Elemental O Or S Acceptor With Extraneous Nonhydrocarbon Agent, E.g., Catalyst, Etc. Patents (Class 585/658)
  • Publication number: 20130035531
    Abstract: A reactor in the form of a cylinder or prism wherein the interior of the reactor is divided by a cylindrical or prismatic gastight housing G which is arranged in the longitudinal direction of the reactor into an inner region having one or more catalytically active zones, in which in each case a packing composed of monoliths stacked on top of one another, next to one another and behind one another and before each catalytically active zone in each case a mixing zone having solid internals are provided, and an outer region B arranged coaxially to the inner region A, wherein the inner region A is insulated from the outer region B of the reactor by means of a microporous high-performance insulation material having a thermal conductivity 1 at temperatures up to 700° C. of less than 0.05 W/m*K is proposed.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 7, 2013
    Applicant: BASF SE
    Inventors: Gerhard Olbert, Ulrike Wegerle, Grigorios Kolios, Carlos Tellaeche Herranz, Reinhold Höchst, Andrea Gienger, Roland Bauer
  • Publication number: 20130035529
    Abstract: The invention relates to a process for the autothermal gas-phase dehydrogenation of a hydrocarbon-comprising gas stream by means of an oxygen-comprising gas stream over a heterogeneous catalyst configured as a monolith to give a reaction gas mixture and regeneration of the catalyst in a reactor in the form of a cylinder or prism, wherein the reactor is operated alternately in the production mode of the autothermal gas-phase dehydrogenation and in the regeneration mode.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 7, 2013
    Applicant: BASF SE
    Inventors: Gerhard Olbert, Ulrike Wegerle, Grigorios Kolios, Albena Kostova
  • Patent number: 8237000
    Abstract: Processes for using a combination of carbon dioxide and oxygen in the dehydrogenation of hydrocarbons are provided. A hydrocarbon feedstock, carbon dioxide and oxygen are fed to an oxidative dehydrogenation reactor system containing one or more catalysts that promote dehydrogenation of the hydrocarbon feedstock to produce a dehydrogenated hydrocarbon product. The processes of the present invention may be used, for example, to produce styrene monomer by dehydrogenation of ethylbenzene using carbon dioxide and oxygen as oxidants.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: August 7, 2012
    Assignee: Lummus Technology, Inc.
    Inventors: Stephen C. Arnold, Johannes Hendrik Koegler, Anne Mae Gaffney, Chuen Yuan Yeh, Ruozhi Song
  • Publication number: 20120083641
    Abstract: The catalyst for oxidative dehydrogenation of propane to propylene includes vanadium and aluminum incorporated into the framework of a mesoporous support, viz., MCM-41, to form V—Al-MCM-41, and nickel impregnated onto the walls of the mesoporous support. Nickel loading is preferably in the range of 5 to 15% by weight of the catalyst. A process for the production of propylene from propane includes steps of placing the catalyst in a fixed bed reactor, introducing a flow of feedstock in a propane:oxygen:nitrogen ratio of about 6:6:88 by volume, maintaining the reactor at atmospheric pressure and in a temperature range of about 400 to 550° C., collecting the product, and separating propylene from the product. The process achieves propane conversion between about 6 to 22%, and a selectivity for propylene between about 22 and 70%, depending upon percent nickel content and temperature of the reaction.
    Type: Application
    Filed: October 4, 2010
    Publication date: April 5, 2012
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: SHAKEEL AHMED, FAIZUR RAHMAN, UWAIS BADURUTHAMAL
  • Publication number: 20120041247
    Abstract: The present invention relates to a catalyst for producing alkene using as a starting material alkane obtained by reducing an Mo—V—Te composite oxide having a crystal structure and being represented by formula (1): MoaVbTecOd??(1) wherein a is 1.0, b is from 0.01 to 1.0, c is from 0 to 1.0, and d is the number of oxygen atoms required to electrically neutralize the whole compound determined by the oxidation number of Mo, V and Te; a method for producing the same; and a method for producing alkenes from alkanes using the catalyst. The catalyst of the present invention enables improvement of the initial activity of the catalyst for producing alkene and selectivity of alkene.
    Type: Application
    Filed: May 27, 2010
    Publication date: February 16, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Gen Inoue, Meiko Saihata
  • Patent number: 8106249
    Abstract: Methods of oxidative dehydrogenation (ODH) is provided wherein conducting ODH in microchannels has unexpectedly been found to yield superior performance when compared to the same reactions at the same conditions in larger reactors. ODH methods employing a Mo—V—Mg—O catalyst is also described. Microchannel apparatus for conducting ODH is also disclosed.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: January 31, 2012
    Assignee: Velocys
    Inventors: John H. Brophy, Kai Jarosch, Terry J. Mazanec, Matthew B. Schmidt, Laura J. Silva, Anna Lee Tonkovich, Fred Pesa, David J. Hesse
  • Publication number: 20110301392
    Abstract: A catalyst for the dehydrogenation of alkanes or alkyl substituents of hydrocarbons, is a shaped body having at least one oxide from the elements of the main or secondary group II to IV of the periodic table or of a mixed oxide thereof serving as base material of the shaped body. The catalyst further contains an additional constituent which is an oxide of an element of the main group IV of the periodic table, added during the shaping process. A platinum compound and a compound of an element of the main group IV of the periodic table is used as a surface constituent of the catalyst. The invention further relates to the production of the catalyst and to a method for the dehydrogenation of alkanes using the catalyst.
    Type: Application
    Filed: December 15, 2009
    Publication date: December 8, 2011
    Applicant: UHDE GMBH
    Inventors: Muhammad Iqbal Mian, Max Heinritz-Adrian, Sascha Wenzel, Oliver Noll, Meinhard Schwefer, Helmut Gehrke
  • Patent number: 8043577
    Abstract: With the help of a method and device for nozzle-jetting oxygen into a synthesis reactor, e.g. for oxy-dehydration, with largely axial flow of the gas mixture through a catalyst bed, it is intended to vastly improve the mixing-in and mixing-through of oxygen above the catalyst especially for oxy-dehydration process. This is achieved by feeding the oxygen to a ring distributor system arranged above the catalyst bed in pure form, as air or mixed with inert gas or water vapor and jetting the oxygen onto the catalyst surface through several exit openings in the ring distributor at an inclined angle deviating from the vertical.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: October 25, 2011
    Assignee: Uhde GmbH
    Inventors: Johannes Kowoll, Max Heinritz-Adrian, Lothar Semrau
  • Publication number: 20110245562
    Abstract: The present invention provides a continuous process for the oxidative dehydrogenation of a lower paraffin to a lower olefin, preferably alpha olefin by sequentially providing pulses of an oxygen containing gas, an inert gas, the paraffin, and inert gas in the presence of a catalyst that preferably has the ability to hold and release oxygen, so that the paraffin and the oxygen do not directly mix in the reactor.
    Type: Application
    Filed: March 17, 2011
    Publication date: October 6, 2011
    Inventors: Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina, Alexander Yurievich Stakheev, Ilya Mikhailovich Sinev, Andrzej Krzywicki
  • Publication number: 20110245571
    Abstract: The present invention provides a process for the oxidative dehydrogenation of a paraffin such as ethane to the corresponding alkene such as ethylene in which the alkane is contacted with a bed of oxidative dehydrogenation catalyst having an enhanced labile oxygen content in the crystal structure on an inert support optionally with a regenerable metallic oxidant composition in the absence of a gaseous feed containing oxygen.
    Type: Application
    Filed: March 17, 2011
    Publication date: October 6, 2011
    Inventors: Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina, Alexander Yurievich Stakheev, Ilya Mikhailovich Sinev, Andrzej Krzywicki
  • Patent number: 7999144
    Abstract: Methods of oxidative dehydrogenation are described. Surprisingly, Pd and Au alloys of Pt have been discovered to be superior for oxidative dehydrogenation in microchannels. Methods of forming these catalysts via an electroless plating methodology are also described. An apparatus design that minimizes heat transfer to the apparatus' exterior is also described.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: August 16, 2011
    Assignee: Velocys
    Inventors: Anna Lee Tonkovich, Bin Yang, Steven T. Perry, Terry Mazanec, Ravi Arora, Francis P. Daly, Richard Long, Thomas D. Yuschak, Paul W. Neagle, Amanda Glass
  • Publication number: 20110152597
    Abstract: The invention provides methods of oxidative dehydrogenation (ODH). Conducting ODH in microchannels has unexpectedly been found to yield superior performance when compared to the same reactions at the same conditions in larger reactors. ODH methods employing a Mo—V—Mg—O catalyst is also described. Microchannel apparatus for conducting ODH is also disclosed.
    Type: Application
    Filed: June 28, 2010
    Publication date: June 23, 2011
    Applicant: Velocys Inc.
    Inventors: John H. Brophy, Kai Jarosch, Terry J. Mazanec, Matthew B. Schmidt, Laura J. Silva, Anna Lee Tonkovich, Fred Pesa, David J. Hesse
  • Publication number: 20110130607
    Abstract: A reactor (1) in the form of an essentially horizontal cylinder for carrying out an autothermal gas-phase dehydrogenation of a hydrocarbon-comprising gas stream (2) by means of an oxygen-comprising gas stream (3) to give a reaction gas mixture over a heterogeneous catalyst configured as monolith (4), wherein the interior of the reactor (1) is divided by a detachable, cylindrical or prismatic housing G which is arranged in the longitudinal direction of the reactor (1) and is gastight in the circumferential direction and open at two end faces of the housing into an inner region A having one or more catalytically active zones (5), in which in each case a packing composed of monoliths (4) stacked on top of one another, next to one another and above one another and before each catalytically active zone (5) in each case a mixing zone (6) having solid internals are provided, and an outer region B arranged coaxially to the inner region A, is proposed.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 2, 2011
    Applicant: BASF SE
    Inventors: Grigorios Kolios, Wilhelm Ruppel, Ulrike Wegerle, Jasmina Kessel, Wolfgang Gerlinger, Godwind Tafara Peter Mabande, Goetz-Peter Schindler, Albena Kostova, Gerhard Olbert, Peter Pfab
  • Patent number: 7847118
    Abstract: A process for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated in a reactor which is manufactured from a composite material which consists, on its side in contact with the reaction chamber, of a steel B with specific elemental composition which, on its side facing away from the reaction chamber, either directly or via an intermediate layer of copper, or of nickel, or of copper and nickel, is plated onto a steel A with specific elemental composition, and also partial oxidations of the dehydrogenated hydrocarbon and the reactor itself.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: December 7, 2010
    Assignee: BASF SE
    Inventors: Claus Hechler, Wilhelm Ruppel, Martin Dieterle, Karl-Heinrich Klappert, Klaus Joachim Mueller-Engel, Goetz-Peter Schindler, Catharina Klanner, Hans-Juergen Bassler
  • Patent number: 7842846
    Abstract: A process for heterogeneously catalyzed partial dehydrogenation of a hydrocarbon, in which a reaction gas mixture input stream comprising the hydrocarbon to be dehydrogenated is conducted through a fixed catalyst bed disposed in a shaft and the reaction gas mixture input stream is obtained in the shaft by metering an input gas II comprising molecular oxygen upstream of the fixed catalyst bed into an input gas stream I which comprises molecular hydrogen and the hydrocarbon to be dehydrogenated and is flowing within the shaft toward the fixed catalyst bed.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: November 30, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Claus Hechler, Wilhelm Ruppel, Wolfgang Gerlinger, Wolfgang Schneider, Klaus Joachim Mueller-Engel
  • Patent number: 7829753
    Abstract: Catalytic system for partial oxidation reactions of hydrocarbons characterized in that it contains: one or more metals belonging to the 1st, 2nd, and 3rd transition series; one or more elements of group IIIA, IVA or VA, wherein at least one of said metals or said elements is in the form of a nitride.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: November 9, 2010
    Assignee: Saipem S.p.A.
    Inventors: Luca Basini, Domenico Sanfilippo, Alessandra Guarinoni
  • Patent number: 7816576
    Abstract: The invention relates to a method for producing unsaturated hydrocarbons. According to said method, in a first step, a hydrocarbon, especially a mixture which contains alkanes, essentially no water, and can contain water vapour, is continuously guided through a first catalyst bed provided with standard dehydration conditions. Liquid water, water vapour and a gas containing oxygen are then added to the reaction mixture obtained in the first step and, in a second step, the reaction mixture obtained is then continuously guided through another catalyst bed for oxidising hydrogen and for further dehydrating hydrocarbons. The first catalyst bed can be heated and the heating in the first step is then preferably regulated in such a way that an essentially isothermic operating mode is created.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: October 19, 2010
    Assignee: UHDE GmbH
    Inventors: Natarajan Thiagarajan, Max Heinritz-Adrian, Sascha Wenzel, Johannes Menzel
  • Patent number: 7807860
    Abstract: The present invention provides a reactor design that enables an auto-thermal cracking process to be conducted at any suitable pressure wherein the gaseous reactants are preheated separately before mixing and then presented to the reaction zone in a uniformly distributed manner.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: October 5, 2010
    Assignee: Ineos Europe Limited
    Inventors: Derek Alan Colman, Michael John Alexander Matthewman, Ian Allan Beattie Reid, Vaughan Clifford Williams, William Terence Woodfin
  • Patent number: 7790942
    Abstract: A process for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated in a reactor which is manufactured from a steel with specific elemental composition on its side in contact with the reaction gas, and also partial oxidations of the dehydrogenated hydrocarbon and the reactor itself.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: September 7, 2010
    Assignee: BASF SE
    Inventors: Claus Hechler, Wilhelm Ruppel, Goetz-Peter Schindler, Catharina Klanner, Hans-Juergen Bassler, Martin Dieterle, Karl-Heinrich Klappert, Klaus Joachim Mueller-Engel
  • Patent number: 7754935
    Abstract: Methods of dehydrogenating hydrocarbons to yield unsaturated compounds are described. Reactor configurations useful for dehydrogenation are also described. Hydrocarbons can be dehydrogenated, for relatively long periods of time-on-stream, in a reaction chamber having a dimension of 2 mm or less to produce H2 and an olefin. Techniques have been developed that reduce coke and allow stable, relatively long-term operation in small reactors.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: July 13, 2010
    Assignee: Velocys
    Inventors: John H. Brophy, Gary Roberts, G. Bradley Chadwell, Matthew B. Schmidt, Anna Lee Tonkovich
  • Patent number: 7687677
    Abstract: A processing scheme and arrangement for enhanced olefin production involves recovering thermal energy from a reactor effluent stream resulting from the dehydrogenation of a dehydrogenatable hydrocarbon. The process involves contacting the reactor effluent stream with a circulating fluid stream in a first contact cooling zone to produce a product stream and to form a heated circulating fluid stream. Thermal energy is recovered from the heated circulating fluid stream via indirect heat exchange with a first process stream in a first heat exchange zone to form a cooled circulating fluid stream. The cooled circulating fluid stream can be subsequently cooled and at least a first portion thereof returned to the first contact cooling zone.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: March 30, 2010
    Assignee: UOP LLC
    Inventors: Dennis E. O'Brien, Joseph E. Zimmermann, Douglas G. Stewart
  • Patent number: 7683232
    Abstract: A process is disclosed for producing functionalized olefins from a fuel source including an organic compound including a functional group. Useful fuel sources include, for example, biofeedstocks (e.g., carbohydrates, triglycerides, polyols, and biodiesel). The process is preferably carried out by partial oxidation. The overall process can be carried out autothermally.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: March 23, 2010
    Assignee: Regents of the University of Minnesota
    Inventors: Lanny D. Schmidt, Ramanathan Subramanian
  • Patent number: 7682579
    Abstract: The invention relates to a method and device for the injection of oxygen in a reformer reactor, for example, for oxydehydrogenation, with an essentially radial throughflow of the gas mixture through a catalytic packing, whereby the incorporation and mixing of the oxygen before entry into the catalyst is significantly improved, in particular for oxydehydrogenation methods. The above is achieved, whereby the oxygen is introduced in pure form, as air, or mixed with inert gas, or with steam, into an annular distribution system (5) and injected out of a number of outlet openings (6) in the annular distribution system, at an angle to the perpendicular, onto the catalyst surface (3).
    Type: Grant
    Filed: January 15, 2005
    Date of Patent: March 23, 2010
    Assignee: Uhde GmbH
    Inventor: Johannes Kowoll
  • Patent number: 7678956
    Abstract: The invention relates to a method for producing propylene during which a first gas mixture, which is technically free of oxygen but contains propane, water vapor and hydrogen, and which has a temperature of at least 400° C., is led into a reaction device having at least one catalyst bed as well as usual dehydration conditions. Another gas mixture, which contains propane and oxygen and which can also contain ammonia, the propane content exceeding the oxygen content, is led into the same reaction device in which it reacts with the first gas mixture while forming propylene, water vapor and hydrogen, and the formed gas mixture containing propylene, water vapor and hydrogen is drawn out of the reaction device.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: March 16, 2010
    Assignee: Uhde GmbH
    Inventor: Max Heinritz-Adrian
  • Publication number: 20100030004
    Abstract: The present invention relates to a thermally integrated multi-zone process for conversion of alkanes to their corresponding alkenes, involving endothermically converting an alkane to its corresponding alkene by soft oxidant conversion in an endothermic reaction zone, in the presence of a weak oxidant, a suitable catalyst, and heat, to produce an intermediate product gas comprising the corresponding alkene and hydrogen. The weak oxidant may be, for example, carbon dioxide. The hydrogen is then removed from the intermediate product gas by contacting the intermediate product gas, in an exothermic reaction zone, with different second catalyst, and oxygen, to combust the hydrogen and produce a heated product stream comprising the corresponding alkene, water and heat. Heat is recovered from the heated product stream and recycled back to the endothermic reaction zone, while the resulting cooled product stream comprising the corresponding alkene may be subjected to further reaction and/or processing.
    Type: Application
    Filed: July 10, 2009
    Publication date: February 4, 2010
    Inventors: Scott Han, Wolfgang Ruettinger
  • Publication number: 20090318743
    Abstract: Processes for using a combination of carbon dioxide and oxygen in the dehydrogenation of hydrocarbons are provided. A hydrocarbon feedstock, carbon dioxide and oxygen are fed to an oxidative dehydrogenation reactor system containing one or more catalysts that promote dehydrogenation of the hydrocarbon feedstock to produce a dehydrogenated hydrocarbon product. The processes of the present invention may be used, for example, to produce styrene monomer by dehydrogenation of ethylbenzene using carbon dioxide and oxygen as oxidants.
    Type: Application
    Filed: June 19, 2008
    Publication date: December 24, 2009
    Inventors: STEPHEN C. ARNOLD, Johannes Hendrik Koegler, Anne Mae Gaffney, Chuen Yuan Yeh, Ruozhi Song
  • Patent number: 7626068
    Abstract: Catalysts and methods for alkane oxydehydrogenation are disclosed. The catalysts of the invention generally comprise (i) nickel or a nickel-containing compound and (ii) at least one or more of titanium (Ti), tantalum (Ta), niobium (Nb), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), zirconium (Zr), or aluminum (Al), or a compound containing one or more of such element(s). In preferred embodiments, the catalyst is a supported catalyst, the alkane is selected from the group consisting of ethane, propane, isobutane, n-butane and ethyl chloride, molecular oxygen is co-fed with the alkane to a reaction zone maintained at a temperature ranging from about 250° C. to about 350° C., and the ethane is oxidatively dehydrogenated to form the corresponding alkene with an alkane conversion of at least about 10% and an alkene selectivity of at least about 70%.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: December 1, 2009
    Assignee: Celanese International Corporation
    Inventor: Yumin Liu
  • Patent number: 7518027
    Abstract: A process for the production of a mono-olefin from a feedstock comprising a paraffinic hydrocabon which process comprises a) partially combusting at a pressure of at least (15) barg a mixture of the hydrocarbon feed and a molecular oxygen-containing gas in contact with a catalyst capable of supporting combustion beyond the normal fuel rich limit of flammability where they are reacted to form a product comprising one or more mono-olefin(s), carbon monoxide and hydrogen and b) recovering the one or more olefin(s).
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: April 14, 2009
    Assignee: Innovene Europe Limited
    Inventors: Andrew Lindsay Burns, David Charles Griffiths, William Terence Woodfin
  • Patent number: 7411107
    Abstract: A process for the oxidation of a C2 to C4 alkane to produce the corresponding alkene and carboxylic acid which process comprises separation of the alkene from a mixture of the alkene, the alkane and oxygen by absorption in a metallic salt solution, and recovery of an alkene-rich stream from the metallic salt solution. Integrated processes for the production of alkyl carboxylate and alkenyl carboxylate, which processes comprise oxidation of a C2 to C4 alkane to produce the corresponding alkene and carboxylic acid, separation of the alkene from a mixture of the alkene, the alkane and oxygen by absorption in a metallic salt solution, and recovery of an alkene-rich stream from the metallic salt solution for use in production of alkyl carboxylate or alkenyl carboxylate.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: August 12, 2008
    Assignee: BP Chemicals Limited
    Inventor: Andrew Richard Lucy
  • Patent number: 7408094
    Abstract: A process for the production of olefins from a hydrocarbon comprising the steps of: a) passing a first feed stream comprising gaseous reactants to a first reaction zone wherein said gaseous reactants react exothermically to provide a product stream b) producing a mixed feed stream comprising oxygen by passing the product stream produced in step (a) and a second feed stream comprising a hydrocarbon feedstock to a mixing zone, oxygen being passed to the mixing zone via (i) the product stream produced in step (a), (ii) the second feed stream comprising a hydrocarbon feedstock and/or (iii) a third stream comprising an oxygen-containing gas c) passing the mixed feed stream directly to an essentially adiabatic second reaction zone wherein in the absence of a supported platinum group metal catalyst at least a part of the oxygen is consumed and a stream comprising olefins is produced e) cooling the stream comprising olefins exiting the second reaction zone to less than 650° C.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: August 5, 2008
    Assignee: Ineos Europe Limited
    Inventors: Ian Raymond Little, Ian Allan Beattie Reid
  • Patent number: 7402719
    Abstract: The invention provides methods of oxidative dehydrogenation (ODH). Conducting ODH in microchannels has unexpectedly been found to yield superior performance when compared to the same reactions at the same conditions in larger reactors. ODH methods employing a Mo—V—Mg—O catalyst is also described. Microchannel apparatus for conducting ODH is also disclosed.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: July 22, 2008
    Assignee: Velocys
    Inventors: John H. Brophy, Kai Jarosch, Terry J. Mazanec, Matthew B. Schmidt, Laura J. Silva, Anna Lee Tonkovich, Fred Pesa, David J. Hesse
  • Patent number: 7319179
    Abstract: The invention relates to a method for the oxidative dehydrogenation of ethane. The inventive method is characterized in that it consists of bringing the ethane into contact with the catalyst containing Mo, Te, V, Nb and at least a fifth element A which is selected from Cu, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Zr, Sb, Bi, an alkali metal, an alkaline-earth metal and a rare earth, in which at least Mo, Te, V and Nb are present in the form of at least one oxide, said catalyst presenting, in calcined form, an X-ray diffractogram with more than ten intense diffraction lines, typically, the most intense lines corresponding to diffraction angles 2? of 7.7°±0.4, 8.9°±0.4, 22.1°+0.4, 26.6°±0.4, 26.9°±0.4, 27.1°±0.4, 28.1°±0.4, 31.2°±0.4, 35.0°±0.4 and 45.06°±0.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: January 15, 2008
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: José Manuel López Nieto, Pablo Botella Asunción, Maria Isabel Vazquez Navarro, Ana Dejoz García
  • Patent number: 7291761
    Abstract: A process for the continuous heterogeneously catalyzed partial dehydrogenation of a hydrocarbon in the gas phase and in the presence of molecular oxygen, in which part of the product gas is recirculated to the reaction zone, and a reactor for carrying out such a process.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: November 6, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Otto Machhammer, Goetz-Peter Schindler, Klaus Harth, Peter Zehner
  • Patent number: 7276639
    Abstract: A hydrocarbon conversion process such as an auto-thermal cracking process in which a hydrocarbon feed and a molecular oxygen-containing gas are contacted in a reaction zone in the presence of a catalyst to produce an outlet stream having an oxygen concentration which is at, near or above the flammable limit and in which process a loss of reaction is detected and used as a signal to activate means for mitigating the risk of explosion downstream of the reaction zone. The loss of reaction may be detected for example by a sudden increase in oxygen concentration in the outlet stream and/or a sudden drop in temperature of the outlet stream.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: October 2, 2007
    Assignee: Ineos Europe Limited
    Inventors: Philip Hall, Ian Allan Beattie Reid, David Charles Wilson
  • Patent number: 7262334
    Abstract: A process for the production of a reaction product including a carbon containing compound. The process includes providing a film of a fuel source including at least one organic compound on a wall of a reactor, contacting the fuel source with a source of oxygen, forming a vaporized mixture of fuel and oxygen, and contacting the vaporized mixture of fuel and oxygen with a catalyst under conditions effective to produce a reaction product including a carbon containing compound. Preferred products include ?-olefins and synthesis gas. A preferred catalyst is a supported metal catalyst, preferably including rhodium, platinum, and mixtures thereof.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: August 28, 2007
    Assignee: Regents of the University of Minnesota
    Inventors: Lanny D. Schmidt, Jakob J. Krummenacher, Kevin N. West
  • Patent number: 7256319
    Abstract: The present invention provides a catalyst composition for the production of olefins by oxidative dehydrogenation of hydrocarbons, and of using such catalyst compositions. The catalysts of the present invention include compositions of the formula: XxYyWOz wherein X is at least one element selected from the group consisting of Li, Na, K, Rb, Cs, and Fr; Y is at least one element selected from the group consisting of B, Al, Ga, In, Ti, C, Si, Ge, Sn, and Pb; x is 0.5-2.5; y is 0.05-5; and z is the number of oxygen atoms required to satisfy the valancy of X, Y, and W in said composition. The methods and catalysts of the present invention are specifically useful for the combined production of propene and isobutene at relatively high conversion, selectivity, and productivity, and with minimal side products.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: August 14, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Saeed M. Al-Zahrani, Ahmad E. Abasaeed, Nimir O. Elbashir, Mazhar A. Abdulwahed
  • Patent number: 7244872
    Abstract: Process for producing mono-olefins from a paraffin-containing hydrocarbon feed, comprising partially combusting a mixture of the hydrocarbon feed and a molecular oxygen-containing gas in contact with a catalyst capable of supporting combustion beyond the normal fuel rich limit of flammability and subsequently separating the products of the combustion. Energy for the separation is provided by a cogeneration process which simultaneously produces thermal energy and mechanical energy by combustion of fuel. The mechanical energy is converted to electricity, and the thermal energy is used to create steam for use in a steam turbine.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: July 17, 2007
    Assignee: Ineos Europe Limited
    Inventor: William Terence Woodfin
  • Patent number: 7227049
    Abstract: Catalysts and methods for alkane oxydehydrogenation are disclosed. The catalysts of the invention generally comprise (i) nickel or a nickel-containing compound and (ii) at least one or more of titanium (Ti), tantalum (Ta), niobium (Nb), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), zirconium (Zr), or aluminum (Al), or a compound containing one or more of such element(s). In preferred embodiments, the catalyst is a supported catalyst, the alkane is selected from the group consisting of ethane, propane, isobutane, n-butane and ethyl chloride, molecular oxygen is co-fed with the alkane to a reaction zone maintained at a temperature ranging from about 250° C. to about 350° C., and the ethane is oxidatively dehydrogenated to form the corresponding alkene with an alkane conversion of at least about 10% and an alkene selectivity of at least about 70%.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: June 5, 2007
    Assignee: Celanese International Corporation
    Inventor: Yumin Liu
  • Patent number: 7223897
    Abstract: A process for the production of an olefin from a hydrocarbon by autothermal cracking, which process comprises: partially combusting the hydrocarbon and an oxygen-containing gas in the presence of a catalyst, wherein the stoichiometric ratio of hydrocarbon to oxygen is 5 to 16 times the stoichiometric ratio of hydrocarbon to oxygen required for complete combustion of the hydrocarbon to carbon dioxide and water, characterised in that the catalyst comprises palladium and at least one further metal being a Group IIIA, Group IVA, VA, a transition metal or a lanthanide.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: May 29, 2007
    Assignee: Ineos Europe Limited
    Inventors: John William Couves, David Charles Griffiths, Brian Edward Messenger, Ian Allan Beattie Reid
  • Patent number: 7193123
    Abstract: A process for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, flashing the mixture to form a vapor phase and a liquid phase which collect as bottoms and removing the liquid phase, separating and cracking the vapor phase, and cooling the product effluent.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: March 20, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, Jennifer L. Bancroft, Arthur R. DiNicolantonio, Subramanian Annamalai, James N. McCoy, Paul F. Keusenkothen, George Stephens, John R. Messinger, James Mitchell Frye, Nick G. Vidonic, George J. Balinsky
  • Patent number: 7164053
    Abstract: Process for the production of an olefin from a hydrocarbon, which process comprises contacting the hydrocarbon and a molecular oxygen-containing gas with a catalyst under auto-thermal conditions sufficient to produce the olefin. The catalyst comprises a component (a) and a component (b), wherein component (a) is at least one metal selected from Group IIIA, Group IVA, Group VA and the transition metals and component (b) is at least one transition metal. The catalyst does not comprise either palladium or platinum.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: January 16, 2007
    Assignee: Ineos Europe Limited
    Inventors: Gavin Thomas Binmore, David Charles Griffiths, Brian Edward Messenger, Ian Allan Beattie Reid
  • Patent number: 7094942
    Abstract: A process for the dehydrogenation of alkane hydrocarbons is disclosed. The process comprises contacting the alkane with a chromium-based dehydrogenation catalyst in the presence of carbon dioxide at a temperature of from about 400° C. to about 700° C., a pressure of from about 0.1 to about 10 atmospheres, wherein the alkane to carbon dioxide molar ratio is about 1:0.0001 to 1:0.045.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: August 22, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventors: Mazhar Abdulwahed, Leal G. Canelon, Adel Alshafai
  • Patent number: 7091392
    Abstract: A process for the dehydrogenation of alkane hydrocarbons is disclosed. The process comprises contacting an alkane with a chromium-based dehydrogenation catalyst in the presence of molecular oxygen at a temperature of from about 400° C. to about 700° C., a pressure of from about 0.1 to about 10 atmospheres, wherein the alkane to oxygen molar ratio is between about 1:0.0001 to 1:0.04.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: August 15, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventors: Mazhar Abdulwahed, Saeed M. Al-Zahrani
  • Patent number: 7087801
    Abstract: A reactor system for oxidative conversion of hydrocarbons comprising at least one reactor tube being provided with a plurality of perforations along a wall of the tube and a reaction zone with an active catalyst arranged on tube side and/or shell side of the reactor tube; and a bed of particulates material surrounding the at least one reactor tube, the bed of particulate material being adapted to be fluidised by an oxygen containing atmosphere and to transport heat from the reactor tube.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: August 8, 2006
    Assignee: Haldor Topsoe A/S
    Inventors: Jens Perregaard, Gregory Patience
  • Patent number: 7074977
    Abstract: The invention relates to a reactor comprising two reaction zones and processes for the production of alkenes from alkanes. A first reaction zone includes a combustion catalyst, and a second reaction zone comprises a heating zone in thermal contact with the first reaction zone. One process comprises generating heat and an effluent by the combustion of a fuel with oxygen in the first reaction zone; passing an alkane feed through the heating zone of the second reaction zone such that the alkane feed absorbs a sufficient amount of the heat generated in the first reaction zone to initiate the conversion of alkanes to alkenes in the second reaction zone. In other embodiments, the effluent comprises oxygen, and the second reaction zone excludes a catalyst; alternatively, the effluent is substantially free of oxygen, and the second reaction zone comprises a supplemental oxygen feed and may or may not include a catalyst.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: July 11, 2006
    Assignee: ConocoPhillips Company
    Inventors: Charles R. Rapier, Daniel P. Holderman, Zhen Chen, Shang Y. Chen, Steven R. McDonald, Lisa M. Budin, Sriram Ramani, Joe D. Allison
  • Patent number: 7041271
    Abstract: A method is disclosed a method for recovering olefins and for producing hydrogen from a refinery off-gas stream in which such stream is conventionally pretreated and separated to obtain a light ends stream that contains nitrogen, hydrogen and carbon monoxide and a heavy ends stream that contains the olefins. The light ends stream is subjected to reforming and a water gas shift reactions after addition of a natural gas stream. The addition of the natural gas increases the hydrogen recovery from the light ends and also stabilizes the hydrocarbon content in the stream to be subjected to the reforming and water gas shift reactions. The heavy ends can be further treated to recover olefins such as ethylene and propylene. The rate of natural gas addition is controlled so that the concentration of the nitrogen in a stream exiting the water gas shift reactor is less than about 5 percent by volume so that hydrogen separation from such stream becomes practical.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: May 9, 2006
    Assignee: Praxair Technology, Inc.
    Inventors: Raymond Francis Drnevich, Jeffrey O. Herzog
  • Patent number: 6891075
    Abstract: Processes for oxidative dehydrogenation of alkane to one or more olefins, exemplified by ethane to ethylene, are disclosed using novel catalysts. The catalysts comprise a mixture of metal oxides having as an important component nickel oxide (NiO), which give high conversion and selectivity in the process. For example, the catalyst can be used to make ethylene by contacting it with a gas mixture containing ethane and oxygen. The gas mixture may optionally contain ethylene, an inert diluent such as nitrogen, or both ethylene and an inert diluent.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: May 10, 2005
    Assignee: Symyx Technologies, Inc.
    Inventor: Yumin Liu
  • Patent number: 6858768
    Abstract: A catalyst useful for the production of olefins from alkanes via oxidative dehydrogenation (ODH) is disclosed. The catalyst includes an oxide selected from the group containing alumina, zirconia, titania, yttria, silica, niobia, and vanadia. The catalyst does not contain any unoxidized metals; it is activated by higher preheat temperatures. As a result, similar conversions are achieved at a considerably lower cost.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: February 22, 2005
    Assignee: ConocoPhillips Company
    Inventors: Lisa M. Budin, Larry M. Meyer
  • Patent number: 6858769
    Abstract: A catalyst for the selective oxidation of hydrogen has been developed. It comprises an inert core such as cordierite and an outer layer comprising a lithium aluminate support. The support has dispersed thereon a platinum group metal and a promoter metal, e.g. platinum and tin respectively. This catalyst is particularly effective in the selective oxidation of hydrogen in a dehydrogenation process.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: February 22, 2005
    Assignee: UOP LLC
    Inventors: Guy B. Woodle, Andrew S. Zarchy, Jeffery C. Bricker, Andrzej Z. Ringwelski
  • Patent number: 6831204
    Abstract: A new family of oxidative dehydrogenation catalysts having MCrAlY supports can be used in the production of olefins. Olefins are produced by heating a feed stream comprising at least an alkane and an oxidant to a temperature between 25° C. and 800° C.; contacting the feed stream with a catalyst comprising an MCrAlY structure and, optionally, a Group VIII promoter metal coating, wherein M is a base metal, or combination of base metals; and maintaining a contact time of the alkane with the catalyst of less than 200 milliseconds under conditions sufficient to achieve oxidative dehydrogenation of the alkane. M may comprise a metal selected from the group consisting of Group IB-VIIB metals, Group IIIA-VA metals, lanthanide metals, iron, cobalt, nickel, and combinations thereof. More particularly, M may comprise a metal selected from the group consisting Tb, Sm, Pr, Fe, Ni, Co, and combinations thereof.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: December 14, 2004
    Assignee: ConocoPhillips Company
    Inventors: Zhen Chen, Sriram Ramani, Lisa M. Carmichael, Joe D. Allison