Preparing By Hydrogenation Of Furfural Patents (Class 549/503)
  • Patent number: 10493438
    Abstract: A process for purifying an olefin-containing hydrocarbon feedstock comprising the steps of: (a) passing the said hydrocarbon feedstock in the presence of hydrogen over a first catalyst bed material comprising nickel deposited on a support material wherein said nickel is present as both nickel oxide and metallic nickel (b) recovering the feedstock having a substantially reduced acetylenics (in particular methylacetylene) and allenes (in particular propadiene) content.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: December 3, 2019
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: William J. Gauthier, Olivier Miserque, George Vulpescu, Francine Genin, Kai Hortmann, Jean-Pierre Dath
  • Patent number: 9428479
    Abstract: Biomass feedstocks (e.g., plant biomass, animal biomass, and municipal waste biomass) are processed to produce useful products, such as fuels. For example, systems are described that can convert feedstock materials to a sugar solution, especially, xylose, which can then be chemically converted to furfural and furfural-derived products.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: August 30, 2016
    Assignee: Xyleco, Inc.
    Inventors: Marshall Medoff, Thomas Craig Masterman, Christopher Cooper, Jihan Khan
  • Publication number: 20140256966
    Abstract: A method for stabilizing a metal or metal-containing particle supported on a surface is described, along with the resulting composition of matter. The method includes the steps of depositing upon the surface a protective thin film of a material of sufficient thickness to overcoat the metal or metal-containing particle and the surface, thereby yielding an armored surface; and then calcining the armored surface for a time and at a temperature sufficient to form channels in the protective thin film, wherein the channels so formed expose a portion of the metal- or metal-containing particle to the surrounding environment. Also described is a method of performing a heterogeneous catalytic reaction using the stabilized, supported catalyst.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: James A. Dumesic, Brandon J. O'Neill
  • Patent number: 8742144
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 3, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, James F. White, Michel J. Gray
  • Publication number: 20140011248
    Abstract: Biomass feedstocks (e.g., plant biomass, animal biomass, and municipal waste biomass) are processed to produce useful products, such as fuels. For example, systems are described that can convert feedstock materials to a sugar solution, especially, xylose, which can then be chemically converted to furfural and furfural-derived products.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 9, 2014
    Inventors: Marshall Medoff, Thomas Craig Masterman, Christopher Cooper, Jihan Khan
  • Patent number: 8604225
    Abstract: The present invention relates to a method of producing 5-hydroxymethylfurfural by dehydration of fructose and/or glucose and/or mannose.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: December 10, 2013
    Assignee: Novozymes, A/S
    Inventors: Sven Pedersen, Troels B. Christensen, Astrid Boisen, Vibeke W. Jurgensen, Thomas S. Hansen, Soeren Kegnaes, Anders Riisager, John M. Woodley, Jacob S. Jensen, Wenjing Fu
  • Patent number: 8399688
    Abstract: A method to make levulinic acid (LA), furfural, or gamma-valerolactone (GVL). React cellulose (and/or other C6 carbohydrates) or xylose (and/or other C5 carbohydrates) or combinations thereof in a monophasic reaction medium comprising GVL and an acid; or (ii) a biphasic reaction system comprising an organic layer comprising GVL, and a substantially immiscible aqueous layer. At least a portion of the cellulose (and/or other C6 carbohydrates), if present, is converted to LA and at least a portion of the xylose (and/or other C5 carbohydrates), if present, is converted into furfural.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: March 19, 2013
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James A. Dumesic, David Martin Alonso, Elif I. Gürbüz, Stephanie G. Wettstein
  • Patent number: 8389749
    Abstract: Described is a catalytic process for converting biomass to furan derivatives (e.g., furfural, furfuryl alcohol, etc.) using a biphasic reactor containing a reactive aqueous phase and an organic extracting phase containing an alkylphenol. The process provides a cost-effective route for producing furfural, furfuryl alcohol, levulinic acid hydroxymethylfurfural, ?-valerolactone, and the like. The products formed are useful as value-added intermediates to produce polymers, as precursors to diesel fuel, and as fuel additives.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: March 5, 2013
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James Dumesic, David Alonso, Jesse Bond, Thatcher Root, Mei Chia
  • Patent number: 8367851
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 5, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, James F. White, Michel J. Gray
  • Publication number: 20120302765
    Abstract: Described is a catalytic process for converting biomass to furan derivatives (e.g., furfural, furfuryl alcohol, etc.) using a biphasic reactor containing a reactive aqueous phase and an organic extracting phase containing an alkylphenol. The process provides a cost-effective route for producing furfural, furfuryl alcohol, levulinic acid hydroxymethylfurfural, ?-valerolactone, and the like. The products formed are useful as value-added intermediates to produce polymers, as precursors to diesel fuel, and as fuel additives.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Inventors: James Dumesic, David Alonso, Jesse Bond, Thatcher Root, Mei Chia
  • Publication number: 20120302767
    Abstract: A method to make levulinic acid (LA), furfural, or gamma-valerolactone (GVL). React cellulose (and/or other C6 carbohydrates) or xylose (and/or other C5 carbohydrates) or combinations thereof in a monophasic reaction medium comprising GVL and an acid; or (ii) a biphasic reaction system comprising an organic layer comprising GVL, and a substantially immiscible aqueous layer. At least a portion of the cellulose (and/or other C6 carbohydrates), if present, is converted to LA and at least a portion of the xylose (and/or other C5 carbohydrates), if present, is converted into furfural.
    Type: Application
    Filed: April 12, 2012
    Publication date: November 29, 2012
    Inventors: James A. Dumesic, David Martin Alonso, Elif I. Gürbüz, Stephanie G. Wettstein
  • Publication number: 20110257419
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 20, 2011
    Inventors: Michael A. Lilga, Richard T. Hallen, Todd A. Werpy, James F. White, Johnathan E. Holladay, John G. Frye, JR., Alan H. Zacher
  • Publication number: 20110201820
    Abstract: Disclosed is a practical method for efficiently producing an alcohol compound by hydrogenating an aldehyde by using a homogeneous copper catalyst which is an easily-available low-cost metal species. Specifically disclosed is a method for producing an alcohol compound, which is characterized in that a hydrogenation reaction of an aldehyde compound is performed in the presence of a homogeneous copper catalyst, a monophosphine compound and an alcohol selected from the group consisting of primary alcohols, secondary alcohols and mixtures of those.
    Type: Application
    Filed: December 11, 2008
    Publication date: August 18, 2011
    Applicant: TAKASAGO INTERNATIONAL CORPORATION
    Inventor: Hideo Shimizu
  • Patent number: 7994347
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: August 9, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, Todd A. Werpy, James F. White, Johnathan E. Holladay, John G. Frye, Jr., Alan H. Zacher
  • Publication number: 20100137615
    Abstract: Provide that a useful catalyst for homogeneous hydrogenation, particularly a catalyst for homogeneous asymmetric hydrogenation for hydrogenation, particularly asymmetric hydrogenation, which is obtainable with comparative ease and is excellent in economically and workability, and a process for producing a hydrogenated compound of an unsaturated compound, particularly an optically active compound using said catalyst with a high yield and optical purity.
    Type: Application
    Filed: February 9, 2010
    Publication date: June 3, 2010
    Applicant: Takasago International Corporation
    Inventors: Hideo SHIMIZU, Daisuke Igarashi, Wataru Kuriyama, Yukinori Yusa
  • Patent number: 7579490
    Abstract: A method of preparing 2,5-bis(hydroxymethyl)tetrahydrofuran comprises heating a reaction mixture comprising 2,5-(hydroxymethyl)furaldehyde, an organic solvent, and a catalyst system comprising nickel and zirconium at a temperature, for a time, and at a pressure sufficient to promote reduction of the 2,5-(hydroxymethyl)furaldehyde to 2,5-bis(hydroxymethyl)tetrahydrofuran to produce a product mixture comprising 2,5-bis(hydroxymethyl)tetrahydrofuran.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: August 25, 2009
    Assignee: Archer-Daniels-Midland Company
    Inventors: Alexandra J. Sanborn, Paul D. Bloom
  • Patent number: 7015359
    Abstract: The present invention provides a catalytic process for the synthesis of furfuryl alcohol and cyclohexanone simultaneously over a copper based catalyst in vapour phase conditions by hydrogenation of furfural and dehydrogenation of cyclohexanol respectively.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: March 21, 2006
    Assignee: Council of Scientific and Industrial Research
    Inventors: Kamaraju Seetha Rama Rao, David Raju Burri, Narayanan Sankarasubbier, Mallanna Nagaraja Bhari, Hari Padmasri Aytam, Sivakumar Vasireddy, Shashikala Veldurthi, Seetharamulu Podila, Sanapureddy Sreevardhan Reddy
  • Patent number: 6852868
    Abstract: Processes are disclosed for the preparation of 2-methylfuran and 2-methyltetrahydrofuran. The continuous vapor-phase processes are commercially viable and efficient because they permit the preparation of 2-methylfuran and 2-methyltetrahydrofuran using commercially-available catalysts, namely, a reduced copper-based catalyst consisting essentially of cupric oxide, chromium (III) oxide, manganese oxide and barium chromate and a reduced nickel-based catalyst consisting essentially of nickel, nickel (II) oxide, aluminum oxide and silica. An apparatus comprising two inline hydrogenators is used for preparing the 2-methylfuran or 2-methyltetrahydrofuran.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: February 8, 2005
    Assignee: Pure Energy Corporation
    Inventor: Irshad Ahmed
  • Patent number: 6600078
    Abstract: A heterogeneous liquid-phase process for the hydrogenation of aldehydes of Formula (I) and (III) to the corresponding alcohols of Formula (II) and (IV) which process comprises contacting alcoholic or aqueous-alcoholic solution of aldehydes and hydrogen gas with a catalyst comprising a reduced mixture of CuO and ZnO in presence of a metal of group IIIA of the Periodic Table, such as aluminium, as a promoter at a temperature of between about 110° and 180° C. and a pressure of between about 20 and 500 psig.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: July 29, 2003
    Assignee: Saudi Basic Industries Corporation
    Inventors: Meftahuddin Mahmud, Ahmad Kamal Faizi, Vidyasagar Anchoori, Abdullah Al-Qahtani
  • Patent number: 6054627
    Abstract: Disclosed are catalysts in powdered form comprising a major amount of the oxides of a first metal selected from copper or zinc, a second metal selected from chromium, molybdenum, tungsten and vanadium, and optionally, a minor amount of the oxide of a promoter metal selected from the group consisting of manganese, barium, zinc, nickel, cobalt, cadmium, iron and any combination thereof provided that the promoter metal is not zinc if the first metal is zinc, wherein the average particle diameter of the powder is from about 6 to about 20 microns; and the particle surface area is from about 20 to about 70 m.sup.2 /g. Also disclosed is a process for preparing such catalysts and a process for hydrogenating aldehydes, ketones, carboxylic acids and carboxylic acid esters with catalysts of the type described.
    Type: Grant
    Filed: May 27, 1992
    Date of Patent: April 25, 2000
    Assignee: Engelhard Corporation
    Inventors: Deepak S. Thakur, Eugene Palka, Thomas I. Sullivan, Eugene Nebesh, Brian D. Roberts
  • Patent number: 5691362
    Abstract: Compounds represented by the structural formula ##STR1## or a pharmaceutically acceptable salt thereof, wherein the variables are as defined in the specification; methods of treating asthma, cough, bronchospasm, inflammatory diseases, and gastrointestinal disorders with said compounds, and pharmaceutical compositions comprising said compounds are disclosed.
    Type: Grant
    Filed: June 5, 1996
    Date of Patent: November 25, 1997
    Assignee: Schering-Plough Corporation
    Inventors: Kevin D. McCormick, Andrew T. Lupo, Jr.
  • Patent number: 5591873
    Abstract: A formed copper catalyst for the hydrogenation of organic compounds is disclosed, especially for the selective hydrogenation of furfural to furfuryl alcohol. The catalyst contains an intimate mixture of a pyrogenic silica, reduced copper and, optionally, a basic oxide as promotor. The catalyst is distinguished by a high specific catalytic activity, selectivities and yields.
    Type: Grant
    Filed: February 1, 1995
    Date of Patent: January 7, 1997
    Assignee: Degussa Aktiengesellschaft
    Inventors: Martin Bankmann, Johannes Ohmer, Thomas Tacke
  • Patent number: 5345005
    Abstract: In one embodiment, the invention relates to a catalyst in powdered form which comprises a major amount of the oxides of copper and zinc, and a minor amount of aluminum oxide wherein the pore volume of pores of said catalysts having a diameter between about 120 and about 1000 .ANG. is at least about 40% of the total pore volume. In another embodiment, the invention relates to a process for preparing hydrogenation catalysts comprising the oxides of copper, zinc and aluminum which comprises the steps of(A) preparing a first aqueous solution containing at least one water-soluble copper salt and at least one water-soluble zinc salt;(B) preparing a second solution containing at least one water-soluble basic aluminum salt and at least one alkaline precipitating agent;(C) mixing the first and second solutions whereby an insoluble solid is formed;(D) recovering the insoluble solid.
    Type: Grant
    Filed: September 18, 1992
    Date of Patent: September 6, 1994
    Assignee: Engelhard Corporation
    Inventors: Deepak S. Thakur, Brian L. Roberts, Thomas J. Sullivan, Anita L. Vichek
  • Patent number: 5198592
    Abstract: The invention concerns a method of performing a chemical reaction in which hydrogenation and/or dehydrogenation occurs, in the presence of a supported catalyst comprising a carrier material with copper as active component and iron as a promotor. According to the invention, the proporation of iron, calculated on the amount of copper and iron jointly, on an atomic basis, is no more than 25%. The invention also relates to a catalyst for carrying out the reaction, and to a process for preparing a supported catalyst.
    Type: Grant
    Filed: October 15, 1990
    Date of Patent: March 30, 1993
    Assignee: Engelhard De Meern B.V.
    Inventors: Johannes van Beijnum, Adrianus J. van Dillen, John W. Geus
  • Patent number: 4728671
    Abstract: The present invention relates to a process for producing alcohols comprising hydrogenating compounds selected from the group consisting of acids, esters and aldehydes under sufficient hydrogen pressure and temperature in the presence of a catalyst comprising a copper chromite first component and a second component consisting essentially of copper deposited on a support.
    Type: Grant
    Filed: April 25, 1985
    Date of Patent: March 1, 1988
    Assignee: Oleofina, S.A.
    Inventor: Herve Hinnekens
  • Patent number: 4626604
    Abstract: A continuous multi-stage hydrogenation process is described.This is effected in at least three catalytic stages connected in series. All stages up to and including the penultimate stage are operated adiabatically and in the vapor phase. Aldehyde (or other unsaturated organic compound) is fed to all stages up to and including the penultimate stage. The rate of supply of the aldehyde or other unsaturated organic compound to the penultimate stage is controlled in relation to the catalyst volume in the penultimate catalytic stage so that the degree of hydrogenation in that stage is less than 100%. The remaining chemically unsaturated material in the product mixture from the penultimate stage is hydrogenated, after cooling that product mixture, in the final catalytic stage to produce a substantially completely hydrogenated product mixture. In this way the dwell time of the reactants and product(s) at "hot spot" temperatures is minimized, thus reducing byproduct formation.
    Type: Grant
    Filed: September 11, 1985
    Date of Patent: December 2, 1986
    Assignee: Davy McKee (London) Limited
    Inventors: Andrew G. Hiles, John E. Logsdon
  • Patent number: H918
    Abstract: Carbohydrates, especially aldose or ketose sugars, including those whose carbonyl group is masked by hemi-acetal or hemi-ketal formation, are decarbonylated by heating the feed carbohydrate together with a transition metal complex in a suitable solvent. Also, primary alcohols, including sugar alditols are simultaneously dehydrogenated and decarbonylated by heating a mixture of rhodium and ruthenium complexes and the alcohol and optionally a hydrogen acceptor in an acceptable solvent. Such defarbonylation and/or dehydrogenation of sugars provides a convenient procedure for the synthesis of certain carbohydrates and may provide a means for the conversion of biomass into useful products.
    Type: Grant
    Filed: October 5, 1988
    Date of Patent: May 7, 1991
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Mark A. Andrews, Stephen A. Klaeren