Of Alcohol Patents (Class 562/538)
  • Patent number: 7700803
    Abstract: Catalysts for preparing carboxylic acid salts from alcohols which a) consist of copper or b) comprise from 99.9 to 10% by weight of copper and from 0.01 to 90% by weight of iron and from 0 to 50% by weight of one or more other metals, and may optionally be doped, the hydroxides being obtained by precipitation of copper salt solutions or by coprecipitation of copper and iron salt solutions optionally containing salts of other metals using a base, and being reduced by hydrogen.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: April 20, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Helge Wessel, Verena Seitz, Klaus Harth, Volker Bomm, Nicola Christiane Aust
  • Publication number: 20100063233
    Abstract: There is provided a novel process for producing acrylic acid by which acrylic acid can be obtained from a raw material independent of petroleum. The process for producing acrylic acid according to the present invention comprises the steps of: applying a dehydration reaction to glycerol as a raw material in a gas phase; and then applying a gas phase oxidation reaction to a gaseous reaction product formed by the dehydration reaction.
    Type: Application
    Filed: September 24, 2009
    Publication date: March 11, 2010
    Inventors: Masahide Shima, Tsukasa Takahashi
  • Patent number: 7662997
    Abstract: The invention relates to a process for preparing 2-oxo-4-methylthiobutyric acid (I), its salts and its derivatives in which R represents a group chosen from COOH, COOR?, NH2, NHR? or NR?R?, where R? and R? are chosen, independently of one another, from the group of linear or branched alkyl radicals having from 1 to 12 carbon atoms and cycloalkyl radicals having from 3 to 12 carbon atoms, according to which process but-3-ene-1,2-diol (II) is catalytically and selectively oxidized to give 2-oxobut-3-enoic acid (III) and methyl mercaptan is selectively condensed with 2-oxobut-3-enoic acid (III). 2-Oxo-4-methylthiobutyric acid (I), its salts and its derivatives are used as food supplement, in particular in animal nutrition.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: February 16, 2010
    Assignee: Adisseo Ireland Limited
    Inventors: Patrick Rey, Gilbert Blanchard
  • Publication number: 20100036157
    Abstract: The present invention provides a method for preparing unsaturated aldehydes and/or unsaturated fatty acids from olefins using a fixed-bed catalytic partial oxidation reactor, in particular, a start-up method upon packing with catalysts and initiating the reaction, and a process for producing unsaturated aldehydes and/or unsaturated fatty acids with high yield.
    Type: Application
    Filed: April 3, 2008
    Publication date: February 11, 2010
    Inventors: Jun-Seok Ko, Kyoung-Su Ha, Sung-Kyoo Park, Sung-Soo Park, Se-Won Baek, Dong-Hyun Woo, Seong-Jin Kim
  • Publication number: 20100010260
    Abstract: The present invention provides a process for producing acrylic acid from glycerin with a catalyst having a prolonged life. In the process for producing acrylic acid from glycerin, a molar ratio of oxygen to glycerin in a raw material gas is set to be not lower than 0.8 and not higher than 20.
    Type: Application
    Filed: November 28, 2007
    Publication date: January 14, 2010
    Applicant: NIPPON SHOKUBAI CO., LTD.
    Inventors: Hiroto Kasuga, Etsushige Matsunami, Masafumi Sugio
  • Patent number: 7632967
    Abstract: Raney copper which is doped with at least one metal from the group comprising iron and/or noble metals is used as a catalyst in the dehydrogenation of alcohols.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: December 15, 2009
    Assignee: Degussa AG
    Inventors: Daniel Ostgard, Jörg Sauer, Andreas Freund, Monika Berweiler, Matthias Höpp, Rudolf Vanheertum, Walther Girke
  • Publication number: 20090171117
    Abstract: A catalyst suitable for the gas-phase oxidation of organic compounds to ?,?-unsaturated aldehydes and/or carboxylic acids and having an active phase comprising a multimetal oxide material is prepared by a process in which a particulate catalyst precursor which contains oxides and/or compounds of the elements other than oxygen which constitute the multimetal oxide material, which compounds can be converted into oxides, is prepared and said catalyst precursor is converted by calcination into a catalytically active form, wherein a stream of the particulate catalyst precursor is passed at substantially constant speed through at least one calcination zone at constant temperature for calcination.
    Type: Application
    Filed: March 2, 2009
    Publication date: July 2, 2009
    Applicant: BASF Aktiengesellschaft
    Inventors: Heiko Arnold, Signe Unverricht, Raimund Felder, Klaus Harth, Klaus Joachim Muller-Engel
  • Publication number: 20090062564
    Abstract: The present invention relates to a method for producing methacrolein and/or methacrylic acid characterized in that the catalyst filling length of a dehydration catalyst layer is 3 to 20% of the catalyst filling length of an oxidation catalyst layer in a method where raw material gas containing gaseous t-butanol is supplied to a fixed-bed multitubular reactor having a dehydration catalyst layer and an oxidation catalyst layer in this order, from the entrance for raw material gas toward the exit, to produce methacrolein and/or methacrylic acid by dehydration reaction and catalytic gas phase oxidation reaction, and the present invention can increase the conventional yield of approximately 80% to 81 to 82% even when a reaction bath temperature is relatively low (approximately 355° C.).
    Type: Application
    Filed: March 30, 2007
    Publication date: March 5, 2009
    Applicant: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Tatsuhiko Kurakami, Toshitake Kojima, Yoshimasa Seo
  • Publication number: 20090043127
    Abstract: Disclosed are a Mo—Bi—Nb—Te based composite metal oxide; and a process for producing (meth)acrylic acid from at least one reaction material selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, wherein the Mo—Bi—Nb—Te based composite metal oxide is used as a catalyst. Also, disclosed is a process for producing (meth)acrylic acid comprising a first step of producing (meth)acrolein as a main product from at least one reaction material selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, and a second step of producing (meth)acrylic acid from the (meth)acrolein, wherein yield of (meth)acrylic acid in the product of the first step is 20 mole % or higher.
    Type: Application
    Filed: October 16, 2008
    Publication date: February 12, 2009
    Applicant: LG CHEM, LTD.
    Inventors: Hyun Jong SHIN, Byung Yul CHOI, Yeon Shick YOO, Young Hyun CHOE, Young Jin CHO, Duk Ki KIM, Kwang Ho PARK, Joo Yeon PARK
  • Publication number: 20080183013
    Abstract: The invention relates to a method for producing acrylic acid in one step by an oxydehydration reaction of glycerol in the presence of molecular oxygen. The reaction is preferably carried out in gaseous phase in the presence of a suitable catalyst.
    Type: Application
    Filed: April 24, 2006
    Publication date: July 31, 2008
    Applicant: Arkema France
    Inventors: Jean-Luc Dubois, Christophe Duquenne, Wolfgang Holderich
  • Patent number: 7329778
    Abstract: This invention is directed to a process for making a salt of a carboxylic acid. The process comprises contacting a catalyst with an alkaline mixture comprising a primary alcohol. In one embodiment, for example, the catalyst comprises a metal support (preferably a metal sponge support) having a copper-containing active phase at the surface thereof. The support is resistant to deformation under the conditions of the dehydrogenation reaction. In another embodiment, the catalyst comprises a metal sponge having a copper-containing active phase at the surface thereof and a supporting structure containing at least 10% non-copper metal. This invention is also directed to copper-containing catalysts which may, for example, be used in the above process. This invention is further directed to processes for making such catalysts.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: February 12, 2008
    Assignee: Monsanto Technology LLC
    Inventors: David A. Morgenstern, Juan P. Arhancet, Howard C. Berk, William L. Moench, Jr., James C. Peterson
  • Publication number: 20080004173
    Abstract: A process for regenerating a catalyst consisting of a mixed oxide having molybdenum, bismuth and iron used for preparing an unsaturated aldehyde and/or an unsaturated carboxylic acid by catalytically oxidizing propylene, isobutylene and/or tert.-butanol with molecular oxygen in a gas phase, in which the catalyst is regenerated by thermally treating the deteriorated catalyst in an atmosphere of a gas containing molecular oxygen at a temperature of 200 to 500° C., and then thermally treating the catalyst in the presence of a reducing compound at a temperature of 200 to 500° C.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 3, 2008
    Inventors: Naoki Miura, Koichi Nagai, Noriaki Suyasu
  • Patent number: 7173149
    Abstract: A process for preparing alkynecarboxylic acids includes the oxidation of an alkyne alcohol with a hypohalite in the presence of a nitroxyl compound at a pH of greater than 7 with continual addition of the alkyne alcohol and of the hypohalite to the reaction mixture.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: February 6, 2007
    Assignee: Consortium für elektrochemische Industrie GmbH
    Inventors: Jürgen Stohrer, Elke Fritz-Langhals, Christian Brüninghaus
  • Patent number: 7169954
    Abstract: A ruthenium-carrying alumina, which is prepared by suspending alumina in a solution containing trivalent ruthenium and adding a base to the suspension, is provided. This ruthenium-carrying alumina is useful as a catalyst for oxidizing alcohols by contacting the alcohols with molecular oxygen, and can be used for oxidizing the alcohols at a high conversion to produce ketones, aldehydes, carboxylic acids, etc. with good productivity.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: January 30, 2007
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Noritaka Mizuno, Kazuya Yamaguchi, Hajime Ishida
  • Patent number: 7126024
    Abstract: This invention is directed to a process for making a salt of a carboxylic acid. The process comprises contacting a catalyst with an alkaline mixture comprising a primary alcohol. In one embodiment, the catalyst comprises a metal supporting structure (preferably a metal sponge supporting structure comprising at least about 10% by weight nickel) having a copper-containing active phase at the surface thereof and iron as a catalyst modifier. The supporting structure is resistant to deformation under the conditions of the dehydrogenation reaction. This invention is also directed to novel nickel-containing catalysts having a copper-containing active phase and iron as a catalyst modifier which may, for example, be used in the above process. This invention is further directed to processes for making such catalysts.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: October 24, 2006
    Assignee: Monsanto Technology LLC
    Inventors: David A. Morgenstern, James P. Coleman, James M. Allman
  • Patent number: 7109379
    Abstract: An oily solution of water-insoluble aliphatic alcohol is allowed to react with an aqueous hydrogen peroxide solution in the presence of a catalyst containing a metal compound belonging to Group 8 to 10 of the Periodic Table in a heterogeneous solution system. As a result, a carbonyl compound can be produced from an aqueous hydrogen peroxide solution under mild conditions in high yield. Also, the reaction operation is simple and easy, a step for removing solvent after completion of the reaction is not necessary and influence and toxicity upon the environment and human body are markedly small. Thus, a carbonyl compound can be produced safely, simply and efficiently.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: September 19, 2006
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Kazuhiko Sato, Youko Usui
  • Patent number: 7052657
    Abstract: While supplying methanol and carbon monoxide via feed lines 17 and 19, respectively, to a liquid phase reaction system 3 including a carbonylation catalytic system, and maintaining a substantially constant liquid level of the reaction system, part of the reaction mixture containing the produced acetic acid is drawn out from the reaction system and supplied to a flash distillation column 4, and the high boiling point component, which contains the carbonylation catalytic system that has been separated by ths flash distillation, is circulated to the reaction system 3 by means of a circulation line 21. At circulation line 21, the flow rate is detected by a flow rate sensor F3 and the temperature is detected by a temperature sensor T2, and based on the detection data, a control unit 8 is used to control the temperature of the circulated high boiling point component by means of a temperature regulating unit 6 and thereby to suppress temperature and pressure fluctuations of the above-mentioned reaction system.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: May 30, 2006
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Hidehiko Nakajima, Yoshiyuki Harano
  • Patent number: 7045656
    Abstract: A process is described for recycling catalysts in the reaction for the oxidation of alcohols and/or ketones to carboxylic acids and more particularly the oxidation of cyclic alcohols and/or cyclic ketones to dicarboxylic acids, such as the oxidation of cyclohexanol and/or cyclohexanone to adipic acid. This process involves treating the solution comprising the oxidation catalyst, before it is recycled, with an ion-exchange resin which makes it possible to selectively separate the iron from the other metal elements, in particular from copper and from vanadium.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: May 16, 2006
    Assignee: Rhodia Fiber & Resin Intermediates
    Inventors: Patrice Gotteland, Sébastien Logette
  • Patent number: 7045657
    Abstract: The object of the present invention is to provide a process in which, when the unsaturated carboxylic acid is produced, or when the unsaturated aldehyde and/or the unsaturated carboxylic acid are produced by carrying out the catalytic gas phase oxidation reaction by using the fixed-bed multitubular reactor which is packed with the molybdenum-containing catalyst, the reaction can be continued for a long time while a high yield is maintained, regardless of where the hot spot portion occurs and also even if the concentration of the raw gas is high.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: May 16, 2006
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiromi Yunoki, Michio Tanimoto
  • Patent number: 7038078
    Abstract: A synthetic reaction to produce [2-(2-aminoethoxy)ethoxy] acetic acid (AEEA) derivatives. This synthetic reaction does not require isolation and purification of intermediates. The AEEA derivatives can be used to synthesize high load polystyrene-polyethylene glycol-like resins having excellent swelling characteristics.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: May 2, 2006
    Assignee: University of Marlyland, Baltimore
    Inventors: Jane V. Aldrich, Vivek Kumar
  • Patent number: 7005542
    Abstract: The present invention provides: a production process for a catalyst for synthesis of an unsaturated aldehyde and/or an unsaturated carboxylic acid, which production process is suitable for producing the catalyst with good reproducibility, wherein the catalyst is excellent in activity, selectivity, and physical strength; this catalyst; and a production process for the unsaturated aldehyde and/or the unsaturated carboxylic acid by using this catalyst.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: February 28, 2006
    Assignee: Nippon Shokubai Co., Ltd.
    Inventor: Hiromi Yunoki
  • Patent number: 6960684
    Abstract: The present invention provides a process in which, when an unsaturated aldehyde and/or an unsaturated carboxylic acid are produced by carrying out a catalytic gas phase oxidation reaction by using a fixed-bed multitubular reactor which is packed with a molybdenum-containing catalyst, the deterioration of the catalyst as located at a hot spot portion can be suppressed; so that the reaction can be continued for a long time while a high yield is maintained, regardless of where the hot spot portion occurs and also even if the concentration of a raw gas is high.
    Type: Grant
    Filed: March 9, 2003
    Date of Patent: November 1, 2005
    Assignee: Nippon Shokubai Co., Ltd.
    Inventor: Hiromi Yunoki
  • Patent number: 6939991
    Abstract: In a process for preparing acrylic acid, an acrylic acid-containing product gas mixture obtained by catalytic gas phase partial oxidation of a C3 precursor of acrylic acid, after direct cooling with a quench liquid, is fractionally condensed in a separating column provided with internals, rising into itself with sidestream takeoff of crude acrylic acid, and the acrylic acid oligomers which form are dissociated and the resulting dissociation gas is subjected to a countercurrent rectification before it is recycled.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: September 6, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Joachim Thiel, Ulrich Hammon, Dieter Baumann, Jörg Heilek, Jürgen Schröder, Klaus Joachim Müller-Engel
  • Patent number: 6919478
    Abstract: In producing a catalyst used for synthesis of an unsaturated aldehyde and an unsaturated carboxylic acid by a gas-phase catalytic oxidation, there is used a step of packing an additive-containing catalyst precursor of the catalyst into a tubular reactor, passing a gas through the tubular reactor, and elevating, in this state, the temperature of the additive-containing catalyst precursor so that a temperature of the gas at an outlet of the catalyst precursor layer becomes higher than a temperature of the gas at an inlet of the catalyst precursor layer. The step makes possible easy and highly reproducible production of a high-performance catalyst which is small in the reduction in catalytic performance caused by, for example, the thermal decomposition of the additive contained in the catalyst precursor.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: July 19, 2005
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Seiichi Kawato, Masahide Kondo, Toru Kuroda, Masanori Nitta, Mieji Sugiyama
  • Patent number: 6888026
    Abstract: An object of this invention is to provide a method for producing acrylic acid that enables to suppress adverse influence of byproducts during distillation and to accomplish long-term continuous operation of the acrylic acid production apparatus. This invention is directed to a method for producing (meth)acrylic acid comprising the step of isolating (meth)acrylic acid from a liquid containing (meth)acrylic acid by distillation wherein the liquid contains glyoxal (including its hydrate) in a concentration of 0.1 mass % or less.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: May 3, 2005
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Kazuhiko Sakamoto, Kazuo Ohkouchi, Tomohiro Nakae
  • Patent number: 6878847
    Abstract: A catalyst useful for catalytic vapor-phase oxidation of isobutylene, t-butanol or propylene to produce respectively corresponding unsaturated aldehyde and unsaturated carboxylic acid is provided. The catalyst consists of ring-formed shaped bodies composed of (i) a catalyst composition containing at least molybdenum and bismuth as the active ingredients and (ii) inorganic fibers. The catalyst excels in mechanical strength, can give the object products at high yield and shows little activity degradation with time.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: April 12, 2005
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiroto Kasuga, Eiichi Shiraishi
  • Patent number: 6872369
    Abstract: The invention relates to a process for selectively separating iron from other metal ions, in particular ions present in certain oxidation catalysts. It also relates to a process for recycling catalysts in the reaction for the oxidation of alcohols and/or ketones to carboxylic acids and more particularly the oxidation of cyclic alcohols and/or cyclic ketones to dicarboxylic acids, such as the oxidation of cyclohexanol and/or cyclohexanone to adipic acid. This process consists in treating the solution comprising the oxidation catalyst, before it is recycled, with an ion-exchange resin which makes it possible to selectively separate the iron from the other metal elements, in particular from copper and from vanadium.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: March 29, 2005
    Assignee: Rhodia Fiber and Resin Intermediates
    Inventors: Patrice Gotteland, Sébastien Logette
  • Patent number: 6867164
    Abstract: An acetic acid production catalyst that contains (b) at least one element selected from the group consisting of Group 14 elements, Group 15 elements and Group 16 elements of the Periodic Table and/or (c) at least one element selected from the group consisting of Group 6 elements, Group 7 elements, Group 8 elements, Group 9 elements, Group 10 elements, Group 11 elements and Group 12 elements of the Periodic Table, added to a palladium-loaded catalyst, as well as an acetic acid and ethyl acetate production catalyst that contains (b) at least one compound selected from the group consisting of inorganic acids and salts thereof and/or (c) at least one element selected from the group consisting of Group 14 elements, Group 15 elements and Group 16 elements of the Periodic Table and/or (d) at least one element selected from the group consisting of Group 6 elements, Group 7 elements, Group 8 elements, Group 9 elements, Group 10 elements, Group 11 elements and Group 12 elements of the Periodic Table, added to palladium
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: March 15, 2005
    Assignee: Showa Denko K.K.
    Inventors: Yoshiaki Obana, Hiroshi Uchida, Ken-ichi Sano
  • Publication number: 20040260120
    Abstract: Raney copper which is doped with at least one metal from the group comprising iron and/or noble metals is used as a catalyst in the dehydrogenation of alcohols.
    Type: Application
    Filed: June 18, 2004
    Publication date: December 23, 2004
    Inventors: Daniel Ostgard, Jorg Sauer, Andreas Freund, Monika Berweiler, Matthias Hopp, Rudolf Vanheertum, Walther Girke
  • Publication number: 20040213718
    Abstract: The invention relates to a process for selectively separating iron from other metal ions, in particular ions present in certain oxidation catalysts.
    Type: Application
    Filed: May 17, 2004
    Publication date: October 28, 2004
    Applicant: RHODIA FIBER AND RESIN INTERMEDIATES
    Inventors: Patrice Gotteland, Sebastien Logette
  • Publication number: 20040171874
    Abstract: A method for producing (meth)acrolein and/or (meth)acrylic acid by subjecting isobutylene and the like or propylene to a vapor-phase catalytic oxidation with molecular oxygen in the presence of a solid oxidation catalyst in a tubular type of fixed bed reactor, wherein a temperature of a hot-spot zone is sufficiently controlled and (meth)acrolein and (meth)acrylic acid are produced with a high yield.
    Type: Application
    Filed: April 20, 2004
    Publication date: September 2, 2004
    Inventors: Seigo Watanabe, Motomu Oh-Kita, Toshihiro Sato
  • Patent number: 6784134
    Abstract: A catalyst suited for catalytic vapor-phase oxidation of isobutylene, t-butanol or propylene to produce respectively corresponding unsaturated aldehyde and unsaturated carboxylic acid is provided. Said catalyst consists of ring-formed shaped bodies composed of (i) a catalyst composition containing at least molybdenum and bismuth as the active ingredients and (ii) inorganic fibers. The catalyst excels in mechanical strength, can give the object products at high yield and shows little activity degradation with time.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: August 31, 2004
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiroto Kasuga, Eiichi Shiraishi
  • Patent number: 6730808
    Abstract: Reactor membranes for used in oxidation reactions of hydrocarbons involving oxygen comprising a selective oxidation catalyst on a mixed conducting, oxide ion selective ceramic membrane of the composition (Sr1-xCax)1-yAyMn1-zBzO3-&dgr;, where A is Ba, Pb, Na, K, Y, an element of the lanthanide group or a combination thereof, B is Mg, Al, Ga, In, Sn, an element of the 3d or 4d period or a combination thereof, x is from 0.2 to 0.8, y is from 0 to 0.4, z is from 0 to 0.6, and &dgr; is a number, dependent on x, y and z, that renders the composition charge neutral.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: May 4, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Stefan Bitterlich, Hartwig Voss, Hartmut Hibst, Andreas Tenten, Ingolf Voigt, Ute Pippardt
  • Publication number: 20040014985
    Abstract: A method separates a reaction product from an imide compound catalyst represented by Formula (1) or an altered derivative thereof in a reaction mixture obtained as a result of a reaction in the presence of the imide compound catalyst by performing an extraction process using two organic solvents separable from each other to thereby separate the reaction product into one organic solvent layer and the imide compound catalyst or an altered derivative thereof into the other organic solvent layer, respectively: 1
    Type: Application
    Filed: May 1, 2003
    Publication date: January 22, 2004
    Inventor: Michihiro Sugahara
  • Patent number: 6667419
    Abstract: A method for the absorption of (meth)acrylic acid and/or (meth)acrolein and an apparatus thereof which, in an absorption column adapted to cause an (meth)acrylic acid and/or (meth)acrolein-containing gas obtained in consequence of catalytic gas phase oxidation to come into countercurrent contact with a solvent, contemplate using a packing of relatively high efficiency in absorption disposed on the upstream side of the flow of a liquid containing the solvent and a packing and/or trays of relatively low performance of forming polymerization disposed on the downstream side thereof, in the column.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: December 23, 2003
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Yukihiro Matsumoto, Takeshi Nishimura, Misao Inada, Kazuhiko Sakamoto
  • Patent number: 6646160
    Abstract: The present invention provides a new and useful improvement in the process to manufacture a carboxylic acid salt, particularly an amino carboxylic acid salt, from a primary alcohol, particularly a primary aminoalcohol. The process of manufacturing amino carboxylic acid salts comprises contacting an aqueous solution of a primary aminoalcohol with a strong hydroxide base selected from the group consisting of an alkali metal hydroxide, an alkaline earth metal hydroxide, an ammonium hydroxide compound including a tetraalkyl ammonium hydroxide, or the like, in the presence of an effective amount of a catalyst. The catalyst comprises one or more of elements selected from the group consisting of copper, cobalt, nickel, and cadmium as well as optionally lesser amounts of chromium, titanium, niobium, tantalum, zirconium, vanadium, molybdenum, manganese, tungsten, cobalt, nickel, or mixtures thereof.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: November 11, 2003
    Assignee: Monsanto Technology, LLC
    Inventors: Thaddeus S. Franczyk, II, William L. Moench, Jr.
  • Patent number: 6583316
    Abstract: Improved catalysts for use in vapor phase oxidation of at least one compound selected from the group consisting of propylene, isobutylene, t-butanol and methyl-t-butyl ether with molecular oxygen or a molecular oxygen-containing gas to produce the corresponding unsaturated aldehyde and unsaturated carboxylic acid are provided. The improved catalysts are compositions comprising (A) a complex oxide containing as essential components molybdenum, bismuth and iron, which is known per se as a catalyst for said reaction and (B) a complex oxide containing cerium and zirconium as the essential components. When the improved catalysts are used, the production operation of unsaturated aldehyde and unsaturated carboxylic acid can be continued stably for over prolonged period.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: June 24, 2003
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hideo Onodera, Michio Tanimoto
  • Publication number: 20030092936
    Abstract: An acetic acid production catalyst that contains (b) at least one element selected from the group consisting of Group 14 elements, Group 15 elements and Group 16 elements of the Periodic Table and/or (c) at least one element selected from the group consisting of Group 6 elements, Group 7 elements, Group 8 elements, Group 9 elements, Group 10 elements, Group 11 elements and Group 12 elements of the Periodic Table, added to a palladium-loaded catalyst, as well as an acetic acid and ethyl acetate production catalyst that contains (b) at least one compound selected from the group consisting of inorganic acids and salts thereof and/or (c) at least one element selected from the group consisting of Group 14 elements, Group 15 elements and Group 16 elements of the Periodic Table and/or (d) at least one element selected from the group consisting of Group 6 elements, Group 7 elements, Group 8 elements, Group 9 elements, Group 10 elements, Group 11 elements and Group 12 elements of the Periodic Table, added to palladium
    Type: Application
    Filed: September 17, 2002
    Publication date: May 15, 2003
    Applicant: SHOWA DENKO K.K.
    Inventor: Ken-ichi Sano
  • Publication number: 20030060656
    Abstract: This invention provides methods and catalyst systems for catalyzing enantioselective oxidation reactions, including cyclization reactions and enantioselective oxidation reactions of secondary alcohols and other similarly reactive organic substrates. Use of the methods and catalyst systems for kinetic resolution of racemic mixtures of secondary alcohols is also described.
    Type: Application
    Filed: March 4, 2002
    Publication date: March 27, 2003
    Inventors: Eric M. Ferreira, Brian M. Stoltz
  • Patent number: 6521789
    Abstract: The present invention relates to an improved process for the preparation of adipic acid. More particularly, the present invention relates to an environmental-friendly, clean process for the preparation of adipic acid through oxidation of cyclohexanol, cyclohexanone or a mixture thereof with oxygen or oxygen-containing gas, in the presence of an oxidation initiator, a polar solvent and an organometallic &mgr;3-oxo-bridged Co/Mn cluster complex catalyst.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: February 18, 2003
    Assignee: Council of Scientific and Industrial Research
    Inventors: Darbha Srinivas, Suhas Arunkumar Chavan, Paul Ratnasamy
  • Patent number: 6521784
    Abstract: Methanol is reacted in presence of catalyst system comprising of an iron containing compound and a tin containing compound with or without an organic compound containing C, N, O, P, S, diamine, diketone, and or diphosphines as a ligand to produce acetic acid or methyl acetate. The reaction is effected in a solvent containing nitro or nitrite group.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: February 18, 2003
    Assignee: Council of Scientific and Industrial Research
    Inventors: Ashutosh Anant Kelkar, Sunil Sopana Tonde, Sunil Sadashiv Divekar, Raghunath Vitthal Chaudhari
  • Patent number: 6509508
    Abstract: A reaction for producing (metho)acrolein and (meth)acrylic acid by vaporn-phase oxidation of at least a compound selected from propyl-ene, isobytylene, t-bytanol and methyl-t-butyl ether. For the process Complex oxide catalysts represented by the formula, MoaWbBicFedAeBfCgDhEiOx (in which A is Ni or Co; B is Na, K, Rb, Cs or Tl; C is an alkaline earth metal; D is P, Te, Sb, Sn, Ce, Pb, Nb, Mn, As, B or Zn; E is Si, Al, Ti or Zr; and where a is 12, 0≦b≦10, 0<c≦10, 0<d≦10, 2≦e≦15, 0<f≦10, 0≦g≦10, 0≦h≦4 and 0≦i≦30) are provided. The catalysts are characterized in that the molar ratio of the total nitrate anions to the molybdenum at the time of catalyst preparation is more than 1 but not more than 1.8.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: January 21, 2003
    Assignee: Nippon Shoku Bai Co Ltd
    Inventors: Naomasa Kimura, Michio Tanimoto, Hideo Onodera
  • Patent number: 6476260
    Abstract: The invention relates to a method for oxidizing primary alcohols in order to obtain aldehydes and/or carboxylic acids. The reaction takes place in the presence of a catalyst supported on aluminium oxides or aluminium silicates and containing palladium, platinum, cobalt, rhodium, ruthenium, iridium, rhenium, optionally with co-catalysts.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: November 5, 2002
    Assignee: RWE-DEA Aktiengesellschraft fur Mineraloel und Chemie
    Inventors: Albert Thomas Herrmann, Ernst Tönsen
  • Patent number: 6476258
    Abstract: An industrially advantageous process for producing an aryloxyacetic acid represented by the formula (2): wherein m represents an integer of 1 or 2, n represents an integer from 0 to 4, Ar represents a aromatic hydrocarbon ring, each Rs independently represents an alkyl group, a cycloalkyl group, an aryl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, a halogen atom, an alkylcarbonyl group, an arylcarbonyl group, a carboxyl group or a nitro group, comprising a step in which an oxygen-containing gas is made act on an aryloxyethanol represented by the formula (1): (R)n-Ar&Parenopenst;O—CH2.CH2.OH)m  (1) wherein m, n, Ar, and R, respectively, have the same meanings as defined above, under conditions of using a catalyst comprising palladium and an indium compound and/or a copper compound in an aqueous medium and in the presence of 0.
    Type: Grant
    Filed: July 5, 2000
    Date of Patent: November 5, 2002
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Masashi Komatsu, Junichi Ishikawa
  • Patent number: 6465680
    Abstract: A process for preparing a malonic acid monoester or &bgr;-ketoester from an epoxide includes the steps of reacting an epoxide with carbon monoxide and an alcohol in the presence of a catalytic amount of a cobalt compound and at least one promoter to produce a &bgr;-hydroxyester, separating the &bgr;-hydroxyester from the cobalt compound and the promoter, and oxidizing the &bgr;-hydroxyester to produce a malonic acid monoester or &bgr;-ketoester.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: October 15, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byeong No Lee, In-Sun Jung, Eun Joo Jang
  • Patent number: 6384279
    Abstract: A new composition of matter for a diamidodiol and a method for preparing the diamidodiol. The exemplary diamidodiol has the formula C15H30N2O4 and is prepared by reacting a first quantity of 2-amino-2-methyl-1-propanol with a second quantity of a di-substituted malonyl dichloride (i.e., diethylmalonyl dichloride), preferably in ethyl acetate as solvent. A tetraamido macrocycle is prepared from the diamidodiol in two steps by oxidizing the diamidodiol to form a diacid followed by coupling using a known procedure of the diacid with an aryl diamine (e.g., 1,2-diaminobenzene) to yield the tetraamido macrocycle.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: May 7, 2002
    Assignee: The Clorox Company
    Inventors: James E. Deline, Michael M. Ott
  • Patent number: 6380426
    Abstract: The present invention relates to a process for the preparation of a carboxylic acid by carbonylating the corresponding alcohol in carbon monoxide atmosphere and in the presence of water, a solvent, a palladium catalyst and a promoter system consisting of an organic or inorganic halide and an organic sulphonic acid, at a temperature in the range of 50-250° C., at a pressure in the range of 50-2000 psig for 1 to 10 hours, the concentration of the catalyst being one mole of catalyst per every 50-50000 moles of the alcohol, the amount of the organic or inorganic halide being in the range of 5-500 moles per mole of the catalyst, and the amount of the organic sulphonic acid being in the range of 5-500 moles per mole of the catalyst, collecting the resulting product.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: April 30, 2002
    Assignee: Council of Scientific and Industrial Research
    Inventors: Ashutosh A Kelkar, Sunil S Tonde, Raghunath V Chaudhari
  • Patent number: 6376708
    Abstract: This invention is directed to a process for making a salt of a carboxylic acid. The process comprises contacting a catalyst with an alkaline mixture comprising a primary alcohol. In one embodiment, for example, the catalyst comprises a metal support (preferably a metal sponge support) coated with copper. The support comprises at least about 10% (by weight) non-copper metal, and the copper-containing coating comprises from about 0.005 to about 0.5 grams of copper (per gram of said metal support). In another embodiment, the catalyst comprises a metal support (preferably a metal sponge support) coated with silver. The support comprises at least about 10% (by weight) non-silver metal, and the silver-containing coating comprises from about 0.005 to about 0.5 grams of copper (per gram of said metal support). In another embodiment, the catalyst comprises at least about 15% (by weight) non-copper metal, and at least about 10% (by weight) copper.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: April 23, 2002
    Assignee: Monsanto Technology LLC
    Inventors: David A. Morgenstern, Juan P. Arhancet, Howard C. Berk, William L. Moench, Jr., James C. Peterson
  • Publication number: 20020038051
    Abstract: Raney copper which is doped with at least one metal from the group comprising iron and/or noble metals is used as a catalyst in the dehydrogenation of alcohols.
    Type: Application
    Filed: February 15, 2001
    Publication date: March 28, 2002
    Applicant: Degussa-Huls AG
    Inventors: Daniel Ostgard, Jorg Sauer, Andreas Freund, Monika Berweiler, Matthias Hopp, Rudolf Vanheertum, Walther Girke
  • Publication number: 20020010364
    Abstract: This invention relates to a process for producing one or more organic acids in high purity which process comprises (i) oxidizing in a liquid oxidation reactor one or more organic liquids with essentially pure oxygen or oxygen-enriched air containing at least about 50% oxygen, at a temperature sufficiently stable to prevent cycling of reaction rate, to produce a crude reaction product fluid, and (ii) refining said crude reaction product fluid to give said one or more organic acids in high purity. The oxidation temperature is preferably controlled to within about ±3° C. of a target temperature. The organic acids described herein is useful in a variety of applications, such as intermediates in the manufacture of chemical compounds, pharmaceutical manufacture and the like.
    Type: Application
    Filed: April 21, 1998
    Publication date: January 24, 2002
    Inventors: JOHN BRAITHWAITE, DAVID ROBERT BRYANT, DAVID JAMES MILLER, JOHN EARL LOGSDON