Group V Metal Containing Catalyst Utilized Patents (Class 562/547)
  • Publication number: 20020183548
    Abstract: A catalyst comprising a mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Application
    Filed: April 8, 2002
    Publication date: December 5, 2002
    Inventors: Leonard Edward Bogan, Alex Pak
  • Publication number: 20020183547
    Abstract: A catalyst comprising a mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Application
    Filed: April 4, 2002
    Publication date: December 5, 2002
    Inventors: Anne Mae Gaffney, Michele Doreen Haffner, Ruozhi Song
  • Patent number: 6441227
    Abstract: A process for the production of alpha-beta unsaturated carboxylic acid with high yield at low temperature and atmospheric pressure, includes two stages for catalytic vapor-phase oxidation of olefins with molecular oxygen.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: August 27, 2002
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Yajnavalkya Subrai Bhat, Asad Ahmad Khan, Syed Irshad Zaheer, Abdullah Bin Nafisa
  • Patent number: 6429331
    Abstract: A process for preparing saturated carboxylic acids having from 1 to 4 carbon atoms at a reaction temperature of from 100° C. to 400° C. and pressures of from 1.2×105 Pa to 51×105 Pa by gas phase oxidation of saturated and/or unsaturated C4-hydrocarbons, with an oxygen-containing gas and water vapor in the presence of at least one catalyst. The gas leaving the reactor is partly recirculated in a reaction gas circuit. This reaction gas circuit is configured such that part of the organic acids formed in the gas-phase oxidation is taken from the gas leaving the reactor so that the acid content of the recirculated part of the gas leaving the reactor is from 0.01% to 6.0% by volume.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: August 6, 2002
    Assignee: Consortium für elektrochemische Industrie GmbH
    Inventors: Christoph Ruedinger, Hans-Juergen Eberle, Ragnar Bogner, Wolfgang Kohlmann
  • Patent number: 6414183
    Abstract: The present invention provides a method for stabilizing waste oil which is taken of each chemical apparatus of the manufacturing line of (meth)acryl acid and/or ester thereof, and treating the waste oil such as draining it out of the production apparatus, for example, a distillation tower from its bottom, sending and transporting it by a pump through a pipeline, and storing it in a storage tank in a simple manner while keeping the waste oil in a stable state. The waste oil can be stabilized by coexisting with solvent. The solvent used in the present invention is typically at least one selected from the group consisting of water, alcohol, ether, carboxylic acid, ketone, aromatic hydrocarbons, and aliphatic hydrocarbons.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: July 2, 2002
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Kazuhiko Sakamoto, Sei Nakahara, Masatoshi Ueoka
  • Publication number: 20020072629
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Application
    Filed: August 10, 2001
    Publication date: June 13, 2002
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Dominique Hung Nhu Le
  • Patent number: 6399816
    Abstract: The invention relates to a method for selectively producing acetic acid from a gaseous feedstock of ethane, ethylene or mixtures thereof and oxygen at a high temperature. Said gaseous feedstock is brought together with a catalyst containing the elements Mo, Pd, X and Y in the gram-atomic ratios a:b:c:d in combination with oxygen: MoaPdbXcYd (I). Symbols X and Y have the following meaning: X represents one or several of the elements chosen from the group Cr, Mn, Nb, Ta, Ti, V, Te and W; Y represents one or several of the elements chosen from the group B, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Rh, Ir, Cu, Ag, Au, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Nb, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Tl and U, the indices a, b, c, d and x represent the gram-atomic ratios of the corresponding elements: a=1, b=0.0001 to 0.01, c=0.4 to 1 and d=0.005 to 1. The space-time yield in the oxidation to acetic acid using the inventive method is >150 kg/hm3.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: June 4, 2002
    Assignee: Celanese Chemicals Europe GmbH
    Inventors: Holger Borchert, Uwe Dingerdissen
  • Publication number: 20020065431
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Application
    Filed: August 10, 2001
    Publication date: May 30, 2002
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song, Dominique Hung Nhu Le, Elsie Mae Vickery
  • Publication number: 20020062042
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Application
    Filed: August 11, 2001
    Publication date: May 23, 2002
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song
  • Publication number: 20020058836
    Abstract: A catalyst comprising an In promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated nitrile.
    Type: Application
    Filed: August 10, 2001
    Publication date: May 16, 2002
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Elsie Mae Vickery
  • Publication number: 20020058835
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Application
    Filed: August 10, 2001
    Publication date: May 16, 2002
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song
  • Patent number: 6268529
    Abstract: A process for the manufacture of acrylic acid comprising reacting propylene and oxygen (preferably in the form of air) in a reaction zone having a catalyst characterized by the following formula: AaBbCcCadFeeBifMo12Ox where A=one or more of Li, Na, K, Rb and Cs B=one or more of Mg, Sr, Mn, Ni, Co and Zn C=one or more of Ce, Cr, Al, Sb, P, Ge, Sn, Cu, V and W and a=0.01 to 1.0; b and e =1.0-10 c=0 to 5.0, preferably 0.05 to 5.0, especially preferred being 0.05 to 4.0 d and f=0.05 to 5.0, and x is a number determined by the valence requirements of the other elements present; at an elevated temperature to produce acrylic acid and acrolein.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: July 31, 2001
    Assignee: The Standard Oil Company
    Inventors: Dev Dhanaraj Suresh, Christos Paparizos, Patrick Eugene Mosier, Ying Wu, Maria Strada Friedrich, Michael J. Seely
  • Patent number: 6258992
    Abstract: Lower hydrocarbons are converted to carboxylic acids and/or dehydrogenated hydrocarbon product by contacting a feed mixture containing lower hydrocarbons, oxygen source, diluent, and sulfur-containing compound, with a multifunctional, mixed metal catalyst at a temperature from about 150° C. up to about 400° C. The lower hydrocarbons include C2-C4, and the presence of sulfur compound in the feed mixture results in increased yield of carboxylic acid and/or dehydrogenated hydrocarbon product.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: July 10, 2001
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Asad Khan
  • Patent number: 6239325
    Abstract: The invention provides process for oxidative dehydrogenation of lower alkanes, by vapor phase oxidative dehydrogenation of C2-C5 lower alkanes in the presence of a catalyst and molecular oxygen to produce the corresponding olefins, in which the catalyst has a composition expressed by a general formula (1) below: A&agr;Sb&bgr;W&ggr;D&dgr;Ox   (1) in which A is at least one metal selected from the group consisting of molybdenum and chromium; Sb is antimony; W is tungsten; O is oxygen; and D is at least one metal selected from the group consisting of V, Nb, Ta, Fe, Co, Ni, Cu, Ag, Zn, B, Tl, Sn, Pb, Te, Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, La, Ce and Sm; &agr;, &bgr;, &ggr;, &dgr; and x denote atomic numbers of A, Sb, W, D and O, respectively, where when &agr;=1, &bgr;=0.5-10, &ggr;=0.1-10 and &dgr;=0-3; and x is a numerical value determined by the state of oxidation of those elements other than oxygen.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: May 29, 2001
    Assignee: Nippon Shokubai Co Ltd
    Inventors: Nobuji Kishimoto, Etsushige Matsunami
  • Patent number: 6194610
    Abstract: The present invention relates to a process for the selective preparation of acetic acid from a gaseous feed comprising ethane, ethylene or mixtures thereof plus oxygen at elevated temperature, which comprises bringing the gaseous feed into contact with a catalyst comprising the elements Mo, Pd, X and Y in gram atom ratios a:b:c:d in combination with oxygen MoaPdbXcYd  (I) where the symbols X and Y have the following meanings: X is one or more elements selected from the group consisting of: Cr, Mn, Nb, Ta, Ti, V, Te and/or W, in particular Nb, V and W; Y is one or more elements selected from the group consisting of: B, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Cu, Rh, Ir, Au, Ag, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, TI and U, in particular Ca, Sb, Te and Li. The present invention further provides a catalyst for the selective preparation of acetic acid comprising the elements Mo, Pd, X and Y in the gram atom ratios a:b:c:d in combination with oxygen.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: February 27, 2001
    Assignee: Aventis Research & Technologies GmbH & Co. KG
    Inventors: Holger Borchert, Uwe Dingerdissen
  • Patent number: 6124499
    Abstract: Multimetal oxide materials containing molybdenum, vanadium, copper and one or more of the elements tungsten, niobium, tantalum, chromium and cerium and having a multiphase structure, and their use for the preparation of acrylic acid from acrolein by gas-phase catalytic oxidation, and oxometallates of the HT Cu molybdate structure type which contain Cu, Mo and at least one of the elements W, V, Nb and Ta.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: September 26, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Andreas Tenten, Laszlo Marosi
  • Patent number: 6090977
    Abstract: In a process for the continuous heterogeneously catalyzed gas-phase partial oxidation of an organic compound in an oxidation reactor, whose feed gas mixture comprises, apart from the organic compound to be partially oxidized and molecular oxygen as oxidant, at least one diluent gas which is essentially inert under the conditions of the heterogeneously catalyzed gas-phase partial oxidation, where the essentially inert diluent gas consists partly of combustible gases, after passage through the oxidation reactor, the combustible constituents of the inert diluent gas present in the product gas stream leaving the oxidation reactor are not recirculated to the heterogeneously catalyzed gas-phase partial oxidation, but are put to further use for the purposes of another chemical reaction.
    Type: Grant
    Filed: March 5, 1996
    Date of Patent: July 18, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Werner Hefner, Otto Machhammer, Hans-Peter Neumann, Andreas Tenten, Wilhelm Ruppel, Herbert Vogel
  • Patent number: 6069271
    Abstract: A method for producing acrylic acid from propylene at high efficiency by two-stage catalytic oxidation using a single fixed bed shell-and-tube heat exchanger type reactor is provided. The method comprises dividing the shell space of said reactor into an upper space and lower space with a partition plate, allowing a heating medium to circulate in each of the spaces substantially independently of each other, and carrying out the vapor phase oxidation under specific conditions. Said specific conditions including providing a first stage catalyst layer at lower portion of each of the reaction tubes, a second stage catalyst layer at upper portion thereof and an inert substance layer therebetween, and making void ratio of the inert substance layer 40-99.5%.
    Type: Grant
    Filed: October 27, 1998
    Date of Patent: May 30, 2000
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Michio Tanimoto, Kazuyuki Uekawa, Tatsuya Kawajiri
  • Patent number: 6036880
    Abstract: Disclosed is a niobium(Nb)-containing aqueous solution for use in producing a Nb-containing oxide catalyst, wherein the oxide catalyst comprises an oxide of a plurality of active component elements including Nb and is for use in a catalytic oxidation or ammoxidation of propane or isobutane in the gaseous phase, and wherein the oxide catalyst is prepared by a process comprising mixing the Nb-containing aqueous solution with (an) aqueous mixture(s) containing compounds of active component elements of the oxide catalyst other than Nb, to thereby provide an aqueous compound mixture, and drying the aqueous compound mixture, followed by calcination. The Nb-containing aqueous solution comprises water having dissolved therein a dicarboxylic acid, an Nb compound and optionally ammonia, wherein the dicarboxylic acid/Nb molar ratio (.alpha.) satisfies: 1.ltoreq.(.alpha.).ltoreq.4, and the ammonia/Nb molar ratio (.beta.) satisfies: 0.ltoreq.(.beta.).ltoreq.2.
    Type: Grant
    Filed: August 5, 1998
    Date of Patent: March 14, 2000
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Satoru Komada, Hidenori Hinago, Masatoshi Kaneta, Mamoru Watanabe
  • Patent number: 5929275
    Abstract: A catalyst for the production of unsaturated aldehyde and unsaturated acid, obtained by loading a catalytically active component on a carrier and calcining the loaded catalyst, characterized by an average particle diameter of the catalyst of 4 to 16 mm, an average particle diameter of the carrier of 3 to 12 mm, a calcining temperature of 520 to 600.degree. C. and an amount of the catalytically active component loaded on the carrier of 5 to 80% by weight ?weight of the catalytically active component)/(weight of the catalytically active component+weight of the carrier+weight of a strength improver)!, and a process for producing unsaturated aldehyde and unsaturated acid with the catalyst.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: July 27, 1999
    Assignee: Nippon Kayaku Co., Ltd.
    Inventors: Koichi Wada, Akira Iwamoto, Yoshimasa Seo, Atsusi Sudo, Fumio Sakai, Kazuo Shiraishi, Hideaki Miki
  • Patent number: 5705684
    Abstract: In a process for preparing acrolein, acrylic acid or a mixture thereof from propane, propane is partially dehydrogenated to propylene in a first stage, the product gas mixture resulting therefrom is, after separating off hydrogen and water vapor, used as feed to an oxidation reactor, the propylene formed in the dehydrogenation is partially oxidized in the oxidation reactor using molecular oxygen in the presence of non-dehydrogenated propane as inert diluent gas to give acrolein, acrylic acid or a mixture thereof and the propane present in the product gas mixture of the partial oxidation is subsequently recirculated to the dehydrogenation stage A.
    Type: Grant
    Filed: March 8, 1996
    Date of Patent: January 6, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Werner Hefner, Otto Machhammer, Hans-Peter Neumann, Andreas Tenten, Wilhelm Ruppel, Herbert Vogel
  • Patent number: 5602280
    Abstract: Disclosed are a process for producing an unsaturated aldehyde and an unsaturated carboxylic acid which comprises subjecting propylene, isobutylene or tertiary butanol to gas phase catalytic oxidation with molecular oxygen in the presence of (i) a catalyst comprising composite oxide of the formula Mo.sub.a Bi.sub.b Fe.sub.c A.sub.d B.sub.e C.sub.f D.sub.g O.sub.x and (ii) a molybdenum oxide which in itself is substantially inert to the gas phase catalytic oxidation; a process for reusing the catalyst deteriorated due to the gas phase catalytic oxidation after mixing it with the molybdenum oxide; and a method of regenerating the deteriorated catalyst by mixing it with the molybdenum oxide.
    Type: Grant
    Filed: June 27, 1994
    Date of Patent: February 11, 1997
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Koichi Nagai, Yoshisaburou Nomura, Yoshihiko Nagaoka
  • Patent number: 5449821
    Abstract: A process for the gas phase catalytic oxidation of a C.sub.3-6 alkane, alkanol, alkene or alkenal using as a catalyst multimetal oxide compositions of the formula I, [X.sup.1.sub.a X.sup.2.sub.b O.sub.x ].sub.p [X.sup.3.sub.c X.sup.4.sub.d X.sup.5.sub.e X.sup.6.sub.f X.sup.7.sub.g X.sup.2.sub.h O.sub.y ].sub.q, where X.sup.1 is bismuth, tellurium, antimony, tin and/or copper, X.sup.2 is molybdenum and/or tungsten, X.sup.3 is an alkali metal, thallium and/or samarium, X.sup.4 is an alkaline earth metal, nickel, cobalt, copper, manganose, zinc, tin, cadmium and/or mercury, X.sup.6 is iron, chromium, cerium and/or vanadium, X.sup.6 is phosphorus, arsenic, boron and/or antimony, X.sup.7 is a rare-earth metal, titanium, zirconium, niobium, tantalum, rhenium, ruthenium, rhodium, silver, gold, aluminum, gallium, indium, silicon, geranium, lead, thorium and/or uranium, a is from 0.01 to 8, b is from 0.
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: September 12, 1995
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans-Peter Neumann, Hans Martan, Hermann Petersen, Walter Doerflinger
  • Patent number: 5380933
    Abstract: A method for producing an unsaturated carboxylic acid, which comprises subjecting an alkane to a vapor phase catalytic oxidation reaction in the presence of a catalyst containing a mixed metal oxide comprising, as essential components, Mo, V, Te, O and X wherein X is at least one element selected from the group consisting of niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, antimony, bismuth, boron, indium and cerium, wherein the proportions of the respective essential components, based on the total amount of the essential components exclusive of oxygen, satisfy the following formulas:0.25<r.sub.Mo <0.980.003<r.sub.V <0.50.003<r.sub.Te <0.50.003<r.sub.X <0.5wherein r.sub.Mo, r.sub.V, r.sub.Te and r.sub.X are molar fractions of Mo, V, Te and X, respectively, based on the total amount of the essential components exclusive of oxygen.
    Type: Grant
    Filed: January 28, 1994
    Date of Patent: January 10, 1995
    Assignee: Mitsubishi Kasei Corporation
    Inventors: Takashi Ushikubo, Hiroya Nakamura, Yukio Koyasu, Shin Wajiki
  • Patent number: 5300684
    Abstract: Disclosed is a process for oxidizing ethane to acetic acid which comprises feeding ethane and a recycle gas to a fluidized bed reaction zone containing fluidized particulate solid oxidation catalyst, feeding a molecular oxygen-containing gas separately from said ethane to said reaction zone so that said molecular oxygen-containing gas first mixes with the major portion of the combustible hydrocarbon feed gases within the fluidized bed, said process including the steps of (1) cooling the gaseous effluent from the reaction zone, (2) separating most of the acetic acid in liquid form from the effluent gases, leaving a gaseous stream containing nearly all of the carbon oxides contained in said effluent, (3) purging a small portion of said gaseous stream and recycling most of said gaseous stream as part of the feed to said reaction zone,wherein said purging serves to prevent build-up of carbon oxides in the reaction zone, and said recycling serves to maintain a high proportion of carbon oxides in said reaction zone
    Type: Grant
    Filed: December 9, 1991
    Date of Patent: April 5, 1994
    Assignee: The Standard Oil Company
    Inventors: Nancy C. Benkalowycz, Patricia R. Blum, David R. Wagner
  • Patent number: 4757038
    Abstract: Iron-antimony metallic oxide catalysts which have become deactivated after being used for the production of aldehydes, acids, nitriles, or dienes through oxidation, ammoxidation, or oxidative dehydrogenation of organic compounds in fluidized-bed reactors are regenerated by adding to the catalyst a molybdenum-enriched catalyst formed by supporting a molybdenum component which is volatile or capable of forming a volatile compound under reaction conditions on a metallic oxide catalyst. The metallic oxide catalysts contain as essential components (I) Fe, (II) Sb, (III) at least one element selected from the group consisting of V, Mo and W, and (IV) Te.
    Type: Grant
    Filed: May 15, 1987
    Date of Patent: July 12, 1988
    Assignee: Nitto Chemical Industry Co., Ltd.
    Inventors: Yutaka Sasaki, Yutaka Kiyomiya, Toshio Nakamura, Yoshimi Nakamura, Masanori Yamaguchi
  • Patent number: 4709070
    Abstract: A process for improving the activity of tellurium containing metal oxide catalysts useful as catalysts for oxidation, ammoxidation or oxidative dehydrogenation of organic compounds by heating the catalysts together with an activity-improving agent to a temperature up to about 900.degree. C. in a gaseous atmosphere. The process can be effectively applied to deteriorated or spent catalysts, the activity of which has been deteriorated due to use for a long period of time.
    Type: Grant
    Filed: November 9, 1984
    Date of Patent: November 24, 1987
    Assignee: Nitto Chemical Industry Co., Ltd.
    Inventors: Yutaka Sasaki, Yutaka Kiyomiya, Toshio Nakamura
  • Patent number: 4652673
    Abstract: A process for producing methacrylic acid by vapor phase oxidation of methacrolein with molecular oxygen or molecular oxygen-containing gas in the presence of isobutylene and/or tertiary butanol and in the presence of a catalyst having a heteropolyacid structure represented by the following general formula:Mo.sub.a V.sub.b P.sub.c X.sub.d O.sub.ewherein Mo, V, P, and O represent molybdenum, vanadium, phosphorus, and oxygen respectively, X represents the coexistence of copper and aresenic and the a, b, c, d and e represent the atomic ratio of the elements where:a is 10,b is a number of 6 or less excluding 0,c is a number of 0.5 to 6,d is a number of 3 or less excluding 0, ande is a number determined depending on the valance and atomic ratio of the other elements.
    Type: Grant
    Filed: May 18, 1983
    Date of Patent: March 24, 1987
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Mutsumi Matsumoto, Kouichi Wada
  • Patent number: 4625059
    Abstract: A 1,2-unsaturated carboxylic acid or its ester such as acrylic or methacrylic acid or its alkyl ester is purified to remove aldehyde impurities contained therein by treating the acid or its ester with a mercapto containing compound in the presence of an acid catalyst.
    Type: Grant
    Filed: June 22, 1984
    Date of Patent: November 25, 1986
    Assignee: 501 Mitsubishi Petrochemical Company, Ltd.
    Inventors: Takeshi Shibano, Yasuyuki Sakakura, Kiichi Ito, Kazuhiko Higuchi
  • Patent number: 4622424
    Abstract: A process for conducting a combination of fixed and fluid-bed catalytic reactions is achieved by employing fixed-bed catalysts on supports within the fluid bed. The fluid-bed catalysts may move in both directions through the fixed bed, thereby giving advantages of both types of beds in one reactor.
    Type: Grant
    Filed: September 6, 1985
    Date of Patent: November 11, 1986
    Assignee: The Standard Oil Company
    Inventors: James L. Callahan, Arthur F. Miller, Wilfrid G. Shaw
  • Patent number: 4558028
    Abstract: A catalyst for production of methacrylic acid, said catalyst being molded in a ring-like shape having an outside diameter of 3.0 to 10.0 mm, an inside diameter 0.1 to 0.7 times the outside diameter and a length 0.5 to 2.0 times the outside diameter, said catalyst comprising a catalytically active material having the composition represented by the following general formulaMo.sub.a P.sub.b A.sub.c B.sub.d C.sub.e D.sub.f O.sub.
    Type: Grant
    Filed: December 16, 1983
    Date of Patent: December 10, 1985
    Assignee: Nippon Shokubai Kagaku Kogyo Co., Ltd.
    Inventors: Hideaki Tsuneki, Michio Ueshima, Ryuji Aoki, Isao Nagai
  • Patent number: 4556731
    Abstract: Iron-bismuth-molybdate catalysts further containing specific promoter elements have been found to exhibit excellent redox stability even under high stress conditions in the catalytic oxidation of olefins to unsaturated aldehydes and acids.
    Type: Grant
    Filed: April 19, 1982
    Date of Patent: December 3, 1985
    Assignee: The Standard Oil Company
    Inventors: Andrew T. Guttmann, Robert K. Grasselli
  • Patent number: 4537874
    Abstract: A catalyst for the production of unsaturated aldehydes is provided which is represented by the general formulaBi.sub.a W.sub.b Fe.sub.c Mo.sub.d A.sub.e B.sub.f C.sub.g D.sub.h O.sub.xwherein Bi represents bismuth, W represents tungsten, Fe represents iron, Mo represents molybdenum, O represents oxygen, A represents nickel and/or cobalt, B represents at least one element selected from the group consisting of alkali metals, alkaline earth metals and thallium, C represents at least one element selected from the group consisting of phosphorus, arsenic, boron, antimony, tin, cerium, lead and niobium, D presents at least one element selected from the group consisting of silicon, aluminum, zirconium and titanium, a, b, c, d, e, f, g, h and x represent the atomic ratios of the individual elements, and when d is taken as 12, a=0.1-10.0, b=0.5-10.0 (provided that a/b=0.01-6.0), c=0.1-10.0, e=2.0-20.0, f=0.001-10.0, g=0-10.0, and h=0-30, and x takes a number determined by the atomic valences of the individual elements.
    Type: Grant
    Filed: October 18, 1983
    Date of Patent: August 27, 1985
    Assignee: Nippon Shokubai Kagaku Kogyo Co Ltd
    Inventors: Takahisa Sato, Masahiro Takata, Michio Ueshima, Isao Nagai
  • Patent number: 4532083
    Abstract: Certain multiply promoted Sn/Sb oxides are superior catalysts for the ammoxidation of olefins to the corresponding unsaturated nitriles, the selective oxidation of olefins to unsaturated aldehydes and acids, and the oxydehydrogenation of olefins to diolefins.
    Type: Grant
    Filed: October 29, 1982
    Date of Patent: July 30, 1985
    Assignee: The Standard Oil Company
    Inventors: Dev D. Suresh, Robert K. Grasselli, James F. Brazdil, Frances I. Ratka
  • Patent number: 4472314
    Abstract: Mixed oxides of bismuth with other metals of the perovskite structure and having vacant lattice sites in the same lattice positions occupied by bismuth are disclosed as partial oxidation and ammoxidation catalysts. Such oxides are used as catalysts in the improved method of oxidizing an acyclic hydrocarbon of 1-10 carbons having at most one olefinic unsaturation by reacting the acyclic hydrocarbon in the vapor phase with oxygen in the presence of the solid catalyst to form products having carbon, hydrogen and oxygen.
    Type: Grant
    Filed: May 27, 1980
    Date of Patent: September 18, 1984
    Assignee: Allied Corporation
    Inventors: William C. Conner, Jr., Stuart L. Soled, Anthony J. Signorelli, Bruce A. DeRites
  • Patent number: 4453006
    Abstract: A method for preparing attrition resistant, high percentage active component catalysts comprises using two types of silica, one of which is fumed silica, in a two stage catalyst preparation.
    Type: Grant
    Filed: February 12, 1981
    Date of Patent: June 5, 1984
    Assignee: The Standard Oil Company
    Inventors: Wilfrid G. Shaw, Christos Paparizos, James L. Callahan
  • Patent number: 4435598
    Abstract: An improved process for the catalytic oxidation of propylene to acrylic acid the improvement comprising conducting the process in the presence of an effective amount of hydroquinone. The improved process is particularly applicable to the aqueous liquid phase reaction of propylene with molecular oxygen using a supported palladium catalyst.
    Type: Grant
    Filed: October 28, 1977
    Date of Patent: March 6, 1984
    Assignee: National Distillers and Chemical Corporation
    Inventor: James A. Hinnenkamp
  • Patent number: 4424141
    Abstract: Bismuth molybdate catalysts formed from a precatalyst slurry which uses an organic liquid or mixture of an organic liquid and water as the liquid medium of the slurry exhibit superior catalytic properties.
    Type: Grant
    Filed: January 5, 1981
    Date of Patent: January 3, 1984
    Assignee: The Standard Oil Co.
    Inventors: Robert K. Grasselli, Dev D. Suresh, Maria S. Friedrich
  • Patent number: 4415752
    Abstract: A novel catalyst comprising the elements Mo, V and Nb, and an oxidation process, is provided for oxidizing alpha-beta unsaturated aliphatic aldehydes in the vapor phase with molecular oxygen to produce the corresponding alpha-beta unsaturated carboxylic acid.
    Type: Grant
    Filed: April 22, 1980
    Date of Patent: November 15, 1983
    Assignee: Union Carbide Corporation
    Inventors: Harry J. Decker, Erlind M. Thorsteinson
  • Patent number: 4414411
    Abstract: A novel catalyst comprising the elements Mo, V and Ti, and an oxidation process, is provided for oxidizing alpha beta unsaturated aliphatic aldehydes in the vapor phase with molecular oxygen to produce the corresponding alpha-beta unsaturated carboxylic acid.
    Type: Grant
    Filed: May 5, 1980
    Date of Patent: November 8, 1983
    Assignee: Union Carbide Corporation
    Inventors: Harry J. Decker, Erlind M. Thorsteinson
  • Patent number: 4410725
    Abstract: A novel catalyst comprising the elements Mo, V and Ta, and an oxidation process, is provided for oxidizing alpha-beta unsaturated aliphatic aldehydes in the vapor phase with molecular oxygen to produce the corresponding alpha-beta unsaturated carboxylic acid.
    Type: Grant
    Filed: September 13, 1974
    Date of Patent: October 18, 1983
    Assignee: Union Carbide Corporation
    Inventors: Harry J. Decker, Erlind M. Thorsteinson
  • Patent number: 4350830
    Abstract: A method for preparing acrylic acid by oxidation of acrolein over a new and improved catalyst providing conversions of acrolein of greater than 99% with yields of acrylic acid in excess of 95%. The catalyst consists essentially of the oxides of molybdenum, vanadium, chromium, copper and titanium and optionally silicon on an inert carrier. Catalysts useful in the process contain the elements previously mentioned in the atomic ratios ofMo.sub.15 V.sub.5-10 Cu.sub.2-5 Cr.sub.0.2-2 Ti.sub.
    Type: Grant
    Filed: October 17, 1979
    Date of Patent: September 21, 1982
    Assignee: The Dow Chemical Co.
    Inventors: David L. Childress, William V. Hayes, Richard L. Poppe
  • Patent number: 4335264
    Abstract: The catalytic vapor phase oxidation of an olefin of 3 to 5 carbon atoms to .alpha.,.beta.-unsaturated aldehydes with the formation of substantially no .alpha.,.beta.-unsaturated acids is achieved by contacting the olefin, oxygen, an inert gas or moderator and optionally water with a catalyst at a temperature of from 300.degree. C. to 500.degree. C. for a period of time sufficient to achieve from 25 to 80% conversion of said olefin to said aldehyde, separating unreacted olefin and byproduct inert gas from the product stream and recycling the unreacted olefin and byproduct inert gas together with additional olefin and oxygen if required to react with said catalyst.
    Type: Grant
    Filed: July 7, 1976
    Date of Patent: June 15, 1982
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Paul C. Yates
  • Patent number: 4321160
    Abstract: The present invention relates to a method for the activation of PMA based catalysts by treating the catalyst precursor with a nitrogen-containing compound such as an oxide of nitrogen gas or a nitrogen acid such as nitric or nitrous at a temperature of from about 125.degree. C. to about 400.degree. C. The method can be employed in a reactor by loading the catalyst precursor, adjusting the reactor temperature to one suitable for activation and optionally sweeping the reactor with an inert gas followed by the treating step. The method herein permits faster, lower temperature catalyst activation than when air activation is employed giving higher oxidative conversion yields and prolonged catalyst life.
    Type: Grant
    Filed: December 27, 1979
    Date of Patent: March 23, 1982
    Assignee: Standard Oil Company
    Inventors: Diane G. Farrington, James F. White
  • Patent number: 4317747
    Abstract: Certain multiply promoted U-Sb-oxides are superior catalysts for the ammoxidation of olefins to the corresponding unsaturated nitriles, the selective oxidation of olefins to unsaturated aldehydes and acids, and the oxyde-hydrogenation of olefins to diolefins.
    Type: Grant
    Filed: November 16, 1979
    Date of Patent: March 2, 1982
    Assignee: The Standard Oil Co.
    Inventors: Dev D. Suresh, Robert K. Grasselli
  • Patent number: 4309310
    Abstract: Olefins, such as propylene, are allylically oxidized to corresponding unsaturated aldehydes and carboxylic acids, such as acrolein and acrylic acid, by contacting the olefin with molecular oxygen at allylic oxidation conditions in the presence of a trifluoroalkyl sulfonate or phosphonate catalyst, such as a catalyst formed by the reaction of vanadyl oxide and trifluoromethyl sulfonate.
    Type: Grant
    Filed: March 31, 1980
    Date of Patent: January 5, 1982
    Assignee: Standard Oil Company
    Inventor: James L. Callahan
  • Patent number: 4280929
    Abstract: A method for preparing attrition resistant, high percentage active component catalysts comprises using two types of silica, one of which is fumed silica, in a two stage catalyst preparation.
    Type: Grant
    Filed: September 17, 1979
    Date of Patent: July 28, 1981
    Assignee: Standard Oil Company
    Inventors: Wilfrid G. Shaw, Christos Paparizos, James L. Callahan
  • Patent number: 4230887
    Abstract: C.sub.2 -C.sub.6 monocarboxylic and dicarboxylic acids are scrubbed from gas phase mixtures of such acids and water by gas absorption techniques utilizing a liquid solvent comprising a polyoxyalkylene glycol or a monoalkyl or dialkyl ether thereof. The solvent enriched with the acid is subjected to distillation to recover a substantially anhydrous acid product.
    Type: Grant
    Filed: February 16, 1978
    Date of Patent: October 28, 1980
    Assignee: Celanese Corporation
    Inventors: William T. Mitchell, Phillip S. Snyder
  • Patent number: RE30430
    Abstract: Molybdenum - vanadium - oxygen oxidation catalyst for producing maleic anhydride from benzene is regenerated and stabilized by the addition of a compound of Mo, Ni, Co, Mn or U, preferably a volatile compound, to the catalyst, after a decline in activity.
    Type: Grant
    Filed: February 26, 1979
    Date of Patent: November 4, 1980
    Assignee: Denka Chemical Corporation
    Inventor: Ralph O. Kerr
  • Patent number: RE32484
    Abstract: A vapor phase catalytic oxydehydrogenation process for the conversion of a steam of mixed isomeric isoamylenes, methyl butanols or mixtures thereof to isoprene with relatively short contact times at a reactor temperature in the range of 500.degree. F. to 1100.degree. F. at from 0.5 to about 10 atmospheres pressure. The catalysts comprise an alkali metal as an essential catalytic ingredient.
    Type: Grant
    Filed: September 2, 1983
    Date of Patent: August 25, 1987
    Assignee: The Standard Oil Company
    Inventors: Robert K. Grasselli, Harley F. Hardman