for olefin polymerization. A reaction apparatus for producing a propylene-based polymer by a multi-stage continuous vapor phase polymerization method is used. One or more reactor of a horizontal-type reactor having inside a stirring machine which rotates around a horizontal axis, and a continuous stirred tank reactor to be connected to the horizontal-type reactor are provided, and a production method of a propylene-based polymer using the same.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: October 1, 2013
    Assignee: Japan Polypropylene Corporation
    Inventors: Takanori Nakashima, Katsuhiko Oono, Kenji Mitsutani, Takao Tayano, Tomoyuki Yoshida, Shigeo Mizukami, Yusuke Yamada
  • Publication number: 20130239792
    Abstract: The invention relates to a method for the production of high-strength ribbons having a high modulus of elasticity made of a highly molecular polyolefin, wherein the polyolefins, particularly polypropylene and polyethylene, are extruded through a slotted nozzle, are then subjected to a temperature of 85° to 135° C. for a duration of at least one second, the films are then cut into individual ribbons, if necessary, and stretched at temperatures between 90° and 165° C. in one or more steps, are rolled up or further processed directly into textiles or technical flexible sheet materials. The ribbons can be laminated into multi-layer flexible sheet materials by using adhesives or adhesion promoters, the flexible sheet materials being particularly suitable as protection from ballistic projectiles. In this case particularly in the form of plate-shaped or flexible compound bodies.
    Type: Application
    Filed: February 22, 2013
    Publication date: September 19, 2013
    Applicant: NEXTRUSION GMBH
    Inventors: Hans-Joachim Bruning, Andreas Fischer, Jan Adolph Dam Backer, Mark James Bonner, Ian McMillan Ward
  • Patent number: 8530582
    Abstract: The present invention relates to modified polyolefins with atactic structural elements, to processes for preparation thereof and to the use thereof, especially as an adhesive or as a constituent of adhesives.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: September 10, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Hinnerk Gordon Becker, Lutz Mindach, Holger Kautz, Miriam Ammer
  • Publication number: 20130230718
    Abstract: The invention is directed to a metallocene catalyst system and a process for preparing the system. The metallocene catalyst system comprises a support and metallocene bound substantially throughout the support. The selection of certain supports facilitates the production of metallocene catalyst systems having increased catalytic activity than previously recognized.
    Type: Application
    Filed: April 9, 2013
    Publication date: September 5, 2013
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Jun Tian, William Gauthier, David Rauscher, Shady Henry
  • Publication number: 20130213581
    Abstract: The present invention provides a film of an oriented material which exhibits the property of expansion in at least one of its machine and transverse directions at a first temperature and of shrinkage at a second, higher, shrink onset temperature, the film having been annealed after orientation at a temperature above the first temperature and selected with reference to an intended recycling wash-off process to promote expansion of the film at the selected temperature of the wash-off process.
    Type: Application
    Filed: September 7, 2011
    Publication date: August 22, 2013
    Applicant: Innovia Films Limited
    Inventors: Michael Taylor, Richard Waning, Barry Frizell
  • Patent number: 8513366
    Abstract: Methods for modulated degenerative transfer living polymerization and isotactic-atactic stereoblock and stereogradient poly(olefins) thereby Abstract A method of producing a multiblock, stereoblock polyolefin having substantially uniform microstructure is disclosed. The method includes contacting a Ziegler-Natta pre-catalyst with a co-catalyst and an olefin to polymerize the olefin and form a first stereoblock, adding a methyl donator that changes the stereoregularity of the polymerization, and polymerizing the olefin to form a second stereoblock. The methods of the present invention allow for the production of poly(olefin)s having predictable degrees of incorporation of stereoerrors of a known type. The methods allows for the production of a variety of poly(olefin) microstructures, ranging from stereoblock to stereogradient poly(olefin)s and poly(olefin)s having fully isotactic to fully atactic microstructures.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: August 20, 2013
    Assignee: University of Maryland, College Park
    Inventors: Lawrence R. Sita, Matthew B. Harney, Yonghui Zhang
  • Publication number: 20130203953
    Abstract: The present invention relates to a method for the production of an olefin from at least one renewable natural raw material. More specifically, the present invention refers to a method whereby is obtained ethylene or propylene at high yield and high productivity by means of the anodic electrodecarboxylation reaction of carboxylic acids, respectively propionic acid and butyric acid, produced from fermentation, preferably of sugars. The method for generating the olefin is simple, has a low cost, and provides low emissions of greenhouse gasses of fossil origin.
    Type: Application
    Filed: December 3, 2010
    Publication date: August 8, 2013
    Inventors: Gonçalo Amarante Guimarães Pereira, Johana Rincones Perez, Marcelo Falsarella Carazzolle, Antonio Luiz Ribeiro de Castro Morschbacker, Luiza Roza, Márcio Henrique dos Santos Andrade
  • Patent number: 8501892
    Abstract: Ethylene propylene copolymers, substantially free of diene, are described. The copolymers will have a uniform distribution of both tacticity and comonomer between copolymer chains. Further, the copolymers will exhibit a statistically insignificant intramolecular difference of tacticity. The copolymers are made in the presence of a metallocene catalyst.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: August 6, 2013
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Sudhin Datta, Bruce A. Harrington, Weiguo Hu, Periagaram S. Ravishankar, George Rodriguez
  • Publication number: 20130196168
    Abstract: A method for secondary-molding a polymer nano oriented crystal material in accordance with an embodiment of the present invention includes the steps of: heating the polymer nano oriented crystal material so that the polymer nano oriented crystal material changes into a mobile phase or a melt having a dense entanglement network structure; molding the polymer nano oriented crystal material which changed into the mobile phase or the melt including the dense entanglement network in the step; and cooling the polymer nano oriented crystal material, which has undergone the step, until the polymer nano oriented crystal material changes into an ordered phase.
    Type: Application
    Filed: October 7, 2011
    Publication date: August 1, 2013
    Applicants: SUNALLOMER LTD., HIROSHIMA UNIVERSITY
    Inventors: Masamichi Hikosaka, Kiyoka Okada, Junichiro Washiyama, Takeshi Nakajima, Yuka Akiyama, Shingo Ueno
  • Patent number: 8487026
    Abstract: The invention relates to a hot-melt adhesive substance for sticking together fibrous materials such as matted nonwovens or woven textiles with smooth substrate surfaces, such as plastic or metal films, and for laminating said materials. Said substance is characterized in that it contains at least one polyolefin which has been produced by polymerization in the presence of metallocene as a catalyst and has a ring/ball softening point of between 50 and 165° C. and a melting viscosity, measured at a temperature of 170° C., of between 20 and 40,000 mPa-s. The hot-melt adhesive substance can also contain at least one adhesive component and is used in a quantity of between 3 and 6 g/m2, preferably between 4 and 5.5 g/m2, for sticking a film to a nonwoven material during the production of hygiene items such as disposable nappies, baby nappies, incontinence products, panty liners and/or sanitary towels.
    Type: Grant
    Filed: October 6, 2007
    Date of Patent: July 16, 2013
    Assignee: Clariant Finance (BVI) Limited
    Inventors: Sebastijan Bach, Gerd Hohner
  • Patent number: 8476395
    Abstract: The present invention relates to a polypropylene composition comprising a propylene homopolymer or a propylene random copolymer having at least one comonomer selected from alpha-olefins with 2 or 4-8 carbon atoms and a comonomer content of not more than 8.0 wt %, wherein the propylene homo- or copolymer is polymerized in the presence of a Ziegler-Natta catalyst, and the polypropylene composition has a MWD of 2.0 to 6.0 and an MFR (2.16 kg/230° C.) of 4.0 g/10 min to 20.0 g/10 min, characterized in that the polypropylene composition has not been subjected to a vis-breaking step, the use of the inventive polypropylene composition for the production of a film and/or injection molded articles, a process for preparing a film wherein the inventive polypropylene composition is formed into a film, and wherein the polypropylene composition has not been subjected to a vis-breaking step and a film comprising the inventive polypropylene composition.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: July 2, 2013
    Assignee: Borealis AG
    Inventors: Christelle Grein, Tonja Schedenig
  • Publication number: 20130158224
    Abstract: Provided are a method for producing a polymer material having a high degree of crystallization, a small variability in degree of crystallization, and a three-dimensionally isotropic crystallinity to thus give high thermal resistance, high isotropy of resin physical properties, and a small variability in resin physical properties; and the polymer material.
    Type: Application
    Filed: August 4, 2011
    Publication date: June 20, 2013
    Inventors: Hironori Tabata, Akira Nakasuga, Norihiro Asai
  • Publication number: 20130147252
    Abstract: A body support structure includes a molded polymeric support grid having a three-dimensional molded contour. The support grid includes a body support region having a plurality of through openings separated by a plurality of lands. In one embodiment, an area of the openings is greater than an area of the lands. In another embodiment, the ratio of a surface area of the lands relative to an area defined by an outer peripheral edge is less than or equal to 0.74. A fabric layer is bonded to the plurality of lands and covers the plurality of openings. Methods of manufacturing and recycling the body structure are also provided.
    Type: Application
    Filed: December 5, 2012
    Publication date: June 13, 2013
    Applicant: Herman Miller, Inc.
    Inventors: JOHANN BURKHARD SCHMITZ, Claudia PLIKAT, Carola E.M. ZWICK, Roland R.O. ZWICK, Andrew J. KURRASCH
  • Patent number: 8461279
    Abstract: Disclosed is a method for producing a devolatilized polyolefin, wherein the method comprises a step that involves providing a twin screw extruder comprising a resin feeding port, a first molten resin kneading zone, a molten resin partially filled zone which is prevented from being fully filled with molten resin, a second molten resin kneading zone, and a devolatilization zone that are disposed in order from the upstream of a cylinder of the extruder, feeding a polyolefin through the resin feeding port, and feeding water to the molten resin partially filled zone in an amount of 0.01 to 50 parts by weight relative to 100 parts by weight of the polyolefin.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: June 11, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hisakatsu Hama, Tetsuro Dobashi
  • Patent number: 8461267
    Abstract: The invention relates to novel propylene polymers with improved properties especially with improved stiffness and impact strength comprising propylene homopolymers or propylene block copolymers with 90.0 to 99.9 wt % propylene and 0.1 to 10 wt % ?-olefins with 2 or 4 to 18 carbon atoms, or mixtures thereof, wherein the propylene homopolymers or propylene block copolymers are ?-nucleated propylene polymers, whereby the ?-nucleated propylene homopolymers have an Ir??0.98 and the values for tensile modulus and Charpy impact strength as specified herein. The ?-nucleated propylene block copolymers are polymers having an IR? of the propylene homopolymer block of ?0.98 and the values for tensile modulus and Charpy impact strength as also specified herein. The propylene polymers with an improved property spectrum are suitable for producing molded parts in a pipe system, such as pipes and fittings, inspection chambers, pipe ducting systems, extrusion or compression molded sheets and the like.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: June 11, 2013
    Inventors: James McGoldrick, Franz Ruemer, Stefan Schiesser, Siegfried Liedauer
  • Publication number: 20130144016
    Abstract: A process for preparing a supported catalyst system comprising the following steps: a. titanating a silica-containing catalyst support having a specific surface area of from 150 m2/g to 800 m2/g, preferably 280 to 600 m2/g, with at least one vapourised titanium compound of the general formula selected from RnTi(OR?)m and (RO)nTi(OR?)m, wherein R and R? are the same or different and are selected from hydrocarbyl groups containing from 1 to 12 carbon and halogens, and wherein n is 0 to 4, m is 0 to 4 and m+n equals 4, to form a titanated silica-containing catalyst support having at least 0.1 wt % of Ti based on the weight of the titanated silica-containing catalyst support, b. treating the support with a catalyst activating agent, preferably an alumoxane. c. treating the titanated support with at least one metallocene during or after step (b).
    Type: Application
    Filed: March 3, 2011
    Publication date: June 6, 2013
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Christopher Willocq, Martine Slawinski, Aurélien Vantomme
  • Patent number: 8455597
    Abstract: This invention relates to a homogenous process for making a vinyl terminated propylene polymer, wherein the process comprises: contacting, propylene, under polymerization conditions, with a catalyst system comprising an activator and at least one metallocene compound, where the metallocene compound is represented by the formula: where: M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring system); each R1 is, independently, a C1 to C10 alkyl group; each R2 is, independently, a C1 to C10 alkyl group; each R3 is, independently, hydrogen; each R4, R5, and R6, is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group; T is a bridging group; each R7 is, independently, hydrogen, halog
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: June 4, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Patrick Brant, Carlos U. De Gracia, Jacqueline A. Lovell
  • Publication number: 20130137843
    Abstract: Integral polymer grids, such as geogrids, are made by stretching and orienting a polypropylene starting sheet material having a defined pattern of holes or depressions in which the polypropylene is at least 50%, and preferably up to about 80%, beta crystals caused by adding a beta nucleating agent to the polypropylene, preferably in concentrations between about 10 ppm to about 100 ppm. Such beta nucleated polypropylene grids exhibit increased yield and break tensile strengths, increased 2% and 5% tensile strengths, increased modulus characteristics, increased torsional stiffness, increased impact strength, and increased grid junction strength. Methods for manufacturing the beta nucleated polypropylene mesh grids are disclosed, along with applications for stabilizing particulate material in civil engineering structures, and the like.
    Type: Application
    Filed: June 20, 2012
    Publication date: May 30, 2013
    Inventors: William SHELTON, John POCHER
  • Patent number: 8450437
    Abstract: The present techniques relate to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, typically in combination with a cocatalyst, and a activator. The compositions and methods presented herein include ethylene polymers with low melt elasticity.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: May 28, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Youlu Yu, David C. Rohlfing, Michael D. Jensen
  • Publication number: 20130131291
    Abstract: A polypropylene homopolymer with a melting point of less than 147° C., a percentage of 2.1 errors of at least 1% and a xylene soluble fraction of less than 0.5 wt %.
    Type: Application
    Filed: April 27, 2011
    Publication date: May 23, 2013
    Inventors: Luigi Resconi, Pascal Castro, Lauri Huhtanen, Norbert Hafner
  • Patent number: 8445608
    Abstract: The present invention discloses a method for preparing long-chain-branched isotactic polypropylene by first oligomerizing propylene with a suitable oligomerization catalyst system and then copolymerizing propylene and the oligomer obtained in situ with a mono-aryl-substituted methylene bridged catalyst system.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: May 21, 2013
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Jean-Franøois Carpentier, Evgueni Kirillov, Nicolas Marquet, Abbas Razavi
  • Patent number: 8445620
    Abstract: Provided are elastic propylene-alpha olefin blocky copolymers. In one form, the elastic propylene-alpha olefin blocky copolymer includes an ?-olefin content from 12 to 25 wt % and having a propylene crystallinity less than 30 J/g, a Tm <100° C. and a Tg >?45° C., wherein said copolymer has blocky propylene segments with r1r2 greater than 1.5, and a process for producing such copolymer.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: May 21, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Andy Haishung Tsou, Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, Alan Anthony Galuska, Patrick Brant, Donald Andrew Winesett
  • Publication number: 20130116394
    Abstract: Solid, particulate catalysts comprising bridged his indenyl n-ligands are disclosed, together with methods for the preparation and use thereat for example, in olefin polymerization.
    Type: Application
    Filed: April 27, 2011
    Publication date: May 9, 2013
    Applicant: Borealis AG
    Inventors: Luigi Resconi, Pascal Castro, Lauri Huhtanen
  • Patent number: 8436115
    Abstract: The present invention discloses metallic complexes based on carbonylamino fulvene ligands; their method of preparation and their use in the oligomerisation or polymerisation of ethylene and alpha-olefins.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: May 7, 2013
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Clément Lansalot-Matras, Olivier Lavastre, Sabine Sirol
  • Patent number: 8436112
    Abstract: The invention is directed to a metallocene catalyst system comprising an inert silica support having pores with a peak pore volume of greater than about 0.115 mL/g at a pore diameter between about 250 Angstroms and about 350 Angstroms, and an alumoxane activator, with the metallocene being bound substantially throughout the support. The activator is grafted to the support in a solvent at a reflux temperature of toluene to obtain an aluminoxane on silica, and a metallocene component is added to make a MCS having a metallocene loading of about 2 wt %. This facilitates the production of metallocene catalyst systems having increased catalytic activity than previously recognized that is at least about 20 percent higher than the catalytic activity for a metallocene loading of about 1 wt % where the activator is grafted to the support at room temperature.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: May 7, 2013
    Assignee: Fina Technology, Inc.
    Inventors: Jun Tian, William Gauthier, David Rauscher, Shady Henry
  • Patent number: 8431660
    Abstract: The present invention provides a non-metallocene transition metal compound that is easily produced, includes a tetrazol group having the high polymerization activity and high temperature stability in the polymerization of olefins, and a catalytic composition that includes the transition metal compound and a cocatalyst. In addition, the present invention provides a method for efficiently producing an olefin homopolymer or copolymer by using the catalytic composition.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: April 30, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Heon-Yong Kwon, Nicola Maggiarosa, Ki-Soo Lee, Min-Seok Cho, Jong-Sang Park, Joon-Hee Cho, Yong-Ho Lee, Byung-Ryul Lee, Seon-Kyoung Kim, Dae-Sik Hong
  • Patent number: 8431662
    Abstract: This invention relates to a polymacromonomer comprising at least one macromonomer and from 0 to 20 wt % of a C2 to C12 comonomer, wherein the macromonomer has vinyl termination of at least 70%, and wherein the polymacromonomer has: a) a g value of less than 0.6, b) an Mw of greater than 30,000 g/mol, c) an Mn of greater than 20,000 g/mol, d) a branching index (g?)vis of less than 0.5, e) less than 25% vinyl terminations, f) at least 70 wt % macromonomer, based upon the weight of the polymacromonomer, g) from 0 to 20 wt % aromatic containing monomer, based upon the weight of the polymacromonomer and h) optionally, a melting point of 50° C. or more. This invention also relates to processes to make such polymacromonomers.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: April 30, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Andrew G. Narvaez, Jr., Donna J. Crowther
  • Patent number: 8426538
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: April 23, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy L. Muninger, Gary G. Jerdee, Ashish M. Sukhadia, Qing R. Yang, Matthew G. Thorn
  • Patent number: 8426534
    Abstract: This invention relates to the field of impact copolymers and their preparation in a single reactor.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: April 23, 2013
    Assignee: Total Research & Technology Feluy
    Inventor: Abbas Razavi
  • Patent number: 8426540
    Abstract: The present invention relates to new tridentate ligand compounds with imino furan units, to a method for manufacturing said compounds and to their use in the preparation of catalysts for the homopolymerization or copolymerization of ethylene and alpha-olefins.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: April 23, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Sabine Sirol
  • Patent number: 8426539
    Abstract: The present invention discloses an active supported catalyst system comprising: a) one or more non-metallocene catalyst component; b) an alkylating agent; c) an activating functionalised and fluorinated support. It also discloses a method for preparing said active support and its use in the polymerisation of polar and non polar monomers.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: April 23, 2013
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Research Scientifique (CNRS)
    Inventors: Floran Prades, Roger Spitz, Christophe Boisson, Sabine Sirol, Abbas Razavi
  • Patent number: 8427810
    Abstract: The present invention relates to a capacitor film comprising a biaxially oriented polypropylene wherein a) said polypropylene has a draw ratio in machine direction of at least 4.0 and a draw ratio in transverse direction of at least 4.0, and b) said polypropylene has an electrical breakdown strength EB63% according to IEC 60243-part 1 (1988) of at least 300 kV/mm at a draw ratio in machine direction and in transverse direction of 4.0.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: April 23, 2013
    Assignee: Borealis Technology Oy
    Inventors: Manfred Stadlbauer, Eberhard Ernst, Lauri Huhtanen, Yvo Daniels, Franck Jacobs
  • Patent number: 8425848
    Abstract: A multi-chamber reactor (1) comprises an outer chamber (2) and at least one inner chamber (3), wherein the at least one inner chamber (3) is formed by a reactor/liner (6), which is closed by a closure (7), in particular a septum or a disk that can be penetrated with a needle, and the outer chamber is an autoclave, wherein the autoclave is composed of an autoclave body (4) and an autoclave cover (5), wherein the autoclave cover (5) has at least one first opening (8) for a needle (9), and preferably a second opening (10), which opens into the outer chamber. Said multi-chamber reactor (1) is suited for carrying out reactions with positive or negative pressure and under complete exclusion of air and/or moisture.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: April 23, 2013
    Assignee: Premex Reactor AG
    Inventor: Klaus Preuss
  • Patent number: 8420760
    Abstract: Substantially isotaclic propylene interpolyraets comprise (A) at least 60 weight percent (wt %) units derived from propylene, and (B) between greater than zero and 40 wt % units derived from ethylene, the propylene interpolyrner further characterized by at least one of the following properties: (1) a ratio of less than 1 measured at interpolyraer number average molecular weight (Mn), (2) a relative compositional drift of less than 50%, arid (3) propylene chain segments having a chain isotacticity triad index of at least 70 mole percent.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: April 16, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Morgan M. Hughes, Patricia Ansems, Carl N. Iverson, Lisa S. Madenjian, Daniel D. VanderLende
  • Patent number: 8420743
    Abstract: A propylene-based copolymer is composed of 60 to 90% by weight of Component (A) that is a polymer component whose major structural unit is a structural unit derived from propylene and 10 to 40% by weight of Component (B) that is a propylene-ethylene copolymer component whose content of a structural unit derived from ethylene is 50 to 80% by weight, wherein the sum total of Component (A) and Component (B) is 100% by weight, wherein the ratio of the intrinsic viscosity of Component (B) ([?]B) to the intrinsic viscosity of Component (A) ([?]A)([?]B/[?]A) satisfies a formula: 1.3<[?]B/[?]A?2.0, and the melt flow rate, measured at a temperature of 230° C. and a load of 21.18 N, of the copolymer is not less than 5 g/10 minutes and not more than 30 g/10 minutes.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: April 16, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Kenji Ikeda, Shigeki Kishiro
  • Patent number: 8420756
    Abstract: The present invention relates to the field of single site catalyst systems based on aromatic BINAM diamine ligands and suitable for oligomerising or polymerising ethylene and alpha-olefins.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: April 16, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Caroline Hillairet, Guillaume Michaud, Sabine Sirol
  • Patent number: 8415441
    Abstract: The invention is a novel family of polyolefins characterized by chain-walking defects of the type that add extra backbone carbons per monomer. These polyolefins display a large decrease in crystallinity relative to polyolefins known in the art. Specifically, the reduction in crystallinity is much greater than for earlier polypropylenes with a matched content of stereo or 1-alkene type defects. The claimed polyolefins can be made by a diimine-based catalyst. The defects in the polyolefin backbone are generated by a chain walking mechanism in which three or more carbons per monomer are added to the polymer backbone instead of two, as in conventional polymerization or copolymerization methods of alpha olefins. The novel polyolefins can be used in applications such as plastic wrapping, thin films, co-extrusion layers or molded parts in the absence of polymer blending or copolymerization. The cost of materials production can be reduced.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: April 9, 2013
    Assignees: The Florida State University Research Foundation, Inc., Cornell University Cornell Center for Technology, Enterprise & Commercialization
    Inventors: Rufina Alamo, Geoffrey Coates, Carolina Ruiz-Orta