Product Compound Has More C Atoms Than Feed Compound, E.g., Cyclic Polymerization, Etc. Patents (Class 585/415)
  • Publication number: 20120004482
    Abstract: The invention relates to a process for converting aliphatic hydrocarbons having from 1 to 4 carbon atoms into aromatic hydrocarbons, which comprises the steps: a) reaction of a feed stream E comprising at least one aliphatic hydrocarbon having from 1 to 4 carbon atoms in the presence of a catalyst under nonoxidative conditions to give a product stream P comprising aromatic hydrocarbons and hydrogen and b) electrochemical removal of at least part of the hydrogen formed in the reaction from the product stream P by means of a gastight membrane-electrode assembly comprising at least one selectively proton-conducting membrane and at least one electrode catalyst on each side of the membrane, where at least part of the hydrogen is oxidized to protons over the anode catalyst on the retentate side of the membrane and the protons are, after passing through the membrane on the permeate side, reacted with oxygen to form water over the cathode catalyst, with the oxygen originating from an oxygen-comprising stream O whi
    Type: Application
    Filed: March 29, 2010
    Publication date: January 5, 2012
    Applicant: BASF SE
    Inventors: Joana Coelho Tsou, Alexander Panchenko, Annebart Engbert Wentink, Sebastian Ahrens, Thomas Heidemann
  • Publication number: 20110301394
    Abstract: A process is provided for producing aromatic hydrocarbons which comprises: (a) contacting a lower alkane feed with a solid particulate aromatic hydrocarbon conversion catalyst in a fixed bed reaction zone to produce aromatic hydrocarbons and other products, whereby the catalyst is at least partially deactivated by the formation of undesirable coke deposits, (b) periodically regenerating the catalyst under regeneration conditions, (c) separating aromatic hydrocarbons from the other products and unreacted lower alkanes, and (d) optionally recycling unreacted lower alkanes to the reaction zone wherein the fixed bed reaction zone additionally comprises a volume of a catalytically inactive solid.
    Type: Application
    Filed: May 11, 2011
    Publication date: December 8, 2011
    Applicant: SHELL OIL COMPANY
    Inventors: Ye Mon CHEN, Mahesh Venkataraman IYER, Karel Martin KAPOUN, Ann Marie LAURITZEN, Ajay Madhav MADGAVKAR
  • Publication number: 20110160508
    Abstract: A catalytic composition and method for methane dehydroaromatisation, the catalytic composition comprising a catalyst metal active for methane dehydroaromatisation, a zeolite having pores with diameters of at least 10 non-oxygen frame-work atoms, and silicon carbide, and in which the method comprises contacting a methane-containing feedstock with said catalytic composition to produce one or more aromatic compounds and hydrogen.
    Type: Application
    Filed: May 21, 2008
    Publication date: June 30, 2011
    Inventors: Ding Ma, Lijun Gu, Xinhe Bao, Wenjie Shen, Martin Philip Atkins
  • Publication number: 20110160507
    Abstract: Process for obtaining aromatic hydrocarbons from a stream containing at least one light hydrocarbon selected from the list comprising methane, ethane, ethylene, propane, propene, propylene, butane, butene or butadiene, which comprises putting said stream into contact with a catalyst, which comprises a catalytic material and a binder, in a fluidized bed reactor. Said reactor may have two reaction zones, an oxidizing zone and a reducing zone.
    Type: Application
    Filed: June 19, 2009
    Publication date: June 30, 2011
    Applicant: UNIVERSIDAD DE ZARAGOZA
    Inventors: Miguel Menéndez Sastre, Javier Herguido Huerta, Carlos Téllez Ariso, Jaime Soler Herrero, Maria Pilar Gimeno Tolosa
  • Publication number: 20110130606
    Abstract: The present invention relates to a process for nonoxidatively dehydroaromatizing a reactant stream comprising C1-C4-aliphatics by converting the reactant stream in the presence of a catalyst in a reaction zone 1 to a product stream P comprising aromatic hydrocarbons, and regenerating the catalyst whose activity has been reduced by deposited coke with a hydrogen-comprising mixture H in a reaction zone 2, wherein at least a portion of the deposited coke is converted to methane and at least a portion of the methane formed is fed to reaction zone 1.
    Type: Application
    Filed: May 20, 2009
    Publication date: June 2, 2011
    Applicant: BASF SE
    Inventors: Frank Kiesslich, Achim Gritsch, Christian Schneider, Albena Kostova
  • Publication number: 20110077441
    Abstract: A catalyst for the conversion of methane to higher hydrocarbons including aromatic hydrocarbons comprises particles of a porous refractory material, crystals of a zeolite material grown within the pores of the refractory material, and at least one catalytically active metal or metal compound associated with the zeolite crystals.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 31, 2011
    Inventor: Larry L. Iaccino
  • Publication number: 20110044891
    Abstract: A process for manufacturing a synthetic porous crystalline molecular sieve requires an aqueous reaction mixture comprising a source of X2O3 (X is a trivalent element), a source of YO2 (Y is a tetravalent element) and a source of MOH (M is an alkali metal). The H2O/MOH molar ratio is within the range of 70 to 126 and the source of X2O3 and YO2 is an amorphous material containing both X2O3 and YO2 and having YO2/X2O3 molar ratio of 15 or less. The molecular sieve products are useful as catalysts and/or absorbents. Such molecular sieves having MFI structure type, TON structure type or the structure type of zeolite beta and a composition involving the molar relationship (n) YO2:X2O3 wherein n is from 2 to less than 15 are novel compositions of matter.
    Type: Application
    Filed: January 19, 2009
    Publication date: February 24, 2011
    Inventors: Wieslaw Jerzy Roth, Mae Koenig Rubin
  • Publication number: 20100274064
    Abstract: According to the invention, trace olefins and dienes are removed from aromatic plant feedstocks by contacting the catalyst using conditions outside the ordinary range used for this application today.
    Type: Application
    Filed: April 12, 2010
    Publication date: October 28, 2010
    Inventor: Stephen H. Brown
  • Publication number: 20100256245
    Abstract: The invention relates to the integration of a dehydroaromatization process with the processes for the utilization of associated gas; gases comprising methane and higher hydrocarbons, and/or liquefied natural gas (LNG) production or usage.
    Type: Application
    Filed: March 5, 2010
    Publication date: October 7, 2010
    Inventors: Larry L. Iaccino, Steven E. Silverberg, James R. Lattner, Andrea P. Wight, Garth M. Norman, Douglas E. Smith, Eric D. Nelson, Mark A. Nierode, Moses K. Minta
  • Publication number: 20100022811
    Abstract: A selective catalytic cracking process of natural gas liquid fraction to light olefins and other products is described, the process includes placing in contact (within a reaction zone) said liquid fraction of natural gas, rich in C5+ paraffins, with an MFI type zeolitic catalyst in acid form, having a pore size of at least 4 Angstroms, a silica/alumina ratio of between 10 and 2000, and where the processing conditions involve a temperature of between 350° C. and 650° C., space velocity of between 2 and 100h?1 and atmospheric pressure, and afterwards carrying out the catalytic cracking to separate products, to recover a product enriched with light olefins, LPG fractions, and aromatics, and where the production of olefins is favored in conditions of higher space velocities, while the production of LPG fractions and aromatics are favored in conditions of lowered space velocities.
    Type: Application
    Filed: October 2, 2009
    Publication date: January 28, 2010
    Applicant: PETROLEO BRASILEIRO S.A. - PETROBRAS
    Inventors: Eduardo Falabella SOUSA AGUIAR, Cláudio José DE ARAUJO MOTA, José Luiz FONTES MONTEIRO, Débora Prado BATISTA PEIXOTO, Adriano DO COUTO FRAGA, Ana Carlota BELIZARIO DOS SANTOS, Antonio Marcos FONSECA BIDART, Fernando Barbosa DE OLIVEIRA, Henrique Soares CERQUEIRA, Isabela Brito DOS SANTOS, Marcos DE FREITAS SUGAYA
  • Publication number: 20090209794
    Abstract: A process for producing aromatic hydrocarbons which comprises (a) contacting ethane with a dehyroaromatization aromatic catalyst which is comprised of about 0.005 to about 0.1 wt % platinum, an amount of gallium which is equal to or greater than the amount of the platinum, from about 10 to about 99.9 wt % of an aluminosilicate, and a binder, and (b) separating methane, hydrogen, and C2-5 hydrocarbons from the reaction products of step (a) to produce aromatic reaction products including benzene.
    Type: Application
    Filed: February 16, 2009
    Publication date: August 20, 2009
    Inventors: Ann Marie Lauritzen, Ajay Madhav Madgavkar
  • Patent number: 7498473
    Abstract: This invention relates to a process for catalytic dehydrocyclodimerization wherein the reaction mixture contains from about 10 to about 200 wt. ppm water. Providing water in the reaction mixture allows for an extended life of the zeolitic catalyst thereby increasing the efficiency of the catalytic dehydrocyclodimerization process.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: March 3, 2009
    Assignee: UOP LLC
    Inventors: Lubo Zhou, Benjamin J. Nagel
  • Publication number: 20080293980
    Abstract: The present invention relates to a method for producing an aromatic hydrocarbon from a C1-C4-alkane, or a mixture of C1-C4-alkanes, which comprises a) bringing a feedstock stream A which comprises a C1-C4-alkane, or a mixture of C1-C4-alkanes, into contact with a catalyst and reacting a part of the C1-C4-alkane, or a part of the mixture of the C1-C4-alkanes, to form aromatic hydrocarbon(s); b) fractionating the product stream B resulting from step a) into a low-boiler stream C which comprises the majority of the hydrogen and of the unreacted C1-C4-alkane, or of the mixture of C1-C4-alkanes, and a high-boiler stream D, or a plurality of high-boiler streams D?, which stream or streams comprises or comprise the majority of the aromatic hydrocarbon formed; and c) feeding the low-boiler stream C to a further C1-C4-alkane-consuming method, if appropriate the hydrogen present in the low-boiler stream C being separated off in advance.
    Type: Application
    Filed: October 30, 2006
    Publication date: November 27, 2008
    Inventors: Frank Kiesslich, Sven Crone, Otto Machhammer, Frederik van Laar, Ekkehard Schwab, Gotz-Peter Schindler
  • Publication number: 20080027254
    Abstract: This invention relates to a process for catalytic dehydrocyclodimerization wherein the reaction mixture contains from about 10 to about 200 wt. ppm water. Providing water in the reaction mixture allows for an extended life of the zeolitic catalyst thereby increasing the efficiency of the catalytic dehydrocyclodimerization process.
    Type: Application
    Filed: July 27, 2006
    Publication date: January 31, 2008
    Inventors: Lubo Zhou, Benjamin J. Nagel
  • Patent number: 7199274
    Abstract: The present invention relates to a simple process for preparing specifically substituted indenes of the formula (I) or (Ia) to compounds of the formula (II) serving as starting materials and to the use of the compounds of the formula (II) as starting materials for the synthesis of substituted indenes.
    Type: Grant
    Filed: October 18, 2003
    Date of Patent: April 3, 2007
    Assignee: Basell Polyolefine GmbH
    Inventors: Jörg Schulte, Jörg Schottek, Lothar Fisch
  • Patent number: 7019184
    Abstract: The present invention provides a process for natural gas in the form, e.g., of stranded gas or associated gas to transportable liquids. More particularly, the present invention provides a process in which the gas is non-oxidatively converted to aromatic liquid, preferably in proximity to the welihead, which may be onshore or offshore. In one aspect, the present invention provides integration of separation of wellhead fluids into associated gas and crude with blending of the aromatic liquid derived from the gas with the crude. Alternatively, or in combination, in another aspect, the present invention provides integration of conversion of byproduct hydrogen to power with non-oxidative conversion of gas to aromatic liquid.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: March 28, 2006
    Assignee: Conocophillips Company
    Inventors: Joe D. Allison, Neil Meldrum, Doug S. Jack, Marc J. Ledoux
  • Patent number: 6198012
    Abstract: A catalyst composition suitable for the conversion of n-butane to butenes. The same catalyst composition that with chlorination is further suitable, when used in the conversion of n-butane, for the production of an increased amount of BTX (benzene-toluene-xylene) and greater selectivity to the production of isobutylenes than attained with the unchlorinated catalyst. A process for the preparation of catalyst compositions suitable for the conversion of n-butane. Use of the catalyst compositions in processes for the conversion of n-butane.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: March 6, 2001
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6172273
    Abstract: A composition is prepared by a method which comprises mixing a first solid material comprising a platinum group metal, a rhenium component, a porous carrier material and, optionally, a halogen component and a second solid material comprising silica and bismuth. The thus-obtained composition is employed as a catalyst in the conversion of hydrocarbons to aromatics. In an alternate embodiment, hydrocarbons are converted to aromatics by sequentially contacting the hydrocarbons with the first solid material and then the second solid material.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: January 9, 2001
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6084142
    Abstract: An improved zeolite catalyst containing a zeolite and a zinc component manufactured by a novel method having certain process steps necessary for providing the improved zeolite catalyst. The process steps include incorporation of a zinc component with such zeolite followed by a steam treatment. An acid treatment can be conducted after the steam treatment. Processes are also disclosed for using the improved zeolite catalyst in the conversion of hydrocarbons, preferably non-aromatic hydrocarbons, to lower olefins (such as ethylene, propylene, and butene) and aromatic hydrocarbons (such as benzene, toluene, and xylene).
    Type: Grant
    Filed: May 12, 1998
    Date of Patent: July 4, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Jianhua Yao, Charles A. Drake
  • Patent number: 6048815
    Abstract: A novel high stability catalyst composition comprising a mixture of zeolite and zinc spinel that has been treated with a reducing gas under high temperature conditions, a method of making such high stability catalyst, and the use thereof for converting paraffin hydrocarbons to olefins and aromatics.
    Type: Grant
    Filed: November 9, 1998
    Date of Patent: April 11, 2000
    Assignee: Philips Petroleum Company
    Inventors: Jianhua Yao, James B. Kimble, Charles A. Drake
  • Patent number: 6034020
    Abstract: A process for producing catalyst compositions for converting a cracked gasoline feedstock to a product that is principally lower olefins. The catalyst compositions produced thereby. A process for converting a cracked gasoline feedstock to a product that is principally lower olefins.
    Type: Grant
    Filed: December 29, 1998
    Date of Patent: March 7, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, An-hsiang Wu
  • Patent number: 5998686
    Abstract: A dehydrocyclo-oligomerization process is provided for converting aliphatic hydrocarbons to aromatics by contacting the feedstock under conversion conditions which a zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises first zeolite crystals which are bound together by second zeolite crystals. If the zeolite bound zeolite catalyst is selectivated, the process can produce greater than equilibrium amounts of paraxylene.
    Type: Grant
    Filed: May 29, 1997
    Date of Patent: December 7, 1999
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Kenneth R. Clem, Gary D. Mohr, Robert Scott Smith
  • Patent number: 5993642
    Abstract: There is provided a process for converting hydrocarbons which utilizes a zeolite bound zeolite catalyst that has enhanced performance when utilized in hydrocarbon conversion processes, e.g., catalytic cracking, alkylation, disproportionation of toluene, isomerization, and transalkylation reactions. The catalyst comprises a first zeolite having particles of greater than about 0.1 micron average particle size and a binder comprising second zeolite particles having an average particle size less than said first particles.
    Type: Grant
    Filed: November 22, 1995
    Date of Patent: November 30, 1999
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Gary David Mohr, Tan Jen Chen, Kenneth Ray Clem, Mechilium Johannes Geradus Janssen, Phillip Andrew Ruziska, Johannes Petrus Verduijn, Jannetje Maatje van den Berge
  • Patent number: 5959170
    Abstract: A method for converting methane to higher hydrocarbon products and coproduct water wherein a gas comprising methane and a gaseous oxidant are contacted with a nonacidic catalyst at temperatures within the range of about 700 to 1200.degree. C. A preferred catalyst comprises an alkali component associated with a support material. Results obtained over alkali-promoted solids are enhanced when the contacting is conducted in the presence of halogen promoters.
    Type: Grant
    Filed: May 24, 1985
    Date of Patent: September 28, 1999
    Assignee: Atlantic Richfield Company
    Inventor: Howard P. Withers, Jr.
  • Patent number: 5932777
    Abstract: A hydrocarbon conversion process comprises: (1) contacting a hydrocarbon feed such as, for example, gasoline, with a catalyst under a sufficient condition to effect the conversion of the hydrocarbon to a product stream comprising aromatic hydrocarbons and olefins; (2) separating the product stream into a lights fraction comprising primarily hydrocarbons less than 6 carbon atoms per molecule, a middle fraction comprising C.sub.6 -C.sub.8 aromatic hydrocarbons and non-aromatic hydrocarbons, and a C.sub.9 + fraction comprising aromatic compounds; (3) separating the C.sub.6 -C.sub.8 aromatic hydrocarbons from the middle fraction; and (4) separating hydrocarbons containing 5 or more carbons per molecule (C.sub.5 + hydrocarbons) from the lights fraction. The C.sub.5 + hydrocarbons can be combined with the hydrocarbon feed. The non-aromatic hydrocarbons can also be converted to olefins by a thermal cracking process. Furthermore, the middle fraction can also be obtained by reforming naphtha.
    Type: Grant
    Filed: July 23, 1997
    Date of Patent: August 3, 1999
    Assignee: Phillips Petroleum Company
    Inventors: Edward L. Sughrue, II, Charles A. Drake, Scott D. Love
  • Patent number: 5877368
    Abstract: Disclosed is a method for producing aromatic hydrocarbons, which comprises contacting a light hydrocarbon feedstock comprising olefins and/or paraffins with a zeolite catalyst in a fixed-bed, adiabatic reactor containing a fixed catalyst bed comprised of the zeolite catalyst, to thereby effect a catalytic cyclization reaction of the light hydrocarbon feedstock, wherein the catalytic cyclization reaction is performed under conditions which satisfy the following requirements: (1) the zeolite catalyst has an initial stage-catalytic activity of 0.2 (sec.sup.-1) or more in terms of the initial stage, first-order reaction rate constant of the decomposition of n-hexane catalyzed by the zeolite catalyst; (2) the catalyst bed has a temperature of from 450.degree. C. to 650.degree. C.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: March 2, 1999
    Assignee: Sanyo Petrochemical Co., Ltd.
    Inventors: Kazuyoshi Kiyama, Takashi Tsunoda, Masatsugu Kawase
  • Patent number: 5873994
    Abstract: An aromatization process for converting a portion of a cracked gasoline feedstock to aromatics utilizing a catalyst comprising an acid leached zeolite and tin under process conditions suitable for converting a portion of the cracked gasoline feedstock to aromatics.
    Type: Grant
    Filed: July 15, 1997
    Date of Patent: February 23, 1999
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, An-hsiang Wu
  • Patent number: 5849967
    Abstract: Binderless zeolite L particles are prepared by a method in which particles are formed from silica and from 0 to 95 wt % preformed zeolite L crystallites, and the particles are thereafter reacted with an alkaline solution comprising a source of alumina to convert the silica binder to zeolite L. These particles may comprise cylindrical zeolite L crystallites with a mean diameter of at least 0.05 micron in a zeolite L matrix and may be used as catalyst. Also acyclic hydrocarbons are dehydrocyclized and/or isomerized by contacting them at a temperature of from 370.degree. C. to 600.degree. C. with this catalyst incorporating at least one Group VIII metal having dehydrogenating activity to convert at least part of the acyclic hydrocarbons into aromatic hydrocarbons.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 15, 1998
    Assignee: Exxon Chemical Patents Inc. (ECPI)
    Inventors: Johannes Petrus Verduijn, Pieter Ernst Gellings
  • Patent number: 5817904
    Abstract: A method for converting methane by an oxidative coupling reaction to longer chain hydrocarbons comprising cofeeding methane and oxygen simultaneously and continuously into a reaction zone to form a mixture, contacting said methane and oxygen mixture under oxidative coupling reaction conditions with a solid catalyst consisting essentially of manganese oxide and silicon oxide, promoted with an alkaline metal and non metal, to form longer chain hydrocarbons wherein the manganese, silicon oxide, alkali metal and non metal are present in a molar ratio 0-0.5:93.2-93.7:4.2:2.1.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 6, 1998
    Assignee: Repsol Petroleo S.A.
    Inventors: Sebastian Vic, Miguel A. Pena, Pilar Terreros, Juan P. Gomez, Jose L. Garcia-Fierro, Juan M. Jimenez
  • Patent number: 5763722
    Abstract: An improved method for the oxidative conversion of methane into higher hydrocarbons in which methane and oxygen are continuously and simultaneously cofed into a reaction zone under effective oxidative coupling conditions and contacted with a solid catalyst consisting essentially of a catalyst having a composition of empirical formula Ce.sub.a Na.sub.b Ca.sub.100 O.sub.x wherein a is in the range 0.03 to 2.0, b is in the range of 0.7 to 7.0 and oxygen is present in a molar amount sufficient to fulfill the valence requirements of cerium, sodium and calcium.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 9, 1998
    Assignee: Repsol Petroleo S.A.
    Inventors: Sebastian Vic, Miguel A. Pena, Pilar Terreros, Juan P. Gomez, Jose L. Garcia-Fierro, Juan M. Jimenez
  • Patent number: 5456822
    Abstract: Disclosed are reactions for the aromatization of hydrocarbons containing 2 to 9 carbon atoms per molecule, with a composite catalyst containing:an MFI zeolite in hydrogen form, the framework containing at least one of the elements silicon, aluminum and/or gallium; a matrix; gallium; at least one noble metal of the platinum family, at least one additional metal selected from the group made up of tin, germanium, indium, copper, iron, molybdenum, gallium, thallium, gold, silver, ruthenium, chromium, tungsten and lead, and possibly a compound selected from the group made up of alkali and alkaline earth metals.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: October 10, 1995
    Assignee: Institut Francais du Petrole
    Inventors: Christian Marcilly, Fabio Alario, Jean-Francois Joly, Fabienne Le Peltier
  • Patent number: 5436380
    Abstract: A process for producing aromatic hydrocarbons comprises bringing hydrocarbons having 2 to 12 carbon atoms into contact with a modified crystalline galloaluminosilicate catalyst prepared by treating a crystalline galloaluminosilicate having a tool ratio of SiO.sub.2 /(Ga.sub.2 O.sub.3 +Al.sub.2 O.sub.3) in the range from 5 to 1000 with a sulfur-containing substance. The process of the invention is simple and suited for general application and the catalyst can be prepared at a low cost. Aromatic hydrocarbons can be produced efficiently from the material hydrocarbons by bringing them into contact with the modified galloaluminosilicate having the excellent catalytic activity. The process of the invention can be adopted widely and effectively in the petroleum refining, in the petroleum chemistry and in the chemical industry in general.
    Type: Grant
    Filed: January 5, 1994
    Date of Patent: July 25, 1995
    Assignee: Idemitsu Kosan, Co., Ltd.
    Inventors: Masahiko Sawa, Yasushi Wakushima, Kozo Takatsu
  • Patent number: 5406017
    Abstract: A method for converting methane to higher hydrocarbon products and coproduct water wherein a gas comprising methane and a gaseous oxidant are contacted with a nonacidic catalyst at temperatures within the range of about 700.degree. to 1200.degree. C. A preferred catalyst comprises an alkali component associated with a support material. Results obtained over alkali-promoted solids are enhanced when the contacting is conducted in the presence of halogen promoters.
    Type: Grant
    Filed: October 25, 1990
    Date of Patent: April 11, 1995
    Assignee: Atlantic Richfield Company
    Inventor: Howard P. Withers, Jr.
  • Patent number: 5365005
    Abstract: A process and apparatus for the thermal conversion of methane into hydrocarbons of higher molecular weight, comprising a reactor (1) of elongate form, connected on the one hand, at a first end, to means (5) for supplying gaseous mixture containing methane (process gas) and on the other, at the opposite end, to discharge means (10), the said reactor comprising on a first part (the first end side) a plurality of elements disposed in at least two layers, substantially parallel inter se and substantially perpendicular to the axis of the reactor, at least one of these layers comprising a series of sheaths (4) inside which there are electric heating means (3) which thus form a layer of heating elements, the said elements being disposed in such a way as to define between them and/or between the layers which they form and/or between them and the walls of the spaces or passages for the circulation of gaseous mixtures and/or effluents, the said heating means and the said sheaths being adapted to heat the said passages
    Type: Grant
    Filed: October 19, 1992
    Date of Patent: November 15, 1994
    Assignee: Institut Francais du Petrole
    Inventors: Jerome Weill, Laure Capogna, Veronique Arrondel, Jean-Jack Boumendil
  • Patent number: 5336393
    Abstract: Catalytic conversion of organic compounds wherein catalysts come into contact with steam is performed efficiently by using a catalyst which comprises an MFI type zeolite having a ratio of SiO.sub.2 /(Al.sub.2 O.sub.3 +Ga.sub.2 O.sub.3) of 20 to 200 in molar ratio, a ratio of Ga.sub.2 O.sub.3 /Al.sub.2 O.sub.3 of 0 to 50 in molar ratio and a ratio of peak intensity of SiOH, I.sub.SiOH, to peak intensity of acidic OH, I.sub.H.sup.+, determined from .sup.1 H-NMR, I.sub.SiOH /I.sub.H.sup.+, of 0 to 0.5 and loses little catalytic activity on exposure to steam.
    Type: Grant
    Filed: May 28, 1992
    Date of Patent: August 9, 1994
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Kozo Takatsu, Yasushi Wakushima, Hiroharu Masunaga, Masahiko Sawa
  • Patent number: 5321179
    Abstract: A process for producing modified crystalline galloalumino silicate having the ZSM-5 crystal structure, and a process for producing aromatic hydrocarbons by the use of a catalyst containing the above modified crystalline galloalumino silicate are disclosed. The modified crystalline galloalumino silicate having the ZSM-5 type crystal structure is produced by calcining galloalumino silicate having the ZSM-5 type crystal structure as obtained by the hydrothermic reaction, at a temperature of 700 to 1,000.degree. C. The aromatic hydrocarbons are produced by contacting hydrocarbons having 2 to 12 carbon atoms with a catalyst containing the above modified crystalline galloalumino silicate.
    Type: Grant
    Filed: January 6, 1993
    Date of Patent: June 14, 1994
    Assignee: Research Association for Utilization of Light Oil
    Inventor: Junichi Kanai
  • Patent number: 5306682
    Abstract: A crystalline silicate catalyst having deposited coke thereon is regenerated by being contacted with an oxygen-containing gas having a moisture content of 0.2% by volume or less at a temperature of 400.degree.-600.degree. C.
    Type: Grant
    Filed: December 21, 1992
    Date of Patent: April 26, 1994
    Assignee: Research Association for the Utilization of Light Oil
    Inventors: Masaaki Ueda, Teruo Murakami, Shunji Shibata, Kazuo Hirabayashi, Tadami Kondoh, Kohji Adachi, Nobuko Hoshino, Shinichi Inoue
  • Patent number: 5306854
    Abstract: The invention discloses a two step process for conversion of natural gas to liquid hydrocarbons of gasoline range comprising oxidation pyrolysis of natural gas olefins containing gaseous products in the first stage and conversion of the olefins, formed in the first step, without separating them from the gaseous product stream to liquid hydrocarbons of gasoline range in the second step. The process of the invention could be used in petrolium industries for producing gasoline liquid hydrocarbon fuels and aromatic hydrocarbons. The present invention is commercially viable and energy efficient.
    Type: Grant
    Filed: July 10, 1992
    Date of Patent: April 26, 1994
    Assignee: Council of Scientific & Industrial Research
    Inventors: Vasant R. Choudhary, Subhash D. Sansare, Amarjeet M. Rajput
  • Patent number: 5276257
    Abstract: Butadiene is converted to ethylbenzene or styrene or both by contacting butadiene with a catalyst containing molybdenum.
    Type: Grant
    Filed: July 9, 1992
    Date of Patent: January 4, 1994
    Assignee: The Dow Chemical Company
    Inventor: Ronald W. Diesen
  • Patent number: 5276232
    Abstract: The process of this invention produces high-octane gasoline blending stock advantageously by treating light hydrocarbons mainly comprising of paraffins and/or olefins having 2 to 7 carbon atoms at a hydrogen partial pressure of 5 kg/cm.sup.2 or less and at a temperature of 350.degree. to 650.degree. C. in the presence of a catalyst composition containing ammonia-modified crystalline aluminogallosilicates of high initial activity and long life obtained by contacting hydrogen type aluminogallosilicates with ammonia under a dry condition as catalyst component.
    Type: Grant
    Filed: April 16, 1993
    Date of Patent: January 4, 1994
    Assignee: Research Association For Utilization of Light Oil
    Inventors: Shinichi Inoue, Toshiji Makabe, Tatsuo Morimoto, Kazutomo Shimizu
  • Patent number: 5268522
    Abstract: For the catalytic aromatization of hydrocarbons containing 5 to 9 carbons atoms per molecule, use is made of a catalyst containing a MFI zeolite containing at least one noble metal from the platinum family and at least one additional metal chosen from the group constituted by tin, germanium, lead and indium, and optionally an amorphous matrix.
    Type: Grant
    Filed: October 23, 1992
    Date of Patent: December 7, 1993
    Assignee: Institut Francais de Petrole
    Inventors: Jean-Paul Bournonville, Francis Raatz, Jeannine Juguin, Sylvie Juguin
  • Patent number: 5258563
    Abstract: A process is disclosed for the conversion of light aliphatic hydrocarbons such as propane into aromatic hydrocarbons and especially high purity benzene. The feed hydrocarbon is converted to aromatic hydrocarbons in a dehydrocyclodimerization zone. The product stream from the dehydrocyclodimerization zone which contains benzene, toluene, xylenes and C.sub.6 -C.sub.10 non-aromatics are separated into an overhead stream which contains the non-aromatic hydrocarbons and a small fraction of the benzene and a bottoms stream which contains the remainder of the benzene and other aromatic components. The overhead stream is then flowed to a conversion zone where the C.sub.6 -C.sub.7 non-aromatic hydrocarbons are cracked and the benzene is combined with the bottoms stream and further separated to give a high purity benzene product stream and a toluene, xylenes and C.sub.9 + product stream. The toluene, xylenes and C.sub.9 + product stream may further be separated into a toluene and xylenes product and a C.sub.
    Type: Grant
    Filed: June 11, 1992
    Date of Patent: November 2, 1993
    Assignee: UOP
    Inventors: Christopher D. Gosling, David A. Hamm
  • Patent number: 5258564
    Abstract: A process for converting C.sub.2 to C.sub.6 aliphatic hydrocarbons to aromatics is described. The process uses a catalyst which contains a zeolite, an aluminum phosphate binder and a gallium component. Examples of zeolites which can be used are the ZSM family of zeolites, with ZSM-5 being a specific example. The catalyst is characterized in that it is tolerant to exposure to hydrogen at temperatures of about 500.degree. to about 700.degree. C. The catalyst's tolerance to hydrogen exposure is the result of treating the catalyst with an aqueous solution of a weakly acidic ammonium salt or a dilute acid solution at a temperature of about 50.degree. to about 100.degree. C. for a time of about 1 to about 48 hours, followed by calcination.
    Type: Grant
    Filed: August 21, 1992
    Date of Patent: November 2, 1993
    Assignee: UOP
    Inventors: Joseph A. Kocal, Tamotsu Imai, Paul J. Kuchar, Christopher D. Gosling
  • Patent number: 5245109
    Abstract: A contact material composition of an intimately mixed halogencontaining mixed oxide of at least one cationic species of a naturally occurring Group IIIB element, at least one cationic species of a Group IIA metal of magnesium, calcium, strontium and barium and at least one cationic species of germanium and gallium, as well as methods for hydrocarbon conversion using such contact material compositions are provided.
    Type: Grant
    Filed: October 11, 1991
    Date of Patent: September 14, 1993
    Assignee: Amoco Corporation
    Inventors: Mark P. Kaminsky, Mark S. Kleefisch, George A. Huff, Jr., Don M. Washecheck, Mark K. Barr
  • Patent number: 5236575
    Abstract: This invention relates to a new synthetic porous crystalline material, a method for its preparation and use thereof in catalytic conversion of organic compounds. The new crystalline material exhibits a distinctive X-ray diffraction pattern.
    Type: Grant
    Filed: December 6, 1991
    Date of Patent: August 17, 1993
    Assignee: Mobil Oil Corp.
    Inventors: J. Michael Bennett, Clarence D. Chang, Stephen L. Lawton, Michael E. Leonowicz, Daria N. Lissy, Mae K. Rubin
  • Patent number: 5235122
    Abstract: A novel catalyst composition comprising a crystalline aluminosilicate having a molar ratio of silica to alumina of at least 5:1, the aluminosilicate carrying gallium and copper, is useful in the conversion at elevated temperature of a C.sub.2 -C.sub.12 hydrocarbon feedstock into aromatic hydrocarbons.
    Type: Grant
    Filed: July 12, 1991
    Date of Patent: August 10, 1993
    Assignee: The British Petroleum Company p.l.c.
    Inventors: Antony H. P. Hall, Alistair W. Winstanley
  • Patent number: 5227555
    Abstract: A process for the production of gasoline from a light hydrocarbon feed. The feed is catalytically aromatized to produce an effluent containing aromatics and olefins with the aromatics and olefins being subjected to alkylation to produce a gasoline product with a higher octane rating.
    Type: Grant
    Filed: July 12, 1988
    Date of Patent: July 13, 1993
    Assignee: ABB Lummus Crest Inc.
    Inventors: Andrei Rhoe, Kenneth J. Gwozdz
  • Patent number: 5220086
    Abstract: The invention relates to the treatment of crystals of ZSM-5 with mineral acid to produce ZSM-5 crystals which have an acid activity associated with the pores and channels thereof, the shape selective portion of the crystal, which is greater than the acid activity of the non-shape selective portion of the crystal or the surface of the ZSM-5 crystal, and the effect of the treated zeolite, as a catalyst component, in catalytic hydrocarbon conversions.
    Type: Grant
    Filed: December 9, 1991
    Date of Patent: June 15, 1993
    Assignee: Mobil Oil Corporation
    Inventor: Paul G. Rodewald
  • Patent number: RE35632
    Abstract: In an improved method for converting methane to at least one higher hydrocarbon product and coproduct water which comprises contacting a gas comprising methane and at least one added gaseous oxidant with nonacidic solid, the improvement comprising conducting at least a portion of said contacting in the presence of added water.
    Type: Grant
    Filed: January 19, 1993
    Date of Patent: October 14, 1997
    Assignees: Atlantic Richfield Company, Phillips Petroleum Company
    Inventor: David W. Leyshon
  • Patent number: RE35633
    Abstract: In an improved method for converting methane to at least one higher hydrocarbon product and coproduct water which comprises contacting a gas comprising methane and at least one added gaseous oxidant with nonacidic solid, the improvement comprising conducting at least a portion of said contacting in the presence of added water.
    Type: Grant
    Filed: January 19, 1995
    Date of Patent: October 14, 1997
    Assignee: Atlantic Richfield Company
    Inventor: David W. Leyshon