N- Or P-containing Catalyst Patents (Class 585/527)
  • Publication number: 20120029258
    Abstract: The present invention relates to a catalyst composition for oligomerization of ethylene, comprising a chromium compound; a ligand of the general structure R1R2P—N(R3)—P(R4)—N(R5)—H, wherein R1, R2, R3, R4 and R5 are independently selected from halogen, amino, trimethylsilyl, C1-C10-alkyl, aryl and substituted aryl; a modifier containing organic or inorganic halide; and an activator or co-catalyst; and a process for oligomerization utilizing that catalyst.
    Type: Application
    Filed: March 24, 2010
    Publication date: February 2, 2012
    Applicant: Saudi Basic Industries Corporation
    Inventors: Anina Wöhl, Uwe Rosenthal, Bernd H. Müller, Normen Peulecke, Stephan Peitz, Wolfgang Müller, Heinz Bött, Andreas Meiswinkel, Bhaskar Reddy Aluri, Mohammed Al-Hazmi, Mohammed Al-Masned, Khalid Al-Eidan, Fuad Mosa
  • Publication number: 20120016097
    Abstract: The invention relates to olefin oligomerization methods and methods for reducing/inhibiting fouling in olefin oligomerization reactions comprising: contacting, in an oligomerization reactor (e.g., under oligomerization conditions), an alpha-olefin feed, a catalyst having an olefin selectivity of at least 90 mol % to a desired oligomerization product, a polymer anti-foulant, and optionally a diluent; selectively producing an effluent comprising the desired oligomerization product, unreacted olefin, and alpha-olefin-based polymer byproduct that causes fouling. The amount of polymer anti-foulant can be chosen to limit fouling to ?20 g/kg desired oligomerization product, to remediate ?3 grams fouled polymer/kg desired oligomerization product, and/or to reduce/inhibit polymer fouling by ?10% over a selective oligomerization with substantially no added polymer anti-foulant. Advantageously, desired oligomerization product so obtained can also be polymerized/copolymerized with an alpha-olefin such as ethylene.
    Type: Application
    Filed: March 27, 2009
    Publication date: January 19, 2012
    Inventors: Michael W. Weber, James R. Lattner, Laughlin G. Mccullough, Randell W. Dickey, Steven D. Brown, Peter N. Loezos
  • Publication number: 20110319689
    Abstract: A process for producing hydrocarbon products, including: a) operating a process unit comprising a liquid catalyst in a first mode; b) adjusting a molar ratio of olefin to HCl; and c) operating in a second mode; wherein the first mode and the second mode are different, and the first mode and the second mode are selected from a distillate mode and a lubricant mode. Also, a process for making distillate and lubricant, including: adjusting a molar ratio of olefin to HCl in an oligomerization reactor to provide product selectivity; wherein decreasing the molar ratio provides a higher amount of distillate and increasing the molar ratio provides a higher amount of lubricant. Additionally, a process unit, having: a) an oligomerization reactor; and b) a control system that enables the reactor to be operated in a distillate mode and in a lubricant mode; and wherein the reactor can switch between modes.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 29, 2011
    Inventor: Sven Ivar Hommeltoft
  • Patent number: 8076523
    Abstract: This invention relates to a process for the oligomerization of at least one olefinic compound in the form of an olefin or a compound including art olefinic moiety by contacting the at least one olefinic compound with at least two different catalysis, namely a tetramerization catalyst and a further oligomerization catalyst. The tetramerization catalyst comprises a combination of a source of a transition metal and a ligating compound of the formula (R1)mX1(Y)X2(R2)n. The invention also relates to an oligomerization catalyst comprising the combination of (i) source of transition metal for both a tetramerization catalyst and a trimerization catalyst; (ii) a ligating compound for a tetramerization catalyst: (iii) a different ligating compound for a trimerization catalyst: and (iv) optionally an activator.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: December 13, 2011
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Annette Bollmann, Hulisani Maumela, Kevin Blann
  • Patent number: 8049025
    Abstract: The invention relates to novel carbene ligands and their incorporated monomeric and resin/polymer linked ruthenium catalysts, which are recyclable and highly active for olefin metathesis reactions. It is disclosed that significant electronic effect of different substituted 2-alkoxybenzylidene ligands on the catalytic activity and stability of corresponding carbene ruthenium complexes, some of novel ruthenium complexes in the invention can be broadly used as catalysts highly efficient for olefin metathesis reactions, particularly in ring-closing (RCM), ring-opening (ROM), ring-opening metathesis polymerization (ROMP) and cross metathesis (CM) in high yield. The invention also relates to preparation of new ruthenium complexes and the use in metathesis.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: November 1, 2011
    Assignee: Zannan Scitech Co., Ltd.
    Inventor: Zheng-Yun James Zhan
  • Publication number: 20110263804
    Abstract: This invention describes a process for the preparation of a catalytic composition that can be used for oligomerization, codimerization, or polymerization of olefins. This invention also describes the catalytic composition that can be obtained by said process for the preparation and its use for oligomerization, codimerization, or polymerization of olefins.
    Type: Application
    Filed: October 13, 2009
    Publication date: October 27, 2011
    Applicant: IFP Energies nouvelles
    Inventors: Claudine Rangheard, Helene Olivier-Bourbigou, David Proriol
  • Publication number: 20110213190
    Abstract: The invention describes a process for oligomerization of the olefins into compounds or into a mixture of compounds of general formula CpH2p with 4?p?80 that implements a catalytic composition that comprises at least one organometallic complex of an element of group IV that is selected from among titanium, zirconium, or hafnium, whereby said organometallic complex contains at least one aryloxy-type (or phenyloxy-type) ligand that is functionalized by a heteroatom that is selected from among nitrogen, oxygen, phosphorus or sulfur or by an aromatic group.
    Type: Application
    Filed: April 14, 2008
    Publication date: September 1, 2011
    Applicant: IFP
    Inventors: Jean-Benoit Cazaux, Lionel Magna, Lucien Saussine
  • Patent number: 7956003
    Abstract: The present invention discloses catalyst components based on ferricinium ligands, their method of preparation and their use in the polymerisation of olefins.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: June 7, 2011
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Recherche Scientifiqaue (CNRS)
    Inventors: Cyril Revault, Olivier Lavastre, Sabine Sirol
  • Patent number: 7906681
    Abstract: A new P—N—P ligand is useful in ethylene oligomerizations. In combination with i) a source of chromium and ii) an activator such as methylalumoxane; the ligand of this invention may be used to prepare an oligomer product that contains a mixture of hexenes and octenes. The hexenes and octenes produced with this ligand contain very low levels of internal olefins when produced under preferred reaction conditions.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: March 15, 2011
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Charles Ashton Garret Carter, Lee Douglas Henderson
  • Publication number: 20110046429
    Abstract: The present invention relates to a method for preparing linear alpha-olefins (LAO) by oligomerization of ethylene in the presence of solvent and homogenous catalyst, comprising the steps of: (i) feeding ethylene, solvent and catalyst into an oligomerization reactor, (ii) oligomerizing the ethylene in the reactor, (iii) removing a reactor outlet stream comprising solvent, linear alpha-olefins, ethylene, and catalyst from the reactor via a reactor outlet piping system, (iv) transferring the reactor outlet stream to a catalyst deactivation and removal step, and (v) deactivating and removing the catalyst from the reactor outlet stream, characterized in that at least one organic amine is added into the oligomerization reactor and/or into the reactor outlet piping system.
    Type: Application
    Filed: January 7, 2009
    Publication date: February 24, 2011
    Inventors: Vugar Aliyev, Fuda Mosa, Mohammed Al-Hazmi, Syriac Palackal, Ayed Al-ayed, Sultan Al-Otaibi, Mohammed Zahoor, Wolfgang Müller, Peter M. Fritz, Heinz Bölt, Anton Wellenhofer, Florian Winkler, Uwe Rosenthal, Hans-Jörg Zander, Normen Peulecke, Bernd H. Müller, Karl-Heinz Hofmann, Helmut Fritz, Carsten Taube, Andreas Meiswinkel, Richard Schneider, Anina Woehl
  • Publication number: 20110034748
    Abstract: We provide a process, comprising: a. oligomerizing propylene in ionic liquid; b. optionally alkylating the oligomer; to make a base oil having: i. a kinematic viscosity at 100° C. of 2.9 mm2/s or greater, ii. a viscosity index from 25 to 90, and iii. a low cloud point. We provide a process, comprising: oligomerizing a feed comprising propylene and propane to make a base oil having: i. from 45 to 70 wt % hydrocarbons boiling at 900° F. or higher, ii. a viscosity index from 25 to 90, and iii. a low cloud point. We provide a process, comprising: a. mixing longer chain alpha olefins with propylene; b. oligomerizing the feed, to make a base oil having: i. a kinematic viscosity at 100° C. greater than 10 mm2/s; ii. a viscosity index from 50 to 90; iii. a low pour point; and iv. a low cloud point.
    Type: Application
    Filed: August 10, 2009
    Publication date: February 10, 2011
    Inventors: Saleh Elomari, Stephen J. Miller
  • Publication number: 20110034742
    Abstract: A process, comprising: a. selecting a kinematic viscosity; b. feeding an olefin feed comprising a propylene to an oligomerization zone; c. tuning an oligomerizing step to produce a base oil having the kinematic viscosity and a viscosity index from 20 to 90. A process, comprising: a. selecting a kinematic viscosity that is greater than 20 mm2/s; b. feeding a feed comprising propylene to an oligomerization zone; and c. adding a Brönsted acid to produce a base oil. A process, comprising tuning a step in an oligomerization zone comprising a propylene and an ionic liquid catalyst to produce a base oil having: a. a high kinematic viscosity; b. a viscosity index from 25 to 90; and c. a low pour point. A base oil, comprising oligomerized olefins, wherein the base oil has: a. a high kinematic viscosity; b. a viscosity index from 25 to 90; and c. a low pour point.
    Type: Application
    Filed: August 10, 2009
    Publication date: February 10, 2011
    Inventors: Saleh Elomari, Stephen J. Miller
  • Patent number: 7867938
    Abstract: A catalyst precursor composition comprising: a source of chromium, molybdenum or tungsten; a first ligand having the general formula (R1)(R2P—X—P(R3)(R4); and a second ligand having the general formula (R1?)(R2?)P—X?—P(R3?)(R4?). The present invention also relates to a catalyst system comprising the catalyst precursor composition of the present invention and a cocatalyst. The present invention further relates to a process for the trimerization and tetramerization of olefinic monomers, particularly the trimerization and tetramerization of ethylene to 1-hexene and 1-octene, wherein the process comprises contacting at least one olefinic monomer with the catalyst system of the present invention.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: January 11, 2011
    Assignee: Shell Oil Company
    Inventors: Eric Johannes Maria De Boer, Harry Van Der Heijden, Quoc An On, Johan Paul Smit, Arie Van Zon
  • Patent number: 7834229
    Abstract: In a process for oligomerizing an olefinic hydrocarbon feedstock comprising at least 65 wt % olefins and/or sulfur-containing molecules, the feedstock is contacted under oligomerization conditions with (a) a first unidimensional 10-ring molecular sieve catalyst and (b) a second multidimensional crystalline molecular sieve catalyst. The first and second catalysts may be contained in separate reactors or as separate beds in a single reactor.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: November 16, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, John Stephen Godsmark, Georges Marie Karel Mathys
  • Patent number: 7829749
    Abstract: A new P-N-P ligand is useful in ethylene oligomerizations. In combination with i) a source of chromium and ii) an activator such as methylalumoxane; the ligand of this invention may be used to prepare an oligomer product that contains a mixture of hexenes and octenes. The hexenes and octenes produced with this ligand contain very low levels of internal olefins when produced under preferred reaction conditions.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: November 9, 2010
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Charles Ashton Garret Carter, Lee Douglas Henderson
  • Patent number: 7786336
    Abstract: The present invention relates to a catalyst composition for ethylene oligomerization and the use thereof. Such catalyst composition includes chromium compound, ligand containing P and N, activator and accelerator; wherein the chromium compound is selected from the group consisting of acetyl acetone chromium, THF-chromium chloride and Cr(2-ethylhecanoate)3; general formula of the ligand containing P and N is shown as: in which R1, R2, R3 and R4 are phenyl, benzyl, or naphthyl. R5 is isopropyl, butyl, cyclopropyl, cyclopentyl, cyclohexyl or fluorenyl; the activatior is methyl aluminoxane, ethyl aluminoxane, propyl aluminoxane and/or butyl aluminoxane; the accelerator is selected from the group consisting of 1,1,2,2,-tetrachloroethane, 1,1,2,2-tetrabromoethane, 1,1,2,2-tetrafluoroethane, and compounds having a formula of X1R6X2, in which X1 and X2 are F, Cl, Br, I or alkoxyl, R6 is alkylene or arylene group; the molar ratio of chromium compound, ligand containing P and N, activator and accelerator is 1:0.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: August 31, 2010
    Assignee: Petrochina Company Limited
    Inventors: Baojun Zhang, Tao Jiang, Jianzhong Li, Lihua Xing, Yingnan Ning, Shukun Sun, Dongting Kuang, Yongcheng Sun, Yunguang Han, Qian Chen, Hongxia Chen, Deshun Zhang, Yulong Li, Yongjun Zhang, Huimin Yuan, Sihan Wang, Guizhi Wang, Jingyuan Zhang
  • Patent number: 7759533
    Abstract: A substantially surface-deactivated catalyst composition that is stable at least to 300° C. The catalyst includes a zeolite catalyst (e.g., ZSM-22, ZSM-23, or ZSM-57) having active internal Brönsted acid sites and a surface-deactivating amount of a rare earth or yttrium oxide (e.g., chosen from lanthanum oxide or lanthanides oxide). This catalyst is preferably used in a process for producing a higher olefin by oligomerizing a light olefin, wherein the process includes contacting a light olefin under oligomerization conditions with the substantially surface-deactivated catalyst composition.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: July 20, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jane C. Cheng, Sal Miseo, Stuart L. Soled, John S. Buchanan, Jennifer S. Feeley
  • Publication number: 20100145123
    Abstract: A process for the use in the oligomerization of olefins is presented. The process produces a gasoline boiling range product having a high research octane number and almost no aromatics content. The process utilizes a solid catalyst comprising a zeolite that is treated with a phosphorous containing reagent to generate a catalyst having phosphorous content between 0.5 and 15 wt %.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 10, 2010
    Inventors: Christopher P. Nicholas, Laszlo T. Nemeth, Deng-Yang Jan
  • Patent number: 7718838
    Abstract: A process is provided to stabilize and/or reactivate an olefin production catalyst system which comprises contacting an olefin production catalyst system, either before or after use, with an aromatic compound.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: May 18, 2010
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: William M. Woodard, Warren M. Ewert, Harvey D. Hensley, Mark E. Lashier, Glyndal D. Cowan, Jeffrey W. Freeman, Ralph V. Franklin, Ronald D. Knudsen, Richard L. Anderson, Lyle R. Kallenbach, Bruce E. Kreischer
  • Publication number: 20100081842
    Abstract: A new P—N—P ligand is useful in ethylene oligomerizations. In combination with i) a source of chromium and ii) an activator such as methylalumoxane; the ligand of this invention may be used to prepare an oligomer product that contains a mixture of hexenes and octenes. The hexenes and octenes produced with this ligand contain very low levels of internal olefins when produced under preferred reaction conditions.
    Type: Application
    Filed: September 1, 2009
    Publication date: April 1, 2010
    Inventors: Xiaoliang Gao, Charles Ashton Garret Carter, Lee Douglas Henderson
  • Publication number: 20100081777
    Abstract: A new P—N—P ligand is useful in ethylene oligomerizations. In combination with i) a source of chromium and ii) an activator such as methylalumoxane; the ligand of this invention may be used to prepare an oligomer product that contains a mixture of hexenes and octenes. The hexenes and octenes produced with this ligand contain very low levels of internal olefins when produced under preferred reaction conditions.
    Type: Application
    Filed: September 1, 2009
    Publication date: April 1, 2010
    Inventors: Xiaoliang Gao, Charles Ashton Garret Carter, Lee Douglas Henderson
  • Patent number: 7687672
    Abstract: The present invention relates to an in-line method for generating comonomer, such as 1-hexene or 1-octene, from monomer, such as ethylene. The comonomer generated is directly transported, without isolation or storage, to a polyethylene polymerization reactor.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Timothy D. Shaffer
  • Patent number: 7645914
    Abstract: Process for telomerizing noncyclic olefins having at least two conjugated double bonds with at least one nucleophile using a catalyst containing a metal of group 8, 9 or 10 of the Periodic Table of the Elements, wherein hydrogen is added via a hydrogen source to the process in at least one process step in the overall telomerization process.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: January 12, 2010
    Assignee: Evonik Oxeno GmbH
    Inventors: Cornelia Borgmann, Dirk Roettger, Dagmara Ortmann, Reiner Bukohl, Stephan Houbrechts, Franz Nierlich
  • Patent number: 7638671
    Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 29, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiaohong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, Jr., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
  • Patent number: 7638670
    Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a pyridyl amine or a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: December 29, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiaohong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, Jr., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
  • Patent number: 7632772
    Abstract: The invention relates to novel carbene ligands and their incorporated monomeric and resin/polymer linked ruthenium catalysts, which are recyclable and highly active for olefin metathesis reactions. It is disclosed that significant electronic effect of different substituted 2-alkoxybenzylidene ligands on the catalytic activity and stability of corresponding carbene ruthenium complexes, some of novel ruthenium complexes in the invention can be broadly used as catalysts highly efficient for olefin metathesis reactions, particularly in ring-closing (RCM), ring-opening (ROM), ring-opening metathesis polymerization (ROMP) and cross metathesis (CM) in high yield. The invention also relates to preparation of new ruthenium complexes and the use in metathesis.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: December 15, 2009
    Inventor: Zheng-Yun James Zhan
  • Patent number: 7615598
    Abstract: A method of continuously manufacturing a high viscosity polyalphaolefin product by introducing a monomer and an ionic liquid catalyst together into a reaction zone while simultaneously withdrawing from the reaction zone a reaction zone effluent that contains the high viscosity polyalphaolefin. The reaction zone is operated under reaction conditions suitable for producing the high viscosity polyalphaolefin product. The preferred high viscosity polyalphaolefin has a kinematic viscosity exceeding about 8 cSt and is the reaction product of the trimerization, oligomerization, or polymerization of an alpha olefin or a mixture of one or more product thereof. The high viscosity polyalphaolefins are useful as lubricants or lubricant additives.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: November 10, 2009
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kenneth D. Hope, Donald A. Stern, Donald W. Twomey, J. Barry Collins
  • Publication number: 20090203948
    Abstract: The present invention discloses a chelate ligand wherein the backbone contains a metal.
    Type: Application
    Filed: October 20, 2005
    Publication date: August 13, 2009
    Inventors: John Gladysz, Christine Hahn, Robert Tuba, Abbas Razavi
  • Patent number: 7554001
    Abstract: The invention provides a mixed heteroatomic ligand for an oligomerization of olefins catalyst, which ligand includes at least three heteroatoms, of which at least one heteroatom is sulfur and at least two heteroatoms are not the same. The invention also provides a multidentate mixed heteroatomic ligand for an oligomerization of olefins catalyst, which ligand includes at least three heteroatoms of which at least one is a sulfur atom. The ligand may also contain, in addition to sulfur, at least one nitrogen or phosphorous heteroatom.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: June 30, 2009
    Assignee: Sasol Technology (Pty) Ltd.
    Inventors: John Thomas Dixon, Peter Wasserscheid, David Shane McGuinness, Fiona Millicent Hess, Hulisani Maumela, David Hedley Morgan, Annette Bollman
  • Publication number: 20090156874
    Abstract: A process for the preparation of oligomeric poly alpha-olefins comprises oligomerizing low molecular weight PAO in the presence of an ionic liquid catalyst under oligomerization conditions. The low molecular weight PAOs used as a feed or feed component of the present process are the light olefinic by-product fraction including the dimers and light fractions from the metallocene-catalyzed PAO oligomerization process.
    Type: Application
    Filed: December 2, 2008
    Publication date: June 18, 2009
    Inventors: Abhimanyu Onkar Patil, Satish Bodige
  • Patent number: 7525009
    Abstract: The invention describes a process for trimerisation olefins, which process includes the step of contacting an olefinic feedstream with a catalyst system which includes a transition metal compound and a heteroatomic ligand and wherein the trimer is an olefin and wherein the heteroatomic ligand is described by the following general formula (R)nA-B-C(R)m.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: April 28, 2009
    Assignee: Sasol Technology (Pty) Limited
    Inventors: Kevin Blann, Annette Bollmann, John Thomas Dixon, Arno Neveling, David Hedley Morgan, Hulisani Maumela, Esna Killian, Fiona Millicent Hess, Stefanus Otto, Matthew James Overett
  • Patent number: 7511183
    Abstract: The invention describes a process for tetramerisation of olefins wherein the product stream of the process contains more than 30% of the tetramer olefin. The process includes the step of contacting an olefinic feedstream with a catalyst system containing a transition metal compound and a heteroatomic ligand.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: March 31, 2009
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Kevin Blann, Annette Bollmann, John Thomas Dixon, Arno Neveling, David Hedley Morgan, Hulisani Maumela, Esna Killian, Fiona Millicent Hess, Stefanus Otto, Lana Pepler, Hamdani Ahmed Mahomed, Matthew James Overett
  • Patent number: 7425661
    Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a pyridyl amine or a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: September 16, 2008
    Assignee: ExxonMobil Chemicals Patents Inc.
    Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiaohong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, Jr., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
  • Patent number: 7402646
    Abstract: Processes for preparing substantially linear polymers from diisopropenylbenzenes are provided. The polymers are useful in making a variety of products, including coatings, pigment dispersing agents, and stabilizers.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: July 22, 2008
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Steven Dale Ittel, Alexei A. Gridnev
  • Publication number: 20080125614
    Abstract: A solid, hydrocarbon-insoluble, catalyst component useful in polymerizing olefins containing magnesium, titanium, and halogen further contains an internal electron donor comprising a compound containing electron donating substituents with a structure: wherein D1 and D2 are selected individually from and R, R1, R2, R3, R4, R5, R6, and R7 individually are hydrocarbon or substituted hydrocarbon groups containing 1 to 20 carbon atoms and R1, R2, R3, R4, R6, and R7 may be hydrogen; R4 may be —NR2; and wherein groups R1 and R2, R2 and R3, R3 and R4, R3 and R5, and groups R6 and R7 may be joined to form a cyclic structure.
    Type: Application
    Filed: March 1, 2006
    Publication date: May 29, 2008
    Applicant: Innovene USA
    Inventors: Roger Uhrhammer, John P. Lalka
  • Publication number: 20080093262
    Abstract: This invention relates to a process and an installation for treatment of a heavy petroleum feedstock, of which at least 80% by weight has a boiling point of greater than 340° C., whereby the process comprises the following stages: (a) Hydroconversion in a fixed-bed reactor operating with an upward flow of liquid and gas, whereby the net conversion in products boiling below 360° C.
    Type: Application
    Filed: October 24, 2006
    Publication date: April 24, 2008
    Inventors: Andrea Gragnani, Frederick Morel
  • Patent number: 7323524
    Abstract: The invention provides a process for polymerising olefins to branched polyolefins in the presence of a polymerisation catalyst and a cocatalyst, wherein the cocatalyst produces 1-octene in a selectivity greater than 30%.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: January 29, 2008
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Kevin Blann, Deon De Wet-Roos, John Thomas Dixon
  • Patent number: 7304159
    Abstract: Mixed bis-imine pyridine ligands of formula (I), wherein Z1, which is different from Z2, is an optionally substituted aryl group; and Z2 comprises an optionally substituted heterohydrocarbyl moiety, or an optionally substituted aryl group in combination with a metal, said optionally substituted aryl group being ?-co-ordinated to the metal; mixed bis-imine pyridine complexes comprising a ligand of formula (I); mixed ionic bis-imine pyridine complexes comprising a ligand of formula (I); and processes for the production of alpha olefins from ethylene, using said complexes.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: December 4, 2007
    Assignee: Shell Oil Company
    Inventors: Eric Johannes Maria De Boer, Harry Van Der Heijden, Wilhelmina Cornelia Verhoef-Van Wijk, Arie Van Zon
  • Patent number: 7297832
    Abstract: The invention describes a process for tetramerisation of olefins wherein the product stream of the process contains more than 30% of the tetramer olefin. The process includes the step of contacting an olefinic feedstream with a catalyst system containing a transition metal compound and a heteroatomic ligand.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: November 20, 2007
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Kevin Blann, Annette Bollmann, John Thomas Dixon, Arno Neveling, David Hedley Morgan, Hulisani Maumela, Esna Killian, Fiona Millicent Hess, Stefanus Otto, Matthew James Overett, Michael James Green
  • Patent number: 7291758
    Abstract: The present invention relates to a process for the production of highly reactive polyisobutenes with a content of terminal vinylidene groupings of greater than 80 mol % and an average molecular weight of 500 to 10,000 Dalton by cationic polymerization of isobutene or of isobutene and monomers copolymerizable with isobutene in the presence of solvent-stabilized transition metal complexes with weakly coordinated anions.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: November 6, 2007
    Assignee: Basf Aktiengesellschaft
    Inventors: Martin Bohnenpoll, Jürgen Ismeier, Oskar Nuyken, Mario Vierle, Dirk Kurt Schön, Fritz Kühn
  • Patent number: 7256152
    Abstract: A composition defined: either as comprising at least one Broensted acid, designated HB, dissolved in a liquid medium with an ionic nature of general formula Q+A?, in which Q+ represents an organic cation and A? represents an anion that is different from B, or as resulting from dissolving at least one Broensted acid, designated HB, in a non-aqueous liquid medium with an ionic nature of general formula Q+A?, in which Q+ represents an organic cation and A? represents an anion that is identical to the anion B, can be used as a catalyst and solvent in acid catalysis processes, in particular in the alkylation of aromatic hydrocarbons, the oligomerization of olefins, the dimerization of isobutene, the alkylation of olefins by isoparaffins, the isomerization of n-paraffins into isoparaffins, the isomerization of n-olefins into iso-olefins, the isomerization of the double bond of an olefin and the purification of an olefin mixture that contains branched alpha olefins as impurities.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: August 14, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Helene Olivier-Bourbigou, Dominique Commereuc, Olivia Martin, Lionel Magna, Emmanuel Pellier
  • Patent number: 7214842
    Abstract: Olefins are oligomerized by contacting an olefin with a catalyst system that is comprised of a) at least one transition metal complex that is complexed with a polydentate complexing ligand and b) an alkylaluminoxane, each component being present in such amounts that the molar ratio of aluminum transition metal is greater than 10, wherein at least part of the amount of the transition metal complex is added continuously or in portions during the oligomerization.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: May 8, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Shahram Mihan, Heiko Maas, Martina Prinz
  • Patent number: 7199075
    Abstract: A catalyst for the oligomerization of olefins, especially ethylene contains: at least one nickel complex e.g. Li2 Ni X2 that results from bringing into contact a nickel salt e.g. a nickel carboxylate with a bidentate chelating ligand containing a nitrogen-containing heterocyclic compound with an alcohol e.g. Ha-C(OH)RR?; and at least one hydrocarbylaluminum compound from tris(hydrocarbyl)aluminum compounds, chlorinated or brominated hydrocarbylaluminum compounds or at least one aluminoxane.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: April 3, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Fredy Speiser, Pierre Braunstein, Lucien Saussine
  • Patent number: 7157612
    Abstract: A process is provided to stabilize and/or reactivate an olefin production catalyst system which comprises contacting an olefin production catalyst system, either before or after use, with an aromatic compound.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: January 2, 2007
    Assignee: Phillips Petroleum Company
    Inventors: Warren M. Ewert, William M. Woodard, Harvey D. Hensley, Mark E. Lashier, Glyndal D. Cowan, Jeffrey W. Freeman, Ralph V. Franklin, Ronald D. Knudsen, Richard L. Anderson, Lyle R. Kallenbach, Bruce E. Kreischer
  • Patent number: 7151199
    Abstract: Hydrocarbon or oxygenate conversion process in which a feedstock is contacted with a non zeolitic molecular sieve which has been treated to remove most, if not all, of the halogen contained in the catalyst. The halogen may be removed by one of several methods. One method includes heating the catalyst in a low moisture environment, followed by contacting the heated catalyst with air and/or steam. Another method includes steam-treating the catalyst at a temperature from 400° C. to 1000° C. The hydrocarbon or oxygenate conversion processes include the conversion of oxygenates to olefins, the conversion of oxygenates and ammonia to alkylamines, the conversion of oxygenates and aromatic compounds to alkylated aromatic compounds, cracking and dewaxing.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: December 19, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Luc Roger Marc Martens, Stephen N. Vaughn, Albert Edward Schweizer, John K. Pierce, Shun Chong Fung
  • Patent number: 7081557
    Abstract: Disclosed is a method for the oligomerization of olefins, wherein an olefin is brought into contact with a catalyst system that is obtained from a chromium source, a cycloalkylalkyl-substituted triazacyclohexane, especially a 1,3,5-tris-(cycloalkylalkyl)-1,3,5-triazacyclohexane and an activator such as an alkyl aluminum compound or an alkylalumoxane.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: July 25, 2006
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Ferenc Molnar, Heiko Maas, Martina Egen, Randolf Köhn
  • Patent number: 7049442
    Abstract: Mixed bis-imine pyridine ligands of formula (I), wherein Z1, which is different from Z2, is an optionally substituted aryl group; and Z2 comprises an optionally substituted heterohydrocarbyl moiety, or an optionally substituted aryl group in combination with a metal, said optionally substituted aryl group being ?-co-ordinated to the metal; mixed bis-imine pyridine complexes comprising a ligand of formula (I); mixed ionic bis-imine pyridine complexes comprising a ligand of formula (I); and processes for the production of alpha olefins from ethylene, using said complexes.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: May 23, 2006
    Assignee: Shell Oil Company
    Inventors: Eric Johannes Maria De Boer, Harry Van Der Heijden, Wihelmina Cornelia Verhoef-Van Wijk, Arie Van Zon
  • Patent number: 7037988
    Abstract: A process for production of higher linear alpha olefins and/or alkyl-branched alpha olefins, which comprises the co-oligomerisation of one or more alpha olefins with ethylene in the presence of a metal catalyst system employing one or more bis-aryliminepyridine MXa complexes and/or one or more [bis-aryliminepyridine MYp.Lb+][NC?]q complexes; and said process is carried out at an ethylene pressure of less than 2.5 MPa.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: May 2, 2006
    Assignee: Shell Oil Company
    Inventors: Eric Johannes Maria De Boer, Hendrikus Hyacinthus Deuling, Harry Van Der Heijden, Quoc An On, Aart Bartus Van Oort, Arie Van Zon
  • Patent number: 7030286
    Abstract: The invention relates to a process for preparing 1-octene by reacting 1,3-butadiene with a telogen of the formula H—X—Y—H, where X is O, N, S or P and Y is C, N or Si and X and Y bear, depending on their valence, further substituents, in the presence of a telomerization catalyst to form a telomer of the formula H2C?CH—CH2—CH2—CH2—CH?CH—CH2—X—Y—H, partially hydrogenating the telomer to form a 1-substituted 2-octene of the formula H3C—CH2—CH2—CH2—CH2—CH?CH—CH2—X—Y—H and dissociating the 1-substituted 2-octene to give 1-octene.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: April 18, 2006
    Assignee: OXENO Olefinchemie GmbH
    Inventors: Dirk Röttger, Axel Tuchlenski
  • Patent number: 6951831
    Abstract: A catalyst composition for use in dimerizing, co-dimerizing or oligomerizing olefins comprises: at least one zero-valent nickel complex; at least one acid with formula H+X? in which X? represents an anion; and at least one ionic liquid with general formula Q+ A? in which A? is an anion identical to or different from X?. The composition can also comprise a nitrogen-containing ligand. It can be used in dimerizing, co-dimerizing, oligomerizing and in polymerizing olefins.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: October 4, 2005
    Assignee: Institut Francais du Petrole
    Inventors: Vincent Lecocq, Hélène Olivier-Bourbigou