From Ketone-containing Phenolic Reactant Or With Ketone-containing Reactant Patents (Class 528/125)
  • Publication number: 20130184427
    Abstract: A method of making a polymeric material is described, the method comprising contacting, for example polycondensing, a compound of formula with a compound of formula wherein each X is selected from a group comprising a chlorine and a fluorine atom, n represents 1, 2 or 3 and each Y1 is selected from a group comprising an alkali metal and a hydrogen atom.
    Type: Application
    Filed: March 5, 2013
    Publication date: July 18, 2013
    Applicant: VICTREX MANUFACTURING LIMITED
    Inventor: VICTREX MANUFACTURING LIMITED
  • Patent number: 8487070
    Abstract: A sulfonated poly(arylene ether) copolymer that has a crosslinking structure in a chain of a polymer, a sulfonated poly(arylene ether) copolymer that has a crosslinking structure in and at an end of a chain of a polymer, and a polymer electrolyte film that is formed by using them are disclosed. According to the polycondensation reaction of the sulfonated dihydroxy monomer (HO—SAr1-OH), the none sulfonated dihydroxy monomer (HO—Ar—OH), the crosslinkable dihalide monomer (X—CM-X) and the none sulfonated dihalide monomer (X—Ar—X), the poly(arylene ether) copolymer in which the sulfonic acid is included is synthesized. The formed poly(arylene ether) copolymer has the crosslinkable structure in the chain of the polymer. In addition, by carrying out the polycondensation reaction in respects to the crosslinkable monohydroxy monomer or the crosslinkable monohalide monomer, the crosslinking can be formed at the end of the polymer.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: July 16, 2013
    Assignee: Gwangju Institute of Science and Technology
    Inventors: Jae-Suk Lee, Myung-Hwan Jeong, Kwan-Soo Lee, Eun-Seon Park, Young-Mu Joe
  • Publication number: 20130177763
    Abstract: An adhesive composition has a polymer that contains a unit structure of Formula (1): ?L1-O-T1-O???Formula (1) (where L1 is an arylene group or a combination of an arylene group and a sulfonyl group or a carbonyl group, and T1 is a fluoroalkylene group, a cyclic alkylene group, an arylene group having a substituent, or a combination of an arylene group optionally having a substituent and a fluoroalkylene group or a cyclic alkylene group) and contains, at a terminal or in a side chain or the main chain, at least one group containing a structure of Formula (2-A), a structure of Formula (2-B), or both structures:
    Type: Application
    Filed: July 29, 2011
    Publication date: July 11, 2013
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Hiroshi Ogino, Mamoru Tamura, Tomoyuki Enomoto
  • Publication number: 20130164629
    Abstract: A polyimide blend nanofiber and its use in battery separator are disclosed. The polyimide blend nanofiber is made of two kinds of polyimide precursors by high pressure electrostatic spinning and then high temperature imidization processing, wherein one of the polyimide precursor does not melt under high temperature ,and the other is meltable at a temperature of 300-400° C. The polyimide blend nanofiber of present invention has high temperature-resistance, high chemical stability, high porosity, good mechanical strength and good permeability, and can be applied as battery separator.
    Type: Application
    Filed: September 30, 2010
    Publication date: June 27, 2013
    Applicant: JIANGXI ADVANCE NANOFIBER S&T CO., LTD.
    Inventors: Haoqing Hou, Chuyun Cheng, Shuiliang Chen, Xiaoping Zhou, Xiaoyi Lv, Ping He, Xiaoming Kuang, Jinsheng Ren
  • Patent number: 8470412
    Abstract: Disclosed is a liquid crystal alignment agent that includes a polymer comprising polyamic acid including a repeating unit represented by the following Chemical Formula 1, polyimide including a repeating unit represented by the following Chemical Formula 2, or a combination thereof. In Chemical Formulae 1 and 2, X1, X2, Y1 and Y2 are the same in the detailed description.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: June 25, 2013
    Assignee: Cheil Industries Inc.
    Inventors: Myoung-Youp Shin, Eun-Ha Kim, Jae-Deuk Yang, Yong-Sik Yoo, Guk-Pyo Jo, Jung-Gon Choi
  • Patent number: 8470955
    Abstract: The present invention relates to a poly(arylene ether) copolymer having a cation exchange group, a method for manufacturing the same, and use thereof. The poly(arylene ether) copolymer having the cation exchange group according to the present invention has excellent physical characteristics, ion exchanging capacity, metal ion adsorption capacity and a processability, and thus can be molded in various shapes and can be extensively applied to various fields such as recovering of organic metal, air purification, catalysts, water treatment, medical fields and separating of proteins.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 25, 2013
    Assignee: Hyundai Motor Company
    Inventors: Inchul Hwang, Nak Hyun Kwon, Young Taek Kim, Dong Il Kim, Ju Ho Lee
  • Patent number: 8466249
    Abstract: Silicone polycarbonate block copolymers are disclosed that have a high elongation before yield, are clear, and have elastomeric properties. Generally, the silicone blocks are very short (less than about 50 organosiloxane repeat units) and the silicone blocks are substantially isolated from each other by bisphenol carbonate spacers.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: June 18, 2013
    Assignee: SABIC Innovative Plastics IP BV
    Inventors: Robert R. Gallucci, James Franklin Hoover, Paul Dean Sybert
  • Patent number: 8461287
    Abstract: Disclosed are a multi-block copolymer, its producing method and an electrolyte membrane using the same. The multi-block copolymer includes a hydrophobic block having a plurality of repeating units represented as chemical formula 1; and a hydrophilic block having a plurality of repeating units represented as chemical formula 2. The multi-block copolymer is acidified, and can be used to an electrolyte membrane and a fuel cell. The use of the multi-block copolymer as an electrolyte membrane ensures excellent dimensional stability.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: June 11, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Seong-Ho Choi, Won-Ho Lee
  • Publication number: 20130137625
    Abstract: Photoactivatable prepolymers and methods of use thereof are disclosed for microencapsulation of a substantially water-insoluble material within a nonporous shell. As provided herein, the microencapsulated material is released with no more than a slow release rate. Upon exposure of the nonporous shell to light, the nonporous shell is converted into a porous shell having an increased release rate for the microencapsulated material.
    Type: Application
    Filed: August 21, 2012
    Publication date: May 30, 2013
    Applicant: SOLARBRE, INC.
    Inventor: Michael H.B. Stowell
  • Publication number: 20130122056
    Abstract: The present teachings include ratiometric combinatorial drug delivery including nanoparticles, multi-drug conjugates, pharmaceutical compositions, methods of producing such compositions and methods of using such compositions, including in the treatment of diseases and conditions using drug combinations.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 16, 2013
    Applicant: The Regents of the University of California
    Inventor: The Regents of the University of California
  • Publication number: 20130112409
    Abstract: The invention pertains to improved proppant particles comprising an aromatic polycondensation polymer having a glass transition temperature (Tg) of at least 120° C. when measured according to ASTM 3418 [polymer (P)] and a method of treating a subterranean formation using said proppant particles.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 9, 2013
    Applicant: SOLVAY SPECIALTY POLYMERS USA, LLC
    Inventor: SOLVAY SPECIALTY POLYMERS USA, LLC
  • Patent number: 8436106
    Abstract: Cross-linkers and polymers produced using them are provided. The cross-linked polymers are suitable for use in applications where a broad temperature range may be encountered. In some examples, at least a first and a second polyetheretherketone chain may be cross-linked to each other through two or more Schiff base linkages. Articles using the cross-linked polymers are also described.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: May 7, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Huilin Tu, Agathe Robisson
  • Patent number: 8431676
    Abstract: The invention described herein relates to a polyarylene copolymer comprising a structural unit represented by formula (1?): where the structural variables are defined herein. The invention also relates to a solid polymer electrolyte, a proton conductive membrane and A proton conductive membrane for direct methanol fuel cell which contains the polyarylene copolymer.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: April 30, 2013
    Assignee: JSR Corporation
    Inventors: Yoshitaka Yamakawa, Yousuke Konno, Teruhiko Umehara
  • Publication number: 20130102754
    Abstract: The invention provides novel flame-retardant polymers and materials, their synthesis and use. More particularly, the flame-retardant polymers are deoxybenzoin-derived polymers.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 25, 2013
    Applicant: University of Massachusetts
    Inventor: University of Massachusetts
  • Patent number: 8420767
    Abstract: Disclosed herein is a polyarylene-based polymer, a preparation method for the same, and a polymer electrolyte membrane for fuel cell using the polymer. The polyarylene-based polymer, which is designed to have long side chains of a hydrophilic moiety and dense sulfonic acid groups, may improve the formation of ion channels when fabricating a polymer membrane and also ensures good chemical stability of the hydrophilic moiety and good dimensional stability against water. Further, the preparation method of the present invention simplifies production of the polymer, and polymer electrolyte membranes using the polymer exhibits improved properties as a polymer electrolyte membrane for a fuel cell, such as high proton conductivity, even under an atmosphere of low water uptake, and good dimensional stability against a long-term exposure to water.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: April 16, 2013
    Assignee: Hyundai Motor Company
    Inventors: Inchul Hwang, Nak Hyun Kwon, Young Taek Kim, Dong Il Kim, Ju Ho Lee, Jang-Bae Son
  • Patent number: 8394910
    Abstract: A method of making a polymeric material is described, the method comprising contacting, for example polycondensing, a compound of formula with a compound of formula wherein each X is selected from a group comprising a chlorine and a fluorine atom, n represents 1, 2 or 3 and each Y1 is selected from a group comprising an alkali metal and a hydrogen atom.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: March 12, 2013
    Assignee: Victrex Manufacturing Limited
    Inventors: Brian Wilson, John Kevin Prescott, Graham Robert Webster
  • Patent number: 8383756
    Abstract: A composition of matter for the recording medium of nanometer scale thermo-mechanical information storage devices and a nanometer scale thermo-mechanical information storage device. The composition includes: one or more polyaryletherketone copolymers, each of the one or more polyaryletherketone copolymers comprising (a) a first monomer including an aryl ether ketone and (b) a second monomer including an aryl ether ketone and a first phenylethynyl moiety, each of the one or more polyaryletherketone copolymers having two terminal ends, each terminal end having a phenylethynyl moiety the same as or different from the first phenylethynyl moiety. The one or more polyaryletherketone copolymers are thermally cured and the resulting cross-linked polyaryletherketone resin used as the recording layer in an atomic force data storage device.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Richard Anthony DiPietro, Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, Erik Christopher Hagberg, James Lupton Hedrick, Armin W. Knoll, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt, Charles Gordon Wade
  • Patent number: 8378054
    Abstract: A process for preparing polyaryl ethers in which a polycondensation of the monomer building blocks is carried out using microwave irradiation leads to thermoplastic molding compositions having improved color properties.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: February 19, 2013
    Assignee: BASF SE
    Inventors: Martin Weber, Volker Warzelhan, Faissal-Ali El-Toufaili, Andreas Greiner, Heiner Stange, Seema Agrarwal
  • Patent number: 8373287
    Abstract: A polymeric composition comprising a first polymer chosen from a poly(arylene ether) polymer including polymer repeat units of the following structure: —(O—Ar1—O—Ar2—O—)m—(—O—Ar3—O—Ar4—O)n- where Ar1, Ar2, Ar3, and Ar4 are identical or different aryl radicals, m is 0 to 1, n is 1 m; a polysulfone, a polyimide, a poly(etherketone), a polyurea, a polyurethane, and combinations thereof and a second polymer comprising a per(phenylethynyl) arene polymer derivative. Cured films containing the polymer can exhibit at least one of the following properties: Tg from 160° C. to 180° C., a dielectric constant below 2.7 with frequency independence, and a maximum moisture absorption of less than 0.17 wt %. Accordingly, the polymer is especially useful, for example, in interlayer dielectrics and in die-attach adhesives.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: February 12, 2013
    Assignee: Greene, Tweed IP, Inc.
    Inventors: William Franklin Burgoyne, Jr., Mark David Conner, Andrew Francis Nordquist, William Steven Collins
  • Patent number: 8372941
    Abstract: A method for the purification of aromatic polyether polymers prepared by a halide displacement polymerization process comprises adsorbing the catalyst with an alkali metal halide to form an adsorbent component and then removing the adsorbent component. Mixtures resulting from this method are also discussed.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 12, 2013
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Beatriz Penalver Bernabe, Thomas Guggenheim, David Bruce Hall, Norman Johnson, Juan Justino Rodriguez Ordonez, David Woodruff
  • Publication number: 20130030116
    Abstract: Provided is a film comprising a polymer that comprises a structural unit represented by the following formula (1), wherein at least part of the terminal structure of the polymer is at least one structure selected from the group consisting of structural units represented by the following formula (2) and structural units represented by the following formula (3).
    Type: Application
    Filed: April 20, 2011
    Publication date: January 31, 2013
    Applicant: JSR Corporation
    Inventors: Motoki Okaniwa, Takaaki Uno, Takashi Okada
  • Patent number: 8357769
    Abstract: Disclosed is a method for producing a polyphenylene ether, which comprises a step of preparing a polymerization solution composed of 10-25 parts by mass of a phenolic compound (M) and 75-90 parts by mass of an aromatic solvent (A) with the total of the compound and the solvent being 100 parts by mass, and 0.1-10 parts by mass of a catalyst (C) containing a metal salt; a step of performing an oxidative polymerization of the phenolic compound (M) by passing an oxygen-containing gas through the polymerization solution; a step of stopping the polymerization by mixing an aqueous chelating agent solution into the polymerization solution; a step of subjecting a diphenoquinone compound produced as a by-product to a quinone binding process or removal by reduction; and a step of obtaining a polyphenylene ether by separating the aqueous phase through liquid-liquid separation. In the method for producing a polyphenylene ether, 0.001-0.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: January 22, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Mutsumi Maeda, Hiroaki Furukawa
  • Patent number: 8349905
    Abstract: Disclosed herein is a proton-conducting polymer and uses thereof and, more particularly, a hydrocarbon-based proton-conducting polymer derived from a monomer having a multi-naphthyl group and comprising a plurality of acid groups on the side chain of the repeating unit, an electrolyte membrane comprising the polymer, a membrane-electrode assembly comprising the electrolyte membrane, and a fuel cell comprising the membrane-electrode assembly.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 8, 2013
    Assignee: Hyundai Motor Company
    Inventors: Inchul Hwang, Nak Hyun Kwon, Young Taek Kim, Dong Il Kim, Ju Ho Lee, Jang-Bae Son
  • Patent number: 8349994
    Abstract: Disclosed is an electrode electrolyte for solid polymer fuel cells, which uses a polymer electrolyte containing a polyarylene copolymer containing a nitrogen-containing aromatic ring having a substituent represented by —SO3H, —(O(CH2)hSO3H or —O(CF2)hSO3H (wherein h represents an integer of 1-12). By having such a constitution, the electrode electrolyte for solid polymer fuel cells can be produced at a low cost, while being excellent in proton conductivity, dimensional stability, hydrothermal resistance and mechanical strength. In addition, this electrode electrolyte for solid polymer fuel cells enables to recover a catalyst metal.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: January 8, 2013
    Assignees: JSR Corporation, Honda Motor Co., Ltd.
    Inventors: Toshiaki Kadota, Yoshitaka Yamakawa, Fusao Nakagawa, Nagayuki Kanaoka, Takaki Nakagawa
  • Patent number: 8344094
    Abstract: An optical material is provided that has a high transmittance, a high refractive index, a low Abbe constant, a high secondary dispersion property, and a low water absorption rate. The optical material includes a polymer of a mixture which contains: a sulfur-containing compound represented by the following general formula (1): a sulfur-containing compound represented by the following general formula (2): and an energy polymerization initiator, in which a content of the sulfur-containing compound represented by the chemical formula (2) is 10% by weight or more to 60% by weight or less, an Abbe constant (?d) of the polymer of the mixture satisfies 18<?d<23, and a secondary dispersion property (?g,F) thereof satisfies 0.68<?g,F<0.69.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: January 1, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hidefumi Iwasa, Shigeo Kiso, Terunobu Saitoh, Toshiji Nishiguchi
  • Patent number: 8344091
    Abstract: A polymer represented by the following Formula 1, and a membrane-electrode assembly and a fuel cell system including the polymer: In the above Formula 1, definitions of the substituents are the same as in described in the detailed description.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: January 1, 2013
    Assignee: Samsung SDI Co. Ltd.
    Inventors: Sung-Guk An, Sung-Yong Cho, Sang-Il Han, Kie Hyun Nam
  • Publication number: 20120322010
    Abstract: A novel novolac prepared by acid catalyzed condensation between biphenols or bisphenofluorenes and fluorenone is presented. The polymers exhibit excellent oxidative thermal stability and high carbon content, suitable for dielectric, etch stop applications as spin-on material.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 20, 2012
    Applicant: SILECS OY
    Inventor: Jyri Paulasaari
  • Patent number: 8334358
    Abstract: The present invention relates to a sulfonated poly(arylene ether) copolymer, a manufacturing method thereof and a polymer electrolyte membrane for fuel cell using the same.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: December 18, 2012
    Assignee: Hyundai Motor Company
    Inventors: Inchul Hwang, Ki Yun Cho, Dong Il Kim, Ju Ho Lee
  • Patent number: 8324285
    Abstract: Provided are methods of treating an open cell polyimide foam product to produce a treated polyimide foam product having a property of repelling water or oil. The method includes the steps of: selecting a polyimide foam product having an external surface area and an open cell structure that has an interior surface area, wetting the exterior surface area and the interior surface area with a chemical treatment fluid comprising a treatment chemical that has a property of repelling water or oil, and distributing the treatment chemical onto at least a portion of the interior surface area sufficient to modify a surface property of the interior surface. Also provided are treated polyimide foam products that have an open cell polyimide foam substrate with an interior surface area and a treatment chemical on at least a portion of the interior surface area. The treatment chemical renders the interior surface hydrophobic or oleophobic.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: December 4, 2012
    Assignee: The Boeing Company
    Inventor: George F. Nicholas
  • Publication number: 20120298193
    Abstract: A polymer including moiety A represented by Chemical Formula 1, and a solar cell including the polymer are provided.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 29, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Soo-Ghang Ihn, Yeong Suk Choi, Sungyoung Yun, Younhee Lim, Bulliard Xavier
  • Patent number: 8314202
    Abstract: The invention provides novel flame-retardant polymers and materials, their synthesis and use. More particularly, the flame-retardant polymers are deoxybenzoin-derived polymers.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: November 20, 2012
    Assignee: University of Massachusetts
    Inventors: Todd Emrick, E. Bryan Coughlin, Thangamani Ranganathan, Michael Beaulieu, Richard Farris, Bon-Cheol Ku
  • Patent number: 8309678
    Abstract: Provided is a solid polymer electrolyte having increased heat resistance and high proton conductivity and a proton conductive membrane composed of the electrolyte. Also provided is a copolymer having a sulfonic acid group.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: November 13, 2012
    Assignee: JSR Corporation
    Inventors: Toshiaki Kadota, Yoshitaka Yamakawa
  • Patent number: 8299208
    Abstract: By a temper treatment a polyaryletherketone powder is processed such that it is particularly suited for the use in a method for a layer-wise manufacturing of a three-dimensional object. To this effect the powder is tempered at a temperature that is at least 20° C. above the glass transition temperature for at least 30 minutes before it is used as building material.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: October 30, 2012
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Frank Müller, Andreas Pfister, Martin Leuterer
  • Patent number: 8298402
    Abstract: The present invention relates to alkylphenol-aldehyde resins containing oligo- or polymers having a repeat structural unit of the formula where R1 is a branched alkyl or alkenyl radical which has from 10 to 40 carbon atoms and bears at least one carboxyl, carboxylate and/or ester group, R2 is hydrogen or R1 R3 is hydrogen or an alkoxy group of the formula -(A-O)m—H, A is a C2- to C4-alkylene group, m is from 1 to 100, R4 is hydrogen, a C1- to C11-alkyl radicals or a carboxyl group, R5 is C1-C200-alkyl or -alkenyl, O—R6 or O—C(O)—R6, R6 is C1-C200-alkyl or -alkenyl, n is from 1 to 100 and k is 1 or 2.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: October 30, 2012
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Matthias Krull, Carsten Cohrs, Heidi Rausch
  • Patent number: 8288500
    Abstract: The present invention relates to a sulfonated poly(arylene ether) copolymer, a manufacturing method thereof and a polymer electrolyte membrane for fuel cell using the same.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: October 16, 2012
    Assignee: Hyundai Motor Company
    Inventors: Ju Ho Lee, Dong Ii Kim, Nak Hyun Kwon, Inchul Hwang
  • Publication number: 20120259086
    Abstract: A cyclic poly (phenylene ether ether ketone) composition includes not less than 60% by weight of a cyclic poly (phenylene ether ether ketone) represented by the following Formula (I), which is characterized in that the cyclic poly (phenylene ether ether ketone) is a mixture of cyclic poly (phenylene ether ether ketone)s having different repeating numbers (m) and the composition has a melting point of not higher than 270° C.; and a method of producing a poly (phenylene ether ether ketone) characterized by heat-polymerizing the cyclic poly (phenylene ether ether ketone) composition: where m represents an integer of 2 to 40.
    Type: Application
    Filed: December 24, 2010
    Publication date: October 11, 2012
    Applicant: Toray Industries, Inc.
    Inventors: Kohei Yamashita, Shunsuke Horiuchi, Koji Yamauchi
  • Publication number: 20120252217
    Abstract: A resist underlayer film-forming composition includes (A) a polymer that includes a repeating unit shown by a formula (1), and has a polystyrene-reduced weight average molecular weight of 3000 to 10,000, and (B) a solvent, wherein R3 to R8 individually represent a group shown by the following formula (2) or the like, —O—R1?R2 ??(2) wherein R1 represents a single bond or the like, and R2 represents a hydrogen atom or the like.
    Type: Application
    Filed: August 30, 2011
    Publication date: October 4, 2012
    Applicant: JSR Corporation
    Inventors: Shin-ya MINEGISHI, Yushi MATSUMURA, Shinya NAKAFUJI, Kazuhiko KOMURA, Takanori NAKANO, Satoru MURAKAMI, Kyoyu YASUDA, Makoto SUGIURA
  • Patent number: 8236919
    Abstract: A process for preparing a polyether ether ketone. Sodium carbonate is used alone as the condensation agent, and 4,4?-difluorodibenzophenone, p-benzenediol and biphenyldiol are subjected to polymerizing. After the corresponding prepolymer is obtained, the reaction temperature is elevated and p-benzenediol is further added as a chain extender to react for a period of time to produce high-viscosity polyether ether ketone.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: August 7, 2012
    Assignee: Jilin Jinzheng Macromolecule Materials R & D Co., Ltd.
    Inventors: Guirong Wu, Yuning Xie
  • Publication number: 20120189713
    Abstract: The invention relates to novel monomers of Formula (I) useful for preparation of phase-separated biocompatible polymers or polymer compositions. These polymers or polymer compositions may be bioresorbable and/or biodegradable and have desirable mechanical properties, such as fracture and/or fatigue toughness, which have not been a primary design criteria for such polymers previously. The polymers or polymer compositions are useful in a variety of medical applications, such as in the fabrication of medical devices. Therefore, methods for preparing these polymers or polymer compositions and medical devices are also encompassed by this disclosure.
    Type: Application
    Filed: July 31, 2010
    Publication date: July 26, 2012
    Applicant: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Joachim B. Kohn, Durgadas Bolikal, Ramiro Rojas
  • Patent number: 8222367
    Abstract: A proton conducting hydrocarbon-based polymer has acid groups on side chains attached to the main chain, where the acid groups are between 7 and 12 atoms away from the main chain. Another polymer includes a semi-fluorinated aromatic hydrocarbon main chain and side chains that include at least one —CF2— group and an acid group. Another polymer includes an aromatic hydrocarbon main chain and side chains that include at least one —CH2-CF2— group and an acid group. Another aromatic polymer includes acid groups attached to both the main chain and the side chains where less than about 65 weight percent of the acid groups are attached to the side chains. Another aromatic polymer includes side chains attached to the main chain that include at least one aryl ring, and acid groups attached to both the main chain and to the aryl groups. Another polymer includes an aliphatic hydrocarbon main chain, side chains that include at least one deactivating aryl ring, and acid groups attached to the deactivating aryl rings.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: July 17, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Ramanathan S. Lalgudi, Bhima R. Vijayendran, Jeffrey Cafmeyer, Jay R. Sayre
  • Publication number: 20120130041
    Abstract: The present disclosure relates to a transparent polyarylene ether polymer with high heat resistance and a method for preparing the same. More particularly, the present disclosure relates to a polyarylene ether polymer and a method for preparing the same, wherein the polyarylene ether polymer has a repeating structure in which cardo-type aromatic diols having a large molecular volume, polyether sulfones which are amorphous polymers having a high glass transition temperature and superior film formability, and polyether ketones which are crystalline polymers having superior heat resistance and mechanical properties are sequentially arranged. The polyarylene ether polymer is both transparent and heat resistant and, thus, can be used, for example, for a flexible plastic substrate.
    Type: Application
    Filed: December 10, 2010
    Publication date: May 24, 2012
    Applicant: IUCF-HYU (Industry-University Coperation Foundatio Hanyang University
    Inventors: Yang Kyoo Han, Gyoung Pyo Kong, Moon Ki Kim, Bo Ra Hong, Hyun Aee Chun
  • Patent number: 8168732
    Abstract: The present description discloses a polymeric composition which is a melt-processed alloy comprised of (a) a polyarylene sulfide resin, (b) a polyaryl-ether-ketone resin, and a reactive compound which results in (c) a graft copolymer of the polyarylene sulfide resin and/or the polyaryl-ether-ketone resin in addition to the starting resins. Exemplary melt-processed polymeric compositions can be made by reacting an alkoxy silane with the polyarylene sulfide resin and/or the polyaryl-ether-ketone resin to produce a graft copolymer of a portion of one or both of the resins, sufficient to render the composition uniform and homogeneous. It is normally preferred for the exemplary organosilane compound, to be an amino silane. The subject invention further reveals an insulated wire comprising (1) an electrical conductor and (2) a layer of the melt-processed alloy composition; and fiber reinforced composites comprising fibers substantially fully impregnated with the alloy polymeric composition.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: May 1, 2012
    Assignee: Ticona LLC
    Inventors: Manoj Ajbani, Andrew Auerbach, Ke Feng
  • Patent number: 8163864
    Abstract: The invention relates to the field of polymer chemistry and relates to sulfonated polyarylene compounds such as can be used for example in ion exchange membranes in fuel cells, as well as a method for the production thereof and the use thereof. The object of the present invention is to disclose hydrolytically and thermally resistant sulfonated polyarylene compounds with a defined degree and position of sulfonation, from which membrane materials with an improved resistance to hydrolysis can be produced. The object is attained through sulfonated polyarylene compounds according to at least one of the general formulas (I)-(IV).
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: April 24, 2012
    Assignee: Leibniz-Institut fuer Polymerforschung Dresden E.V.
    Inventors: Dieter Lehmann, Jochen Meier-Haack, Claus Vogel, Wladimir Butwilowski
  • Patent number: 8158742
    Abstract: Deoxybenzoin-phosphonate and other copolymer compounds, compositions and related methods.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: April 17, 2012
    Assignee: University of Massachusetts
    Inventors: Todd Emrick, Thangamani Ranganathan, E. Bryan Coughlin, Richard J. Farris, Joseph Zilberman
  • Patent number: 8153753
    Abstract: A polyamide having at least an alicyclic or aromatic group exhibiting a light transmittance of 80% or more in the wavelength region of 450 to 700 nm is produced by using an aramide polymer comprising specific structural units at an amount of 50 mol % or more. Colorless transparent alicyclic or aromatic polyamide films having high rigidity and high thermal resistance are provided by using the polyamide. Further, the invention provides various optical members made by using the polyamide or the polyamide films, and polyamide copolymers.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: April 10, 2012
    Assignee: Toray Industries, Inc.
    Inventors: Hideki Moriyama, Akimitsu Tsukuda
  • Patent number: 8129496
    Abstract: An approach is presented for designing a polymeric layer for nanometer scale thermo-mechanical storage devices. Cross-linked polyimide oligomers are used as the recording layers in atomic force data storage device, giving significantly improved performance when compared to previously reported cross-linked and linear polymers. The cross-linking of the polyimide oligomers may be tuned to match thermal and force parameters required in read-write-erase cycles. Additionally, the cross-linked polyimide oligomers are suitable for use in nano-scale imaging.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventors: Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, Erik Christopher Hagberg, James Lupton Hedrick, Armin W. Knoll, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt, Charles Gordon Wade, Johannes Windeln
  • Patent number: 8125882
    Abstract: A composition of matter for the recording medium of nanometer scale thermo-mechanical information storage devices and a nanometer scale thermo-mechanical information storage device. The composition includes: one or more polyaryletherketone polymers, each of the one or more polyaryletherketone polymers having two terminal ends, each terminal end having two or more phenylethynyl moieties. The one or more polyaryletherketone polymers are thermally cured and the resulting cross-linked polyaryletherketone resin used as the recording layers in atomic force data storage devices.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: February 28, 2012
    Assignee: International Business Machines Corporation
    Inventors: Richard Anthony DiPietro, Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, Erik Christopher Hagberg, James Lupton Hedrick, Armin W. Knoll, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt, Charles Gordon Wade
  • Patent number: 8110636
    Abstract: Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: February 7, 2012
    Assignee: Sandia Corporation
    Inventors: Cy H. Fujimoto, Michael Hibbs, Andrea Ambrosini
  • Patent number: 8088882
    Abstract: A main object of the present invention is to provide a polymer precursor which exhibits high transmittance to a shorter wavelength range with respect to an electromagnetic wave though the polymer precursor has a part which sequences an unsaturated bond having a ? electron orbit and a single bond alternately.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: January 3, 2012
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventor: Katsuya Sakayori
  • Patent number: RE43880
    Abstract: This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3?,4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280° C. When the imide oligomer melt is cured at about 371° C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (Tg) equal to and above 310° C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280° C. (450-535° F.) without any solvent.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: December 25, 2012
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventor: Chun-Hua Chuang