Niobium, Tantalum, Silver, Sulfur, Ruthenium, Rhodium, Palladium, Osmium, Iridium, Or Platinum Containing Material Utilized Patents (Class 558/321)
  • Patent number: 11998895
    Abstract: Provided in this disclosure are catalyst compositions. The catalyst compositions include an oxidative dehydrogenation catalyst that includes a mixed metal oxide having the empirical formula: Mo1.0V0.12-0.49Te0.05-0.17Nb0.10-0.20AlcOd wherein c is from 0 to 2.0 and d is a number to satisfy the valence of the oxide. The compositions are at least 40 wt. % amorphous as measured by XRD. The disclosure also provides methods of making the compositions.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: June 4, 2024
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Xiaoliang Gao, Marie Barnes, David Sullivan, Yoonhee Kim
  • Patent number: 9000207
    Abstract: A method for producing a silica-supported catalyst comprising Mo, V. Nb, and a component X (Sb and/or Te) to be used in a vapor phase catalytic oxidation or ammoxidation of proprane, comprising the steps of: (I) preparing a raw material mixture solution by mixing Mo, V, Nb, component X, a silica sol, and water; (II) obtaining a dry powder by drying the raw material mixture solution; and (III) obtaining a silica-supported catalyst by calcining the dry powder, wherein the silica sol contains 10 to 270 wt ppm of nitrate ions based on SiO2.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: April 7, 2015
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yusuke Ishii, Takaaki Kato
  • Publication number: 20150031907
    Abstract: The invention relates to a method for producing acrylonitrile which includes a vapor phase catalytic ammoxidation process of performing vapor phase catalytic ammoxidation by bringing a source gas containing propylene, molecular oxygen, and ammonia into contact with a fluidized bed catalyst to obtain acrylonitrile. The method is characterized in that the fluidized bed catalyst consists of particles containing Fe, Sb, and Te, and the vapor phase catalytic ammoxidation process is performed while maintaining a B/A in the range of 2.0 to 5.0, where A denotes an atomic ratio of Te/Sb in a bulk composition of the fluidized bed catalyst and B denotes an atomic ratio of Te/Sb in a surface composition of the particles of the fluidized bed catalyst. According to the method for producing acrylonitrile of the invention, it is possible to stably maintain a high acrylonitrile yield over a long period of time.
    Type: Application
    Filed: February 26, 2013
    Publication date: January 29, 2015
    Applicant: Mitsubishi Rayon Co., Ltd.
    Inventors: Takashi Karasuda, Hirokazu Watanabe, Motoo Yanagita, Kazufumi Nishida
  • Patent number: 8697596
    Abstract: Catalytic compositions and processes are disclosed for economical conversions of lower alkane hydrocarbons. Broadly, the present invention discloses solid compositions containing mixed metal oxides that exhibit catalytic activity for ammoxidation of lower alkane hydrocarbons to produce an unsaturated nitrile in high yield. Generally, these solid oxide compositions comprise, as component elements, molybdenum (Mo), vanadium (V) niobium (Nb) and at least one active element selected from the group consisting of the elements having the ability to form positive ions. Mixed metal oxide catalytic compositions advantageously comprise one or more crystalline phases at least one of which phases has pre-determined unit cell volume and aspect ratio. Also described are methods for forming the improved catalysts having the desired crystalline structure and ammoxidation processes for conversion of lower alkanes.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: April 15, 2014
    Assignee: INEOS USA LLC
    Inventors: James A. Kaduk, James F. Brazdil, Alakananda Bhattacharyya, Christos Paparizos
  • Patent number: 8455388
    Abstract: A catalytic composition useful for the conversion of an olefin selected from the group consisting of propylene, isobutylene or mixtures thereof, to acrylonitrile, methacrylonitrile, and mixtures thereof. The catalytic composition comprising a complex of metal oxides comprising bismuth, molybdenum, iron, cerium and other promoters, wherein the ratio of cerium to iron in the composition is greater than or equal to 0.8 and less than or equal to 5.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: June 4, 2013
    Assignee: INEOS USA LLC
    Inventors: James F. Brazdil, Mark A. Toft, Michael J. Seely, Charles J. Besecker, Robert A. Gustaferro
  • Patent number: 8420566
    Abstract: A process and novel catalyst for the production of acrylonitrile, acetonitrile and hydrogen cyanide characterized by the relative yields of acrylonitrile, acetonitrile and hydrogen cyanide produced in the process and by the catalyst, which are defined by the following: ?=[(% AN+(3×% HCN)+(1.5×% ACN))÷% PC]×100 wherein % AN is the Acrylonitrile Yield and % AN?81, % HCN is the Hydrogen Cyanide Yield, % ACN is the Acetonitrile Yield, % PC is the Propylene Conversion, and ? is greater than 100.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 16, 2013
    Assignee: Ineos USA LLC
    Inventors: James F. Brazdil, Mark A. Toft, Charles J. Besecker, Michael J. Seely
  • Publication number: 20130072710
    Abstract: Catalytic compositions are provided that are effective for providing increased acrylonitrile product without a significant decrease in hydrogen cyanide and/or acetonitrile production and provide an overall increase in production of acrylonitrile, hydrogen cyanide and acetonitrile. The catalytic compositions include a complex of metal oxides and include at least about 15% m-phase plus t-phase by weight and have a weight ratio of m-phase to m-phase plus t-phase of 0.45 or greater.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Inventors: James F. Brazdil, Mark A. Toft, Stephen T. McKenna
  • Patent number: 8350075
    Abstract: Olefins selected from the group consisting of propylene, isobutylene or mixtures thereof, are converted to acrylonitrile, methacrylonitrile, and mixtures thereof in a process comprising reacting in the vapor phase at an elevated temperature and pressure said olefin with a molecular oxygen containing gas and ammonia in the presence of a catalytic composition comprising a complex of metal oxides comprising bismuth, molybdenum, iron, cerium and other promoter elements, wherein the X-ray diffraction pattern of the catalytic composition has X-ray diffraction peaks at 2? angle 28±0.3 degrees and 2? angle 26.5±0.3 degrees, and wherein the ratio of the intensity of the most intense x-ray diffraction peak within 2? angle 28±0.3 degrees to the intensity of most intense x-ray diffraction peak within 2? angle 26.5±0.3 degrees is defined as X/Y, and wherein X/Y is greater than or equal to 0.7.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: January 8, 2013
    Assignee: Ineos USA LLC
    Inventors: James F. Brazdil, Mark A. Toft, Michael J. Seely, Charles J. Besecker, Robert A. Gustaferro
  • Patent number: 8258073
    Abstract: A process for the preparation of a catalyst comprising bismuth, molybdenum, iron, cerium and other promoter elements, wherein the elements in said catalyst are combined together in an aqueous catalyst precursor slurry, the aqueous precursor slurry so obtained is dried to form a catalyst precursor, and the catalyst precursor is calcined to form said catalyst, the process comprising: (i) combining, in an aqueous solution, source compounds of Bi and Ce, and optionally one or more of Na, K, Rb, Cs, Ca, a rare earth element, Pb, W and Y, to form a mixture, (ii) adding a source compound of molybdenum to the mixture to react with the mixture and form a precipitate slurry, and (iii) combining the precipitate slurry with source compounds of the remaining elements and of the remaining molybdenum in the catalyst to form the aqueous catalyst precursor slurry.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: September 4, 2012
    Assignee: iNEOS USA LLC
    Inventors: Charles J. Besecker, James Frank Brazdil, Jr., Mark A. Toft, Michael J. Seely, Robert A. Gustaferro
  • Publication number: 20120130112
    Abstract: Olefins selected from the group consisting of propylene, isobutylene or mixtures thereof, are converted to acrylonitrile, methacrylonitrile, and mixtures thereof in a process comprising reacting in the vapor phase at an elevated temperature and pressure said olefin with a molecular oxygen containing gas and ammonia in the presence of a catalytic composition comprising a complex of metal oxides comprising bismuth, molybdenum, iron, cerium and other promoter elements, wherein the X-ray diffraction pattern of the catalytic composition has X-ray diffraction peaks at 2? angle 28±0.3 degrees and 2? angle 26.5±0.3 degrees, and wherein the ratio of the intensity of the most intense x-ray diffraction peak within 2? angle 28±0.3 degrees to the intensity of most intense x-ray diffraction peak within 2? angle 26.5±0.3 degrees is defined as X/Y, and wherein X/Y is greater than or equal to 0.7.
    Type: Application
    Filed: January 17, 2012
    Publication date: May 24, 2012
    Applicant: INEOS USA LLC
    Inventors: James F. Brazdil, Mark A. Toft, Michael J. Seely, Charles J. Besecker, Robert A. Gustaferro
  • Publication number: 20110237820
    Abstract: A process for the preparation of a catalyst comprising bismuth, molybdenum, iron, cerium and other promoter elements, wherein the elements in said catalyst are combined together in an aqueous catalyst precursor slurry, the aqueous precursor slurry so obtained is dried to form a catalyst precursor, and the catalyst precursor is calcined to form said catalyst, the process comprising: (i) combining, in an aqueous solution, source compounds of Bi and Ce, and optionally one or more of Na, K, Rb, Cs, Ca, a rare earth element, Pb, W and Y, to form a mixture, (ii) adding a source compound of molybdenum to the mixture to react with the mixture and form a precipitate slurry, and (iii) combining the precipitate slurry with source compounds of the remaining elements and of the remaining molybdenum in the catalyst to form the aqueous catalyst precursor slurry.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 29, 2011
    Inventors: Charles J. Besecker, James Frank Brazdil, JR., Mark A. Toft, Michael J. Seely, Robert A. Gustaferro
  • Publication number: 20110237821
    Abstract: A catalytic composition useful for the conversion of an olefin selected from the group consisting of propylene, isobutylene or mixtures thereof, to acrylonitrile, methacrylonitrile, and mixtures thereof. The catalytic composition comprising a complex of metal oxides comprising bismuth, molybdenum, iron, cerium and other promoters, wherein the ratio of cerium to iron in the composition is greater than or equal to 0.8 and less than or equal to 5.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 29, 2011
    Inventors: James F. Brazdil, Mark A. Toft, Michael J. Seely, Charles J. Besecker, Robert A. Gustaferro
  • Publication number: 20090221843
    Abstract: A catalyst for producing acrylonitrile capable of maintaining a high yield of acrylonitrile for a long time is provided. The catalyst has a composition represented by MoaBibFecWdRbeAfBgChDiOj(SiO2)k, wherein A is Ni, Mg, Ca, Sr, Ba, Mn, Co, Cu, Zn, Cd or mixture thereof; B is Al, Cr, Ga, Y, In, La, Ce, Pr, Nd, Sm or mixture thereof; C is Ti, Zr, V, Nb, Ta, Ge, Sn, Pb, Sb, P, B, Te or mixture thereof; D is Ru, Rh, Pd, Re, Os, Ir, Pt, Ag or mixture thereof; SiO2 is silica, when a is 10, b is 0.1 to 1.5, c is 0.5 to 3.0, d is 0.01 to 2.0, e is 0.02 to 1.0, fis 2.0 to 9.0, g isO to 5, his 0 to 3, i isO to 2, k is 10 to 200; and j is the atomic ratio of oxygen determined by the valence of other elements (excluding silicon); and (a×2+d×2)/(b×3+c×3+e×1+f×2+g×3) is 0.90 to 1.00.
    Type: Application
    Filed: February 26, 2009
    Publication date: September 3, 2009
    Applicant: DIA-NITRIX CO., LTD.
    Inventors: Hirokazu Watanabe, Motoo Yanagita, Kenichi Miyaki
  • Patent number: 7576232
    Abstract: A process for the conversion of a hydrocarbon selected from the group consisting of propylene, isobutylene, propane, isobutane or mixtures thereof, to acrylonitrile, methacrylonitrile, or mixtures thereof, the process comprising the step of reacting in the vapor phase at an elevated temperature and pressure said hydrocarbon with a molecular oxygen-containing gas and ammonia, in the presence of a molybdenum-based ammoxidation catalyst and a catalyst modifier, wherein said catalyst modifier comprises a molybdate or a polymolybdate of at least one element M selected from the group consisting of cesium, rubidium, potassium, sodium, thallium, lithium, nickel, cobalt, iron, chromium, copper, magnesium, manganese, cerium and phosporus, and wherein the ratio of the M elements to Mo in the molybdate or polymolybdate is greater than the ratio for these M elements to Mo in the molybdenum-based catalyst.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: August 18, 2009
    Assignee: Ineos USA LLC
    Inventors: Michael J. Seely, Christos Paparizos
  • Patent number: 7473666
    Abstract: A particulate porous ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile by reacting propylene, isobutene or tert-butyl alcohol with molecular oxygen and ammonia in a fluidized-bed reactor, the catalyst comprising a metal oxide and a silica carrier having supported thereon the metal oxide, wherein the metal oxide contains at least two elements selected from the group consisting of molybdenum, bismuth, iron, vanadium, antimony, tellurium and niobium, and the catalyst having a particle diameter distribution wherein the amount of catalyst particles having a particle diameter of from 5 to 200 ?m is from 90 to 100% by weight, based on the weight of the catalyst, and having a pore distribution wherein the cumulative pore volume of pores having a pore diameter of 80 ? or less is not more than 20%, based on the total pore volume of the catalyst and wherein the cumulative pore volume of pores having a pore diameter of 1,000 ? or more is not more than 20%, based on the total pore volume of the
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: January 6, 2009
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Hiroyuki Yanagi, Hideo Midorikawa, Tutomu Ueda
  • Publication number: 20080248947
    Abstract: Catalytic compositions and processes are disclosed for economical conversions of lower alkane hydrocarbons. Broadly, the present invention discloses solid promoter treated compositions containing mixed metal oxides that exhibit catalytic activity for ammoxidation of lower alkane hydrocarbons to produce an unsaturated nitrile in high yield. Generally, these solid oxide compositions comprise, as component elements, molybdenum (Mo), vanadium (V) niobium (Nb) and at least one active element selected from the group consisting of the elements having the ability to form positive ions. Mixed metal oxide catalytic compositions advantageously are formed process steps comprising impregnation of a base catalyst with an aqueous medium comprising sources of one or more promoter element drying the resulting material; and thereafter subjecting the dried material to heat treatment, under a gaseous atmosphere that is substantially free of dioxygen, at elevated temperatures of at least 400° C.
    Type: Application
    Filed: April 3, 2007
    Publication date: October 9, 2008
    Inventors: Gerry W. Zajac, Alakananda Bhattacharyya, Bhagya Chandra Sutradhar, James F. Brazdil
  • Publication number: 20080249328
    Abstract: Catalytic compositions and processes are disclosed for economical conversions of lower alkane hydrocarbons. Broadly, the present invention discloses solid compositions containing mixed metal oxides that exhibit catalytic activity for ammoxidation of lower alkane hydrocarbons to produce an unsaturated nitrile in high yield. Generally, these solid oxide compositions comprise, as component elements, molybdenum (Mo), vanadium (V) niobium (Nb) and at least one active element selected from the group consisting of the elements having the ability to form positive ions. Mixed metal oxide catalytic compositions advantageously comprise one or more crystalline phases at least one of which phases has predetermined unit cell volume and aspect ratio. Also described are methods for forming the improved catalysts having the desired crystalline structure and ammoxidation processes for conversion of lower alkanes.
    Type: Application
    Filed: April 3, 2007
    Publication date: October 9, 2008
    Inventors: James A. Kaduk, James F. Brazdil, Alakananda Bhattacharyya, Christos Paparizos
  • Publication number: 20080103325
    Abstract: A catalyst composition comprising molybdenum, vanadium, antimony niobium, at least one element select from the group consisting of titanium, tin, germanium, zirconium, and hafnium, and at least one lanthanide selected from the group consisting of lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium; with the proviso that catalyst contains germanium (in the absence of at last one of titanium, tin, zirconium, hafnium) only in combination with neodymium and/or praseodymium and no other lanthanides. Such catalyst compositions are effective for the gas-phase conversion of propane to acrylonitrile and isobutane to methacrylonitrile (via ammoxidation).
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Inventors: Claus Lugmair, Benjamin Mork, Jessica Zysk Fryer, Anthony F. Volpe, Joseph Peter Bartek, Hailian Li, Alakananda Bhattacharyya, James F. Brazdil, Bruce I. Rosen, Eric Moore
  • Publication number: 20080103326
    Abstract: A catalyst composition comprising molybdenum, vanadium, antimony, niobium, lithium, at least one element select from the group consisting of titanium, tin, germanium, zirconium, hafnium and at least one lanthanide selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Such catalyst compositions are effective for the gas-phase conversion of propane to acrylonitrile and isobutane to methacrylonitrile (via ammoxidation).
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Inventors: Bruce Irwin Rosen, Eric Moore, James F. Brazdil, Claus Lugmair, Bren Ehnebuske
  • Patent number: 7348291
    Abstract: A catalyst comprising a complex of catalytic oxides comprising potassium, cesium, cerium, chromium, cobalt, nickel, iron, bismuth, molybdenum, wherein the relative ratios of these elements is represented by the following general formula AaKbCscCedCreCofNigXhFeiBijMo12Ox wherein A is Rb, Na, Li, Tl, or mixtures thereof, X is P, Sb, Te, B, Ge, W, Ca, Mg, a rare earth element, or mixtures thereof, a is 0 to about 1, b is about 0.01 to about 1, c is about 0.01 to about 1, d is about 0.01 to about 3, e is about 0.01 to about 2, f is about 0.01 to about 10, g is about 0.1 to about 10, h is 0 to about 4, i is about 0.1 to about 4, j is about 0.05 to about 4, x is a number determined by the valence requirements of the other elements present, and wherein the catalyst is substantially free of manganese and zinc.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: March 25, 2008
    Assignee: Ineos USA LLC
    Inventors: Christos Paparizos, Stephen C. Jevne, Michael J. Seely
  • Publication number: 20070161812
    Abstract: A process for oxidizing a hydrocarbon, which comprises subjecting the hydrocarbon to a liquid phase catalytic oxidation reaction in the presence of at least one oxidation catalyst to form an oxidized product.
    Type: Application
    Filed: December 28, 2006
    Publication date: July 12, 2007
    Inventors: Andrew Michael Lemonds, Donald Lee Zolotorofe
  • Patent number: 7071140
    Abstract: A catalyst comprising a complex of catalytic oxides comprising rubidium, cerium, chromium, iron, bismuth, molybdenum, and at least one of nickel or nickel and cobalt, optionally magnesium, and optionally one of phosphorus, antimony, tellurium, sodium, lithium, potassium, cesium, thallium, boron, germanium, tungsten calcium, wherein the relative ratios of these elements are represented by the following general formula: RbaCebCrcMgdAeFefBigYhMo12Ox wherein A is Ni or the combination of Ni and Co, Y is at least one of P, Sb, Te, Li, Na, K, Cs, Tl, B, Ge, W, Ca, Zn, a rare earth element, or mixtures thereof, a is about 0.01 to about 1, b is about 0.01 to about 3, c is about 0.01 to about 2, d is 0 to about 7, e is about 0.01 to about 10, f is about 0.01 to about 4, g is about 0.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: July 4, 2006
    Assignee: The Standard Oil Company
    Inventors: Christos Paparizos, Stephen C. Jevne, Michael J. Seely
  • Patent number: 6984750
    Abstract: A supported catalyst comprising a mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: January 10, 2006
    Assignee: Rohm and Haas Company
    Inventors: Sanjay Chaturvedi, Jingguang Chen, Michael Bruce Clark, Jr., Anne Mae Gaffney
  • Patent number: 6965046
    Abstract: A catalyst composition comprising a complex of catalytic oxides of iron, bismuth, molybdenum, cobalt, cerium, antimony, at least one of nickel or magnesium, and at least one of lithium, sodium, potassium, rubidium, or thallium, and characterized by the following empirical formula: AaBbCcFedBieCofCegSbhMomOx wherein A is at least one of Cr, P, Sn, Te, B, Ge, Zn, In, Mn, Ca, W, or mixtures thereof B is at least one of Li, Na, K, Rb, Cs, Tl, or mixtures thereof C is least one of Ni, Mg or mixtures thereof a is 0 to 4.0 b is 0.01 to 1.5 c is 1.0 to 10.0 d is 0.1 to 5.0 e is 0.1 to 2.0 f is 0.1 to 10.0 g is 0.1 to 2.0 h is 0.1 to 2.0 m is 12.0 to 18.0 and x is a number determined by the valence requirements of the other elements present. The catalyst is useful in processes for the ammoxidation of an olefin selected from the group consisting of propylene, isobutylene or mixtures thereof, to acrylonitrile, methacrylonitrile and mixtures thereof, respectively.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: November 15, 2005
    Assignee: The Standard Oil Co.
    Inventors: Christos Paparizos, Michael J. Seely, Maria S. Friedrich, Dev D. Suresh
  • Patent number: 6919472
    Abstract: A catalyst composition for the selective conversion of an alkane to an unsaturated carboxylic acid having the general formula: MoVaNbbAgcMdOx wherein optional element M may be one or more selected from aluminum, copper, lithium, sodium, potassium, rubidium, cesium, gallium, phosphorus, iron, rhenium, cobalt, chromium, manganese, arsenic, indium, thallium, bismuth, germanium, tin, cerium or lanthanum; a is 0.05 to 0.99, b is 0.01 to 0.99, c is 0.01 to 0.99, d is 0 to 0.5 and x is determined by the valence requirements of the other components of the catalyst composition. This catalyst is prepared by co-precipitation of compounds of molybdenum, vanadium, niobium, silver and M to form a mixed metal oxide catalyst. This catalyst can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process or the ammoxidation of alkanes and olefins.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 19, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Publication number: 20040106817
    Abstract: A catalyst comprising a complex of catalytic oxides comprising rubidium, cerium, chromium, iron, bismuth, molybdenum, and at least one of nickel or nickel and cobalt, optionally magnesium, and optionally one of phosphorus, antimony, tellurium, sodium, lithium, potassium, cesium, thallium, boron, germanium, tungsten calcium, wherein the relative ratios of these elements are represented by the following general formula:
    Type: Application
    Filed: November 18, 2003
    Publication date: June 3, 2004
    Inventors: Christos Paparizos, Stephen C. Jevne, Michael J. Seely
  • Publication number: 20030208085
    Abstract: A supported catalyst comprising a mixed metal oxide is useful for the vapor phase catalytic partial oxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated nitrile.
    Type: Application
    Filed: April 22, 2003
    Publication date: November 6, 2003
    Inventors: Anne Mae Gaffney, Scott Han, Michelle Doreen Heffner, Nneka Namono McNeal, Elsie Mae Vickery
  • Publication number: 20030013904
    Abstract: A catalyst comprising a mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Application
    Filed: June 7, 2002
    Publication date: January 16, 2003
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Ruozhi Song, Elsie Mae Vickery
  • Publication number: 20020188149
    Abstract: A mixed metal oxide, which may be an orthorhombic phase material, is improved as a catalyst for the production of unsaturated carboxylic acids, or unsaturated nitrites, from alkanes, or mixtures of alkanes and alkenes, by: contacting with a liquid contacting member selected from the group consisting of organic acids, alcohols, inorganic acids and hydrogen peroxide to form a contact mixture; recovering insoluble material from the contact mixture; and calcining the recovered insoluble material in a non-oxidizing atmosphere.
    Type: Application
    Filed: April 8, 2002
    Publication date: December 12, 2002
    Inventors: Leonard Edward Bogan, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song
  • Patent number: 6479691
    Abstract: A catalyst composition represented by the following empirical formula which is useful in production of unsaturated nitrites by ammoxidation: Mo10BiaFebSbcNidCreFfGgHhKkXxYyOi(SiO2)j wherein F represents at least one element selected from the group consisting of zirconium, lanthanum and cerium, G represents at least one element selected from the group consisting of magnesium, cobalt, manganese and zinc, H represents at least one element selected from the group consisting of vanadium, niobium, tantalum and tungsten, x represents at least one element selected from the group consisting of phosphorus, boron, and tellurium, Y represents at least one element selected from the group consisting of lithium, sodium, rubidium and cesium, the suffixes a-k, x and y represent a ratio of atoms or atomic groups, and a=0.1-3, b=0.3-15, c=0-20, d=3-8, e=0.2-2, f=0.05-1, e/f>1, g=0-5, h=0-3, k=0.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: November 12, 2002
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Yutaka Sasaki, Kunio Mori, Yoshimi Nakamura, Takao Shimizu, Yuichi Tagawa, Kenichi Miyaki, Seiichi Kawato
  • Publication number: 20020115879
    Abstract: Disclosed is an oxide catalyst for use in catalytic oxidation or ammoxidation of propane or isobutane in the gaseous phase, which comprises a composition represented by the Mo1VaSbbNbcZdOn (wherein: Z is at least one element selected from the group consisting of tungsten, chromium, titanium, aluminum, tantalum, zirconium, hafnium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, zinc, boron, indium, germanium, tin, lead, bismuth, yttrium, gallium, rare earth elements and alkaline earth metals: and a, b, c, d, and n are, respectively, the atomic ratios of V, Sb, Nb, Z and O, relative to Mo), wherein 0.1≦a<0.4, 0.1<b≦0.4, 0.01≦c≦0.3, 0≦d≦1, with the proviso that a<b, and n is a number determined by and consistent with the valence requirements of the other elements present. Also disclosed is a process for producing an unsaturated carboxylic acid or an unsaturated nitrile by using the above-mentioned oxide catalyst.
    Type: Application
    Filed: December 11, 2001
    Publication date: August 22, 2002
    Inventors: Hidenori Hinago, Mamoru Watanabe
  • Publication number: 20020042534
    Abstract: A method for producing an &agr;-aminonitrile, is disclosed, which method includes the step of oxidizing a tertiary amine with oxygen by using a transition metal catalyst in the presence of a cyanide. The &agr;-aminonitrile thus obtained can be easily converted to amino acids as well as various nitrogen-containing physiologically active materials.
    Type: Application
    Filed: July 18, 2001
    Publication date: April 11, 2002
    Inventors: Shun-ichi Murahashi, Naruyoshi Komiya
  • Patent number: 6171571
    Abstract: A new family of crystalline metal oxide compositions have been synthesized. These compositions are described by the empirical formula: AnNbMxM′yM″mOp where A is an alkali metal cation, ammonium ion and mixtures thereof, M is tungsten, molybdenum, or mixtures thereof. M′ is vanadium, tantalum and mixtures thereof, and M″ is antimony, tellurium and mixtures thereof. M′ and M″ are optional metals. These compositions are characterized by having an x-ray diffraction pattern having at least one peak at a d spacing of about 3.9 Å. A hydrothermal synthesis procedure as well as processes using the composition, e.g., ammoxidation of propane, are also disclosed.
    Type: Grant
    Filed: May 10, 1999
    Date of Patent: January 9, 2001
    Assignee: UOP LLC
    Inventors: Robert L. Bedard, Paula L. Bogdan, Lisa M. King, Susan C. Koster
  • Patent number: 6143916
    Abstract: An ammoxidation catalyst comprising a compound oxide of Mo, V, Nb, and at least one element selected from the group consisting of Te and Sb, wherein the compound catalyst exhibits an X-ray diffraction pattern satisfying the following relationship:0.40.ltoreq.R.ltoreq.0.75wherein R represents the intensity ratio defined by the following formula:R=P.sub.1 /(P.sub.1 +P.sub.2)wherein P.sub.1 and P.sub.2 represent the intensities of peak 1 and peak 2 appearing at diffraction angles (2.theta.) of 27.3.+-.0.3.degree. and 28.2.+-.0.3.degree., respectively.By the use of the ammoxidation catalyst of the present invention, not only can acrylonitrile or methacrylonitrile be produced in high yield, but also oxidative decomposition of ammonia feedstock into nitrogen can be effectively suppressed, thereby enabling an improved utilization of ammonia as a feedstock.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: November 7, 2000
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Hidenori Hinago, Satoru Komada
  • Patent number: 6124233
    Abstract: An improved catalyst for the production of unsaturated nitriles from their corresponding olefins, the catalyst having the atomic ratios described by the empirical formula Bi.sub.a Mo.sub.b V.sub.c Sb.sub.d Nb.sub.e A.sub.f B.sub.g O.sub.x and methods of using the same.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: September 26, 2000
    Assignee: Saudi Basic Industries Corporation
    Inventors: Mazhar Abdulwahed, Khalid El Yahyaoui
  • Patent number: 6087525
    Abstract: An improved catalyst for the production of unsaturated nitrites from their corresponding olefins, the catalyst composition having the atomic ratios described by the empirical formula Bi.sub.a Mo.sub.b V.sub.c Sb.sub.d Nb.sub.e Ag.sub.f A.sub.g B.sub.h O.sub.x and methods of using the same.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: July 11, 2000
    Assignee: Saudia Basic Industries Corporation
    Inventors: Mazhar Abdulwahed, Khalid El Yahyaoui
  • Patent number: 6087524
    Abstract: A method of preparing a catalyst having the elements and the proportions indicated by the following empirical formula:VSb.sub.m A.sub.a D.sub.d O.sub.xwhereA is one or more Ti, Sn, where Sn is always presentD is one or more Li, Mg, Ca, Sr, Ba, Co, Fe, Cr, Ga, Ni, Zn, Ge, Nb, Zr, Mo, W, Cu, Te, Ta, Se, Bi, Ce, In, As, B, Al and Mn whereinm is 0.5 to 10a is greater than zero to 10d is zero to 10x is determined by the oxidation state of the cations present,comprising making an aqueous slurry of a mixture of source batch materials comprising compounds of said elements to be included in the final catalyst, followed by drying and heat calcining the mixture to an active catalyst, wherein the source batch material for the tin is a solution which comprises SnO.sub.2 .multidot.xH.sub.2 O wherein x.gtoreq.0 dispersed in tetraalkyl ammonium hydroxide wherein the tetraalkyl ammonium hydroxide is defined by the following formula:C.sub.n H.sub.2n+1 NOHwherein 5.gtoreq.n.gtoreq.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: July 11, 2000
    Assignee: The Standard Oil Company
    Inventors: James Frank Brazdil, Jr., Joseph Peter Bartek
  • Patent number: 6072070
    Abstract: Mixed oxide vanadium/antimony/titanium ammoxidation catalysts, particularly suited for the ammoxidation of alkanes and exhibiting X-ray diffraction spectra which are characteristic of a crystallographic phase of rutile TiO.sub.2, are prepared by (a) dissolving respective soluble compounds of vanadium, of antimony and of titanium in at least one saturated alcohol, (b) contacting the alcoholic solution thus obtained with water and precipitating the mixed oxide therefrom, and (c) separating and calcining the mixed oxide thus precipitated.
    Type: Grant
    Filed: May 8, 1997
    Date of Patent: June 6, 2000
    Assignee: R.P. Fiber & Resin Intermediates
    Inventors: Stefania Albonetti, Gilbert Blanchard, Paolo Burattin, Fabrizio Cavani, Ferruccio Trifiro
  • Patent number: 6063728
    Abstract: An ammoxidation catalyst comprising a compound oxide of Mo, V, Nb, and at least one element selected from the group consisting of Te and Sb, wherein the compound catalyst exhibits an X-ray diffraction pattern satisfying the following relationship:0.40.ltoreq.R.ltoreq.0.75wherein R represents the intensity ratio defined by the following formula:R=P.sub.1 /(P.sub.1 +P.sub.2)wherein P.sub.1 and P.sub.2 represent the intensities of peak 1 and peak 2 appearing at diffraction angles (2.theta.) of 27.3.+-.0.3.degree. and 28.2.+-.0.3.degree., respectively.By the use of the ammoxidation catalyst of the present invention, not only can acrylonitrile or methacrylonitrile be produced in high yield, but also oxidative decomposition of ammonia feedstock into nitrogen can be effectively suppressed, thereby enabling an improved utilization of ammonia as a feedstock.
    Type: Grant
    Filed: August 5, 1998
    Date of Patent: May 16, 2000
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Hidenori Hinago, Satoru Komada
  • Patent number: 6057471
    Abstract: An ammoxidation method in a fluidized-bed reactor, in which, when a starting material to be ammoxidized is ammoxidized by means of vapor-phase catalytic fluidized-bed reaction, the reaction is carried out in a fluidized-bed reactor to which an oxygen-containing gas is fed through feed openings provided at the bottom thereof, and a starting material to be ammoxidized is fed through feed openings provided above the feed openings for the oxygen-containing gas, the distance between the feed openings for the oxygen-containing gas and those for the starting material being from 30 to 250% of the height of a fluidized solid matter in a static state so as to form such a fluidized bed that the density of the fluidized solid matter at the feed openings for the starting material to be ammoxidized is in the range of 50 to 300 kg/m.sup.3 and that the gas velocity is 1 m/s or lower.
    Type: Grant
    Filed: September 25, 1997
    Date of Patent: May 2, 2000
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Toshio Nakamura, Hiroshi Murata, Katsumasa Nishijima, Masanori Yamaguchi, Yoshikazu Sawada
  • Patent number: 6043185
    Abstract: A catalyst useful in the manufacture of acrylonitrile or methacrylonitrile by the catalytic reaction in the vapor phase of a paraffin selected from propane and isobutane with molecular oxygen and ammonia by catalytic contact of the reactants in a reaction zone with a catalyst, the feed composition having a mole ratio of the paraffin to ammonia in the range of about 1.0 to 10 and a mole ratio of paraffin to oxygen in the range of about 1.0 to 10, wherein said catalyst has the elements in the proportions indicated by the empirical formula:MO.sub.a V.sub.b Sb.sub.c Ga.sub.d X.sub.e O.sub.xwhereX is one or more of As, Te, Se, Nb, Ta, W, Ti, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, B, In, Ce, Re, Ir, Ge, Sn, Bi, Y, Pr, an alkali metal, and an alkaline earth metal, preferably Nb, Ce, Fe, Ge, Sn, In, As, Se, and B, especially preferred being Nb,a equals 1,b equals 0.0 to 0.99, preferably 0.1 to 0.5,c equals 0.01 to 0.9, preferably 0.05 to 0.5,d equals 0.01 to 0.5, preferably 0.01 to 0.4,e equals 0.0 to 1.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: March 28, 2000
    Assignee: The Standard Oil Company
    Inventors: Larry M. Cirjak, Anne Venturelli, Timothy J. Cassidy, Marc A. Pepera, Tama L. Drenski
  • Patent number: 6036880
    Abstract: Disclosed is a niobium(Nb)-containing aqueous solution for use in producing a Nb-containing oxide catalyst, wherein the oxide catalyst comprises an oxide of a plurality of active component elements including Nb and is for use in a catalytic oxidation or ammoxidation of propane or isobutane in the gaseous phase, and wherein the oxide catalyst is prepared by a process comprising mixing the Nb-containing aqueous solution with (an) aqueous mixture(s) containing compounds of active component elements of the oxide catalyst other than Nb, to thereby provide an aqueous compound mixture, and drying the aqueous compound mixture, followed by calcination. The Nb-containing aqueous solution comprises water having dissolved therein a dicarboxylic acid, an Nb compound and optionally ammonia, wherein the dicarboxylic acid/Nb molar ratio (.alpha.) satisfies: 1.ltoreq.(.alpha.).ltoreq.4, and the ammonia/Nb molar ratio (.beta.) satisfies: 0.ltoreq.(.beta.).ltoreq.2.
    Type: Grant
    Filed: August 5, 1998
    Date of Patent: March 14, 2000
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Satoru Komada, Hidenori Hinago, Masatoshi Kaneta, Mamoru Watanabe
  • Patent number: 6020533
    Abstract: Hydrocarbon conversion processes using a new family of crystalline manganese phosphate compositions is disclosed. These compositions have an extended network; which network can be a one-, two-, or three-dimensional network. The composition has an empirical formula of:(A.sup.a+).sub.v (Mn.sup.b+)(M.sup.c+).sub.x P.sub.y O.sub.zwhere A is a templating agent such as an alkali metal, M is a metal such as Al, Fe.sup.3+ and "b" is the average manganese oxidation state and varies from greater than 3.0 to about 4.0.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: February 1, 2000
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, Paula L. Bogdan
  • Patent number: 5907052
    Abstract: A process for producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation, which comprises reacting propane or isobutane with ammonia and molecular oxygen in the gaseous phase in a fluidized-bed reactor containing a catalyst comprising a compound oxide and a silica carrier having supported thereon the compound oxide, wherein the compound oxide contains molybdenum (Mo), tellurium (Te), vanadium (V) and niobium (Nb), and wherein the reaction is performed with an addition of a catalyst activator comprising at least one tellurium compound and optionally at least one molybdenum compound into the reactor.
    Type: Grant
    Filed: August 11, 1998
    Date of Patent: May 25, 1999
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Kazuyuki Hamada, Satoru Komada
  • Patent number: 5686373
    Abstract: Polymetal oxide materials of the general formula I?A!.sub.p ?B!.sub.q (I),where ##STR1## X.sup.1 is W, Nb, Ta, Cr and/or Ce, X.sup.2 is Cu, Ni, Co, Fe, Mn and/or Zn,X.sup.3 is Sb and/or Bi,X.sup.4 is Li, Na, K, Rb, Cs and/or H,X.sup.5 is Mg, Ca, Sr and/or Ba,X.sup.6 is Si, Al, Ti and/or Zr,X.sup.7 is Mo, W, V, Nb and/or Ta,a is from 1 to 8,b is from 0.2 to 5,c is from 0 to 23,d is from 0 to 50,e is from 0 to 2,f is from 0 to 5,g is from 0 to 50,h is from 4 to 30,i is from 0 to 20,x and y are each a number which is determined by the valency and frequency of the elements other than oxygen in I and p and q are non-zero numbers whose ratio p/q is from 160:1 to 1:1,and their use as catalysts.
    Type: Grant
    Filed: February 22, 1995
    Date of Patent: November 11, 1997
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Tenten, Friedrich-Georg Martin, Hartmut Hibst, Laszlo Marosi, Veronika Kohl
  • Patent number: 5576469
    Abstract: The process for the ammoxidation of a C.sub.3 to C.sub.5 paraffinic hydrocarbon to its corresponding .alpha.,.beta.-unsaturated hydrocarbon comprising reacting the C.sub.3 to C.sub.5 paraffinic hydrocarbon with ammonia and oxygen in a fluid bed reactor at a temperature of between 250.degree. C. to 600.degree. C. in the presence of a catalyst having the empirical formula as follows:V.sub.v Sb.sub.m A.sub.a D.sub.d O.sub.xwherein A when present is Sn and/or Ti;D when present is one or more of Li, Mg, Na, Ca, Sr, Ba, Co, Fe, Cr, Ga, Ni, Zn, Ge, Nb, Zr, Mo, W, Cu, Te, Ta, Se, Bi, Ce, In, As, B, Al, P and Mn; andwherein v is 1, m is 0.5-75, a is 0 to 25, d is 0 to 25, and x is determined by the oxidation state of the cations present,and a minor quantity of an halogen-containing component, preferably characterized by the following formula:R--X or X.sub.2where R=Hydrogen, C.sub.1 -C.sub.20 alkyland X=F, Cl, Br, I or mixtures thereof.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: November 19, 1996
    Assignee: The Standard Oil Co.
    Inventors: James F. Brazdil, Jr., Fernando A. P. Cavalcanti
  • Patent number: 5466857
    Abstract: A process for the reduction in the amount of waste material generated during the manufacture of acrylonitrile comprising introducing an additional amount of oxygen containing gas, preferably air, in the substantial absence of any oxygenate compounds, into the upper portion of the fluid bed reactor to react with at least some of the unreacted ammonia to reduce the amount of unreacted ammonia present in the reactor effluent.
    Type: Grant
    Filed: August 10, 1994
    Date of Patent: November 14, 1995
    Assignee: The Standard Oil Company
    Inventors: Vincent G. Reiling, Jeffrey E. Rinker, Timothy R. McDonel, Joseph C. Sarna
  • Patent number: 5258543
    Abstract: Disclosed is a method for ammoxidizing C.sub.3 to C.sub.5 mono-olefins to .alpha.,.beta.-mono-unsaturated acyclic nitriles having 3 to 5 carbon atoms and HCN by introducing such mono-olefins molecular oxygen and ammonia into a reaction zone into vapor phase contact with a solid ammoxidation catalyst, wherein the mol ratio of introduced molecular oxygen and ammonia to said introduced mono-olefin is at least 1.5 and 1.0, respectively, wherein said catalyst contains the elements and proportions indicated by the empirical formula:V1Sb.sub.a M.sub.m N.sub.n O.sub.xwherea=0.5 to 2M=one or more of: Sn, Ti, Fe, and Gam=0.05 to 3, usually at least 0.1 and at most 1N=one or more of: W, Bi, Mo, Li, Mg, P, Zn, Mn, Te, Ge, Nb, Zr, Cr, Al, Cu, Ce, Bn=0.0 to 0.5,and wherein the preparation of the catalyst includes contacting in an aqueous dispersion a vanadium compound and an antimony compound while said vanadium is in solution.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: November 2, 1993
    Assignee: The Standard Oil Company
    Inventors: Dev D. Suresh, Michael J. Seely, Maria S. Friedrich, Christos Paparizos
  • Patent number: 5256810
    Abstract: An improved process for substantially eliminating, preferably completely eliminating of nitride formation on feed conduits for fluid bed catalyst reactors used in the manufacture of unsaturated nitriles from corresponding olefins, NH.sub.3 and oxygen comprising maintaining the temperature of the ammonia inside the conduit below its dissociation temperature and/or maintaining the temperature of the inside surface of the conduit below the temperature at which any monoatomic nitrogen can react with the conduit to form a nitride.
    Type: Grant
    Filed: October 14, 1992
    Date of Patent: October 26, 1993
    Assignee: The Standard Oil Company
    Inventors: Steven J. Rowe, John T. Shultz, Robert J. Mack, Susan L. Dio
  • Patent number: 4960921
    Abstract: Certain novel multiply promoted Mn-Sb oxides are superior catalysts for the ammoxidation of olefins to the corresponding unsaturated nitriles, the selective oxidation of olefins to unsaturated aldehydes and acids, and the oxydehydrogenation of olefins to diolefins.
    Type: Grant
    Filed: February 12, 1990
    Date of Patent: October 2, 1990
    Assignee: The Standard Oil Company
    Inventors: Dev. D. Suresh, Robert K. Grasselli, Frances I. Ratka, James F. Brazdil