From Ketone-containing Phenolic Reactant Or With Ketone-containing Reactant Patents (Class 528/125)
  • Patent number: 5939521
    Abstract: This invention relates the novel diamines, the polyimide oligomers and the polyimides derived therefrom and to the method of preparing the diamines, oligomers and the polyimides. The thermoplastic polyimides derived from the aromatic diamines of this invention are characterized as having a high glass transition temperature, good mechanical properties and improved processability in the manufacture of adhesives, electronic and composite materials for use in the automotive and aerospace industry. The distinction of the novel aromatic diamines of this invention is the 2,2',6,6'-substituted biphenyl radicals which exhibit noncoplanar conformation that enhances the solubility of the diamine as well as the processability of the polyimides, while retaining a realatively high glass transition temperature and improved mechanical properties at useful temperature ranges.
    Type: Grant
    Filed: January 23, 1998
    Date of Patent: August 17, 1999
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Chun-Hua K. Chuang
  • Patent number: 5932688
    Abstract: An improved polybenzimidazole wherein the total concentration of metals other than alkali metal and alkaline earth metals is 10 ppm or less. The resulting polybenzimidazole is industrially useable in parts or components of apparatus for the manufacture of semiconductors and display devices.
    Type: Grant
    Filed: January 14, 1997
    Date of Patent: August 3, 1999
    Assignee: Hoechst Japan Limited
    Inventor: Makoto Murata
  • Patent number: 5929201
    Abstract: The present invention relates to amine compositions and the preparation of polyimides. The polyimides can be used for inducing alignment of a liquid crystal medium with polarized light and liquid crystal display elements.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: July 27, 1999
    Assignee: Elsicon, Inc.
    Inventors: Wayne M. Gibbons, Paul J. Shannon, Shao-Tang Sun
  • Patent number: 5914385
    Abstract: An addition type polyimide resin raw material composition having high heat resistance and high corrosion resistance comprising a tetracarboxylic anhydride and/or tetracarboxylic diester compound, diamine compound and exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride and/or exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic monoester compound; a composition containing a prepreg; a fiber-reinforced polyimide composite prepreg, coating material and paint using them; and a curing method thereof.
    Type: Grant
    Filed: December 4, 1996
    Date of Patent: June 22, 1999
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Noriya Hayashi, Naomoto Ishikawa, Yukihiro Sakaguchi, Shunichi Hayashi, Hitoshi Noda
  • Patent number: 5910558
    Abstract: Micropowders having spherical particles possessing an essentially smooth surface structure contain, as essential components, polyarylene ether sulfones or polyarylene ether ketones and are obtainable by prilling melts thereof or spray-drying solutions thereof.
    Type: Grant
    Filed: July 21, 1997
    Date of Patent: June 8, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Schoenherr, Juergen Ahlers, Hermann Buchert
  • Patent number: 5908915
    Abstract: Copolyetherimides are prepared by the reaction of an alkali metal salt of a dihydroxyaromatic compound with a bis(substituted phthalimide) and a third compound which may be a substituted aromatic ketone or sulfone or a macrocyclic polycarbonate or polyarylate oligomer. The reaction takes place the in presence of a solvent and a phase transfer catalyst having high thermal stability, such as a hexaalkylguanidinium halide. Random or block copolymers may be obtained, depending on the reaction conditions.
    Type: Grant
    Filed: October 6, 1997
    Date of Patent: June 1, 1999
    Assignee: General Electric Company
    Inventor: Daniel Joseph Brunelle
  • Patent number: 5902876
    Abstract: Improved process for producing a polybenzimidazole compound in solution by dissolving a fully dried polybenzimidazole of the following general formula (1) or (2) in N,N-dimethylacetamide of a sufficiently reduced water content at an elevated temperature of 260.degree. C. or higher in an inert gas atmosphere and a solution of the polybenzimidazole compound produced by the process. The solution remains useful for an extended time without using metal salts or any other stabilizers: ##STR1## where R.sup.1, R.sup.2 and R.sup.5 are tetra-, di- and trivalent aromatic groups, respectively; R.sup.3, R.sup.4 and R.sup.6 are each independently a hydrogen atom, an alkyl group or an aryl group; n is an integer of 2 or more.
    Type: Grant
    Filed: June 18, 1997
    Date of Patent: May 11, 1999
    Assignee: Hoechst Japan Limited
    Inventors: Makoto Murata, Toru Nakamura
  • Patent number: 5900472
    Abstract: Copolymerizable benzophenone photoinitiators of the formula I ##STR1## wherein 1, k=0, 1, 2.R.sub.1 =divalent organic group having 1 to 25 carbon atoms;R.sub.2 =H or methyl; andR.sub.3, R.sub.4 =organic group having 1 to 25 carbon atoms.X, Y=hydrogen, halogen or (C.sub.1 -C.sub.25) groups containing N, S, and/or O;and method of making the photoinitiators.The photoinitiators overcome the leaching problem with prior photoinitiators in radiation curable polymer applications. Radiation curable polymers, cured polymers, and coated articles are also disclosed.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: May 4, 1999
    Assignee: Sartomer Technology
    Inventors: Mingxin Fan, Gary W. Ceska, James Horgan
  • Patent number: 5891986
    Abstract: An aromatic polyimide precursor composition advantageously employable for the production of an amorphous aromatic polyimide film having Tg of 300.degree. C. or higher is composed of an aromatic tetracarboxylic acid component and an aromatic diamine component which are dissolved in an organic solvent, in which at least 60 mol. % of the aromatic tetracarboxylic acid component is 2,3,3',4'-bi-phenyltetracarboxylic acid, its monoester or diester of a primary alcohol, or their mixture, and at least 55 mol. % of the aromatic diamine component is 4,4'-diaminodiphenyl ether.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: April 6, 1999
    Assignee: Ube Industries, Ltd.
    Inventors: Hiroaki Yamaguchi, Fumio Aoki
  • Patent number: 5889134
    Abstract: An organozinc species, useful in the reactions of aldehydes and ketones, is a reaction product of a) a biphenyl compound having one or more hindered 2,2'-substituted biphenyl subunits and b) an organozinc compound, such as diethylzinc. The organozinc species catalyzes the reduction of a ketone by a borane, as well as the epoxidation of .alpha.,.beta.-unsaturated compounds by an oxidizing agent, such as O.sub.2 or an alkyl hydroperoxide. The biphenyl compound may be chiral and may catalyze the formation of optically active reaction products.
    Type: Grant
    Filed: August 26, 1997
    Date of Patent: March 30, 1999
    Assignee: North Dakota State University
    Inventors: Lin Pu, Wei-Sheng Huang, Qiao-Sheng Hu
  • Patent number: 5889139
    Abstract: Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: March 30, 1999
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Catharine C. Fay, Anne K. St. Clair
  • Patent number: 5889141
    Abstract: Photoimageable polyquinoline compositions comprise a polyquinoline polymer, a diazonaphthoquinone and optionally a photosensitizer. The composition is prepared by dissolving the polyquinoline polymer, diazonaphthoquinone and photosensitizer in a solvent to form a solution, coating the solution onto a substrate and thereafter removing the solvent to form a film. The film is exposed to light through a photomask and developed by immersion in a selective solvent to yield a photopatterned dielectric film.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: March 30, 1999
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Matthew L. Marrocco, III, Makoto Kaji
  • Patent number: 5886131
    Abstract: A method for synthesizing 1,4-bis(4-aminophenoxy)naphthalene and a series of polyamides, polyimides and copoly(amide-imide)s derived from the said compound is disclosed. These polymers possess excellent thermal stability and mechanical strength.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: March 23, 1999
    Assignee: China Textile Institute
    Inventors: Shin Chuan Yao, Jongfu Wu, Kun-Lin Cheng, Wen-Tung Chen
  • Patent number: 5886129
    Abstract: A rigid, aromatic polyimide composition prepared using a solution imidization process from an aromatic tetracarboxylic dianhydride and a diamine which is greater than 60 mole % to about 85 mole % p-phenylene diamine and 15 mole % to less than 40 mole % m-phenylene diamine exhibits exceptional tensile properties and thermal oxidative stability.
    Type: Grant
    Filed: July 1, 1997
    Date of Patent: March 23, 1999
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Raymond Lew DeColibus
  • Patent number: 5883221
    Abstract: In a method of synthesis of polybenzoxazole and polybenzothiazole precursors, a dicarboxylic acid or a dicarboxylaic acid ester is reacted with a bis-o-aminophenol or bis-o-aminothiophenol in a suitable solvent in the presence of an activating reagent having the following structure: ##STR1##
    Type: Grant
    Filed: December 10, 1997
    Date of Patent: March 16, 1999
    Assignee: Siemens Aktiengesellschaft
    Inventors: Recai Sezi, Eberhard Kuehn, Hellmut Ahne, Sueleyman Kocman
  • Patent number: 5879821
    Abstract: A charge transport polymer including repeat units selected from mers of the formulas ##STR1## and copolymers, and mixtures thereof.
    Type: Grant
    Filed: November 13, 1997
    Date of Patent: March 9, 1999
    Assignee: Xerox Corporation
    Inventor: Bing R. Hsieh
  • Patent number: 5880226
    Abstract: A magnetic recording medium has a substrate and an non-magnetic underlayer formed on the substrate and a magnetic layer formed on the non-magnetic layer. The magnetic layer include a magnetic powder and a binder for binding the magnetic powder on the non-magnetic layer. The binder includes at least a resin component containing at least an aminoquinone structure selected from an aminoquinone structure group shown with formulas (1-1) and (1-2) as a constitutional unit. As the magnetic powder, a metal magnetic powder mainly made of Fe and having a saturation magnetization .sigma.s is used. The magnetic layer has a saturation flux density Bm of 3500 to 5000 G and a coercive force of 1800 to 3000 Oe and a surface roughness SRa of 1 to 10 nm and a thickness of not more than 1.0 .mu.m.
    Type: Grant
    Filed: June 18, 1996
    Date of Patent: March 9, 1999
    Assignee: Victor Company of Japan, Ltd.
    Inventors: Kazuyoshi Watanabe, Noboru Watanabe
  • Patent number: 5866676
    Abstract: Polyimide copolymers were prepared by reacting different ratios of 3,4'-oxydianiline (ODA) and 1,3-bis(3-aminophenoxy)benzene (APB) with 3,3',4,4'-biphenylcarboxylic dianhydride (BPDA) and endcapping with an effective amount of a non-reactive endcapper. Within a narrow ratio of diamines, from .sup..about. 50% ODA/50% APB to .sup..about. 95% ODA/5% APB, the copolyimides prepared with BPDA have a unique combination of properties that make them very attractive for various applications. This unique combination of properties includes low pressure processing (200 psi and below), long term melt stability (several hours at 390.degree. C.), improved toughness, improved solvent resistance, improved adhesive properties, and improved composite mechanical properties.
    Type: Grant
    Filed: February 14, 1995
    Date of Patent: February 2, 1999
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventor: Brian J. Jensen
  • Patent number: 5864050
    Abstract: The present invention provides a curable resin compound which is soluble in organic solvents and easy to use, and a method for producing the same. The curable resin compound comprises a structure and crosslinkable groups which end-cap the structure, the structure comprising three or four non-substituted benzene rings each of which is joined with each adjacent benzene ring by an ether or ketone linkage so that both types of linkages are present in the structure. Though the curable resin compound exhibits satisfactory solubilities in organic solvents, a composition comprising the compound can be cured by a crosslinking reaction to be insoluble in the organic solvents while being provided with improved solvent resistance and chemical resistance. Accordingly, the present invention also provides a cured-resin material derived from the aforementioned curable resin compound, the cured-resin material being excellent in solvent resistance, chemical resistance and thermal resistance.
    Type: Grant
    Filed: November 4, 1996
    Date of Patent: January 26, 1999
    Assignee: Alps Electric Co., Ltd. and Shiro Koayashi
    Inventors: Yoshihiro Taguchi, Shiro Kobayashi, Hiroshi Uyama, Atsushi Nakamura
  • Patent number: 5859181
    Abstract: A solvent-soluble siloxane polyimide comprising a copolymer obtained by reaction of a diamine compound mixture comprising a diaminopolysiloxane and an alicyclic diamine with an aromatic tetracarboxylic acid anhydride, followed by polyimidization reaction of the resulting polyamic acid forms a heat-resistant adhesive by adding an epoxy resin, a diamine-based curing agent and an organic solvent thereto, The formed adhesives show a distinguished heat-resistant adhesiveness when the resulting siloxane polyimide soluble in ordinary organic solvents is used as a main component of the adhesive for bonding between a base material and a copper foil of a flexible printed substrate. By further addition of a fluorinated resin to the heat-resistant adhesive, the adhesiveness can be more improved.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: January 12, 1999
    Assignee: Nippon Mektron, Limited
    Inventors: Dong Zhao, Hiroshi Sakuyama, Tomoko Katono, Lin-chiu Chiang, Jeng-Tain Lin
  • Patent number: 5856422
    Abstract: Optically active poly(aryl)ether polymers prepared from monomers containing optically pure spirobiindane and/or indane moieties are disclosed. The chiral poly(aryl)ether polymers are of high molecular weight and exhibit high optical rotations. In addition, the polyethers are thermally stable at high temperatures and exhibit excellent hydrolytic resistance making them useful in high temperature processing applications, in the fabrication of optoelectronics devices, and as polarizing coatings and filters.
    Type: Grant
    Filed: October 24, 1997
    Date of Patent: January 5, 1999
    Assignee: Molecular OptoElectronics Corporation
    Inventors: Kwok Pong Chan, Kevin R. Stewart, Janet L. Gordon
  • Patent number: 5856421
    Abstract: Macrocyclic polyether oligomers, preferably as mixtures of oligomers of different degrees of polymerization, are incorporated in a direct displacement reaction mixture for the formation of polyetherimides, said reaction mixture comprising at least one alkali metal salt of a dihydroxy-substituted aromatic hydrocarbon and at least one bis(halo- or nitrophthalimide). The macrocyclic oligomers can be isolated from an earlier-prepared linear polyetherimide composition. Their incorporation in the reaction mixture does not increase the proportion of oligomers in the polyetherimide product.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: January 5, 1999
    Assignee: General Electric Company
    Inventor: John Christopher Schmidhauser
  • Patent number: 5854380
    Abstract: This invention provides a polyimide precursor solution having high concentration and low viscosity and a production process thereof, and polyimide coatings and films having excellent physical properties obtained therefrom and a production process thereof. Particularly, it relates to a polyimide precursor solution which contains a salt of a specific diamine with a specific tetracarboxylic acid, as its solute; to a process for the production of the polyimide precursor solution, which comprises allowing 1 mole of a specified diamine to react with 0.3 to 0.9 mole of a specific tetracarboxylic acid dianhydride, thereby obtaining a diamine, and subsequently adding 0.95 to 1.
    Type: Grant
    Filed: June 5, 1997
    Date of Patent: December 29, 1998
    Assignee: Unitika Ltd.
    Inventors: Keitarou Seto, Yoshiaki Echigo, Shoji Okamoto, Minoru Saitou
  • Patent number: 5844065
    Abstract: A new diamine, 2,2'-dimethyl-4,4'-bis(4-aminophenoxy)-biphenyl was synthesized and used to prepare high performance engineering plastics by polycondensation. The new diamine as shown in the following formula has a noncoplanar 2,2'-disubstituted biphenylene and a flexible aryl units: ##STR1## The engineering plastics disclosed in the present invention includes polyamides, polyimides and poly(amide-imide)s.
    Type: Grant
    Filed: May 14, 1997
    Date of Patent: December 1, 1998
    Assignee: National Science Council
    Inventors: Der-Jang Liaw, Been-Yang Liaw
  • Patent number: 5837783
    Abstract: An aryletherketone polymer having repeating units of the formula: ##STR1## wherein Ar is selected from the group consisting of ##STR2## wherein Q is --O--, --CH.sub.2 -- or --CO--, is useful in the dispersion of active NLO chromophores containing a basic functionality to form optically clear films.
    Type: Grant
    Filed: May 8, 1997
    Date of Patent: November 17, 1998
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Fred E. Arnold, Narayanan Venkatasubramanian
  • Patent number: 5834581
    Abstract: A process for making polyimide-polyamic ester copolymer composition comprisingreacting at least one diamine, a pyromellitic diacid diester compound; at least one other tetracarboxylic diacid diester compound and a selected phosphoramide in the presence of a base catalyst to form a polyimide-polyamic acid ester copolymer.
    Type: Grant
    Filed: April 15, 1997
    Date of Patent: November 10, 1998
    Assignee: Olin Microelectronic Chemicals, Inc.
    Inventors: Ahmad Naiini, Steve L. C. Hsu, William D. Weber, Andrew J. Blakeney
  • Patent number: 5830988
    Abstract: Polyetherimide polymers prepared from monomers containing indane moieties are disclosed. The high molecular weight indane polyetherimides are transparent, ductile, and exhibit high glass transition temperatures (>200.degree. C.). In addition, the polyetherimides are thermally stable at high temperatures and exhibit good optical properties making them useful in high temperature processing applications, in the fabrication of optoelectronics devices, and in optical applications.
    Type: Grant
    Filed: August 26, 1997
    Date of Patent: November 3, 1998
    Assignee: Molecular OptoElectronics Corporation
    Inventor: Kwok Pong Chan
  • Patent number: 5830974
    Abstract: Aromatic polyether polymers, illustrated by polyethersulfones, polyetherketones and polyetherimides, are prepared by a phase transfer catalyzed reaction between a salt of at least one dihydroxyaromatic compound and at least one substituted aromatic compound such as bis(4-chlorophenyl) sulfone, bis(4-chlorophenyl) ketone or 1,3-bis?N-(4-chlorophthalimido)!benzene, in a monoalkoxybenzene such as anisole as diluent and in the presence of a phase transfer catalyst, preferably a hexaalkylguanidinium salt.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: November 3, 1998
    Assignee: General Electric Company
    Inventors: John Christopher Schmidhauser, Daniel Joseph Brunelle
  • Patent number: 5821320
    Abstract: 18.4 grams of 4,4'-(hexafluoroisopropyridine)diphthalic acid dianhydride and 7.5 grams of 1,4-phenylenediamine dihydrochloride are mixed in a solvent consisting of 80 ml of N-methyl-2-pyrrolidone and 20 ml of dichlorobenzene and are heated at an argon atmosphere to raise its temperature from a room temperature to 170.degree. C. slowly and to be reacted for five hours while an azeotropic dihydration of water which is generated at 170.degree. C. is conducted. After the reaction is completed, a reaction product is precipitated in methanol, the precipitate is washed with methanol and dried at 80.degree. C. FIG. 1 shows the infrared spectra of the reaction product.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: October 13, 1998
    Assignee: Petroleum Energy Center
    Inventors: Masatoshi Maeda, Kenichi Ikeda
  • Patent number: 5807961
    Abstract: This invention is directed to a polyimide film useful as use applications for electronic materials; a liquid crystal aligning film using the same; a liquid crystal display element provided with the liquid crystal aligning film; and a polyamic acid used as a raw material of the polyimide constituting the polyimide film.The polyimide used for preparing the above polyimide films, consists of a diamine component, the 50% by mol or more based upon the total diamine, of which is a diamine having a core structure having no polar group such as 1,2-bis(4-(4-aminobenzyl)phenyl)ethane, 1,6-bis(4-(4-aminobenzyl)phenyl)hexane, 1,1-bis(4-(4-aminobenzyl)phenyl)heptane, etc., and a tetracarboxylic acid dianhydride, and if necessary, an aminosilicon compound, is used as a liquid crystal aligning film.
    Type: Grant
    Filed: June 20, 1997
    Date of Patent: September 15, 1998
    Assignee: Chisso Corporation
    Inventors: Toshiya Sawai, Masaaki Yazawa, Seiji Oikawa, Shizuo Murata, Masaharu Hayakawa, Etsuo Nakagawa
  • Patent number: 5807960
    Abstract: A method is provided for the preparation of polyquinoline polymers based on Friedlander condensation polymerization. The method comprises mixing monomers which, when polymerized, form a polyquinoline polymer, together with a catalyst and a solvent, wherein the catalyst comprises an alkyl phosphate.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: September 15, 1998
    Assignee: Hitachi Chemical Co., Ltd.
    Inventor: Matthew L. Marrocco, III
  • Patent number: 5792825
    Abstract: The present invention relates to linear, cyclic or branched polyorganosiloxanes having, per molecule, at least three siloxy units, including at least one functional unit of formula: ##EQU1## where R.sup.1 represents a C.sub.1 to C.sub.4 alkyl or phenyl radical and X contains a secondary or tertiary cyclic amine functional group bonded to the silicon via an Si--A--C bond where A is a residue comprising a cyclic acetal group. X more specifically represents a monovalent group of formula: ##STR1## The present invention also relates to the use of such polyorganosiloxanes in polymers for improving in particular their photostabilization.
    Type: Grant
    Filed: June 11, 1996
    Date of Patent: August 11, 1998
    Assignee: Rhone-Poulenc Chimie
    Inventors: Philippe Karrer, Gerard Mignani, Bernard Pontini, Storet Isabelle
  • Patent number: 5789521
    Abstract: Rigid-rod and segmented rigid-rod polymers, methods for preparing the polymers and useful articles incorporating the polymers are provided. The polymers incorporate rigid-rod backbones with pendant solubilizing groups attached thereto for rendering the polymers soluble.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: August 4, 1998
    Assignee: Maxdem Incorporated
    Inventors: Matthew Louis Marrocco, III, Robert R. Gagne, Mark Steven Trimmer
  • Patent number: 5786071
    Abstract: New polyquinoline polymers are provided, as well as new methods for preparing the polyquinoline polymers using a novel combination of monomers. The polyquinoline polymers comprise repeat units comprising at least one quinoline nucleus and at least one ether linkage and having as end groups either fluoro groups or hydroxy groups or a combination of fluoro and hydroxy groups. The polymers are formed by providing a monomer comprising two fluoro groups, where each such fluoro group is activated by a quinoline nucleus, a diol monomer provided in the form of its bis-oxide salt, or in the presence of a base capable of deprotonating the diol and reacting the difluoro and diol monomers together in a dipolar solvent to form the polyquinoline polymer.
    Type: Grant
    Filed: April 9, 1997
    Date of Patent: July 28, 1998
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Matthew L. Marrocco, III, Ying Wang
  • Patent number: 5783655
    Abstract: A process for the preparation of aromatic polyamide pulp having both excellent physical properties and a high degree of polymerization by continuous polymerization and orientation by using of mixed solutions. The solutions are prepared by reacting diamine with aromatic diacid dichloride in an amide and/or urea-based polymerization solvent containing inorganic salts, or a mixture of inorganic salts and a Lewis acid compound. The process can be practiced by polymerization-orientation apparatus located on the continuous transferable polymerization-orientation means comprised of a belt and one or more stirring bars.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: July 21, 1998
    Assignee: Kolon Industries, Inc.
    Inventors: Du Hyun Kim, Seock Chul Ryu, Won Jun Choe, Young Hwan Park, Chang Seop Ji
  • Patent number: 5777068
    Abstract: Provided are photosensitive resin compositions comprising a polyamic compound having, at each terminal thereof, a specific actinic ray-sensitive functional group which has substituent groups each having a photopolymerizable carbon-carbon double bond, a photosensitive auxiliary having a photopolymerizable functional group and a solvent. The photosensitive resin compositions of the invention are excellent in resist properties such as sensitivity and good in storage stability and can provide a film small in residual stress.
    Type: Grant
    Filed: September 12, 1995
    Date of Patent: July 7, 1998
    Assignees: Nippon Zeon Co., Ltd., Fujitsu Limited
    Inventors: Akira Tanaka, Satoshi Tazaki, Kei Sakamoto, Yasuhiro Yoneda, Kishio Yokouchi, Daisuke Mizutani, Yoshikatsu Ishizuki
  • Patent number: 5773559
    Abstract: The present invention relates to a process of producing a polyimide-type copolymer, to a thin layer forming agent, to a liquid crystal alignment layer and to processes of producing thin layer formation agents and liquid crystal alignment layers. More specifically, this invention relates to a polyamic acid block copolymer, a polyimide block copolymer, a polyimide-polyamic acid block copolymer, a thin layer forming agent comprised of a polyimide-type block copolymer, and a liquid crystal alignment layer comprised of a polyimide-type block copolymer and processes of their production.
    Type: Grant
    Filed: January 31, 1996
    Date of Patent: June 30, 1998
    Assignee: Japan Synthetic Rubber Co., Ltd.
    Inventors: Tsuyoshi Miyamoto, Masayuki Kimura, Kazuhiro Eguchi, Yasuo Matsuki
  • Patent number: 5770676
    Abstract: In the process of the present invention, a non-polar, aprotic solvent is removed from an oligomer/polymer solution by freeze-drying in order to produce IPNs and semi-IPNs. By thermally quenching the solution to a solid in a short length of time, the size of the minor constituent-rich regions is greatly reduced as they are excluded along with the major constituent from the regions of crystallizing solvent. The use of this process sequence of controlling phase morphology provides IPNs and semi-IPNs with improved fracture toughness, microcracking resistance, and other physical-mechanical properties as compared to IPNs and semi-IPNs formed when the solvent is evaporated rather than sublimed.
    Type: Grant
    Filed: April 10, 1996
    Date of Patent: June 23, 1998
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Ruth H. Pater, Marion G. Hansen
  • Patent number: 5756649
    Abstract: A liquid crystal aligning agent comprising a polyamic acid containing an aliphatic and/or alicyclic hydrocarbon group and a polyimide containing an aliphatic and/or alicyclic hydrocarbon group; and a liquid crystal display device using the liquid crystal aligning agent. This liquid crystal aligning agent gives a liquid crystal aligning film which has good liquid crystal aligning property and in which pretilt angle can be changed by radiation with a small energy and which is suitable for domain-divided alignment type liquid crystal display having a wide view angle.
    Type: Grant
    Filed: January 28, 1997
    Date of Patent: May 26, 1998
    Assignees: Japan Synthetic Rubber Co., Ltd., Sharp Corporation
    Inventors: Shigeaki Mizushima, Noriko Watanabe, Hiroko Iwagoe, Seiji Makino, Sigeo Kawamura, Yusuke Tsuda, Nobuo Bessho
  • Patent number: 5756581
    Abstract: Rigid-rod and segmented rigid-rod polymers, methods for preparing the polymers and useful articles incorporating the polymers are provided. The polymers incorporate rigid-rod backbones with pendant solubilizing groups attached thereto for rendering the polymers soluble.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: May 26, 1998
    Assignee: Maxdem Incorporated
    Inventors: Matthew Louis Marrocco, III, Robert R. Gagne, Mark Steven Trimmer
  • Patent number: 5753783
    Abstract: Disclosed is a process which comprises reacting a polymer of the general formula ##STR1## wherein x is an integer of 0 or 1, A is one of several specified groups, such as ##STR2## B is one of several specified groups, such as ##STR3## or mixtures thereof, and n is an integer representing the number of repeating monomer units, with an acetyl halide and dimethoxymethane in the presence of a halogen-containing Lewis acid catalyst and methanol, thereby forming a haloalkylated polymer. In a specific embodiment, the haloalkylated polymer is then reacted further to replace at least some of the haloalkyl groups with photosensitivity-imparting groups. Also disclosed is a process for preparing a thermal ink jet printhead with the aforementioned polymer.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: May 19, 1998
    Assignee: Xerox Corporation
    Inventors: Timothy J. Fuller, Ram S. Narang, Thomas W. Smith, David J. Luca, Raymond K. Crandall
  • Patent number: 5750641
    Abstract: An angularity enhancement layer in a liquid crystal display, which display comprises a liquid crystal cell, wherein the angularity enhancement layer includes a negative birefringent polyimide layer comprising a plurality of structural units having pendant fluorene groups, said angularity enhancement layer being disposed on at least one surface of said liquid crystal cell. A liquid crystal display can comprise an angularity enhancement construction of the invention which comprises a polyimide layer.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: May 12, 1998
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Stephen A. Ezzell, Hassan Sahouani, Ernest L. Thurber
  • Patent number: 5744575
    Abstract: An aromatic polyimide having a recurring unit of the formula (I): ##STR1## wherein Ar is a divalent aromatic group having one or two benzene rings which has a sulfonate group of --SO.sub.3 H, --SO.sub.3 M, and --SO.sub.3 N(L).sub.4 on the ring, wherein M is an alkali metal and L is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, is favorably employed in the form of a semipermeable film for gas separation.
    Type: Grant
    Filed: June 6, 1996
    Date of Patent: April 28, 1998
    Assignee: Ube Industries, Ltd.
    Inventors: Shunsuke Nakanishi, Kenji Ito, Yoshihiro Kusuki
  • Patent number: 5741883
    Abstract: Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as N,N'-dimethyl acetamide, N-methylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.
    Type: Grant
    Filed: December 16, 1994
    Date of Patent: April 21, 1998
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Robert G. Bryant
  • Patent number: 5739263
    Abstract: The present invention provides a film adhesive comprising, as the main constituent, a polyimide resin having a glass transition temperature of 350.degree. C. or lower and soluble in organic solvents, which polyimide resin is obtained by reacting at least one of the following acid components (A) and (B)(A) 4,4'-oxydiphthalic acid dianhydride(B) 3,3',4,4'-biphenyltetracarboxylic acid dianhydride and/or 3,3',4,4'-benzophenonetetracarboxylic acid dianhydridewith at least one of the following amine components (C) and (D)(C) a siloxane compound represented by the following general formula (1) and/or 2,2-bis(4-(4-amino-phenoxy)phenyl)propane ##STR1## wherein R.sub.1 and R.sub.2 are each a bivalent aliphatic (C.sub.1-4) or aromatic group; R.sub.3, R.sub.4, R.sub.5 and R.sub.6 are each a mono-valent aliphatic or aromatic group; and k is an integer of 1-20,(D) bis(aminophenoxy)benzene and/or dimethylphenylene-diamineto give rise to ring closure of imide, as well as a process for producing said film adhesive.
    Type: Grant
    Filed: January 28, 1994
    Date of Patent: April 14, 1998
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Tatsuhiro Yoshida, Yoshitaka Okugawa, Toshio Suzuki, Toshiro Takeda, Yushi Sakamoto, Takuya Tochimoto
  • Patent number: 5739254
    Abstract: Disclosed is a process which comprises reacting a polymer of the general formula ##STR1## wherein x is an integer of 0 or 1, A is one of several specified groups, such as ##STR2## B is one of several specified groups, such as ##STR3## or mixtures thereof, and n is an integer representing the number of repeating monomer units, with an acetyl halide and dimethoxymethane in the presence of a halogen-containing Lewis acid catalyst and methanol, thereby forming a haloalkylated polymer. In a specific embodiment, the haloalkylated polymer is then reacted further to replace at least some of the haloalkyl groups with photosensitivity-imparting groups. Also disclosed is a process for preparing a thermal ink jet printhead with the aforementioned polymer.
    Type: Grant
    Filed: August 29, 1996
    Date of Patent: April 14, 1998
    Assignee: Xerox Corporation
    Inventors: Timothy J. Fuller, Ram S. Narang, Thomas W. Smith, David J. Luca, Raymond K. Grandall
  • Patent number: 5736592
    Abstract: A process for intramolecularly condensing a polyamic acid composition containing an NLO compound to form a polyimide host matrix composition containing as a guest the NLO compound, which process includes the step of uniformly heating the polyamic acid composition, in the absence of a solvent or diluent, to a temperature at which the intramolecular condensation will occur without thermal degradation of the NLO compound, so that the temperature differential within the polyamic acid is below that which will produce localized thermal degradation temperatures, until the intramolecular condensation of the polyamic acid composition to the polyimide host matrix composition is substantially complete. Polyimide host matrix compositions containing guest NLO compounds prepared by the inventive process are also disclosed, wherein the NLO compounds have external field-induced molecular alignments.
    Type: Grant
    Filed: February 15, 1995
    Date of Patent: April 7, 1998
    Assignee: Enichem S.p.A.
    Inventors: Mark Thomas DeMeuse, Diana Marie Applegate, Kwan-Yue Alex Jen, John Thomas Kenney
  • Patent number: 5734008
    Abstract: The polyimide film of this invention is formed from a polyimide, which is prepared by reacting a diamino compound represented by the general formula (1): ##STR1## wherein X represents a hydrocarbon group having 1 to 20 carbon atoms or a sulfur atom; R represents each independently a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms or a halogen-containing hydrocarbon group having 1 to 6 carbon atoms; a represents each independently an integer of 0 to 4;with a tetracarboxylic dianhydride represented by the general formula (2) ##STR2## wherein Y represents a tetravalent organic group having 2 or more carbon atoms.The polyimide film obtained can be applied favorably to a flexible printed circuit board without adhesion layer, a protective coating for electronic parts and electric wires, or a heat resistant adhesive.
    Type: Grant
    Filed: October 23, 1995
    Date of Patent: March 31, 1998
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Mika Shirasaki, Youichi Ueda, Mitsuhiro Shibata
  • Patent number: 5731404
    Abstract: A polyimide alignment film based on pyromellitic dianhydride and a bis(4-aminophenoxy) aromatic compound, such as 1,3-bis(4-aminophenoxy)benzene or 1,4-bis(4-aminophenoxy)benzene, providing low tilt angles of from to 2 degrees when used in liquid crystal displays.
    Type: Grant
    Filed: November 1, 1995
    Date of Patent: March 24, 1998
    Assignees: E. I. du Pont de Nemours and Company, Merck Patent GmbH
    Inventors: Brian Carl Auman, Edgar Bohm
  • Patent number: 5731405
    Abstract: A process for inducing pre-tilt in alignment of a liquid crystal medium comprising exposing at least one optical alignment layer, comprising anisotropically absorbing molecules and hydrophobic moieties, to polarized light; the polarized light having a wavelength within the absorption band of said anisotropically absorbing molecules; wherein the exposed anisotropically absorbing molecules induce alignment of the liquid crystal medium at an angle + and -.theta. with respect to the direction of the polarization of the incident light beam and along the surface of the optical alignment layer, and induce a pre-tilt at an angle .PHI. with respect to the surface of the optical alignment layer and applying a liquid crystal medium to said optical alignment layer, is described. The invention also is directed to liquid crystal display elements made by the process of the invention and to novel polyimide compositions that are useful as optical alignment layers in the invention.
    Type: Grant
    Filed: March 29, 1996
    Date of Patent: March 24, 1998
    Assignee: Alliant Techsystems Inc.
    Inventors: Wayne M. Gibbons, Paul J. Shannon, Shao-Tang Sun