Using Transition Metal Oxide, Sulfide, Or Salt Patents (Class 585/661)
  • Patent number: 6437210
    Abstract: A catalyst, method for preparing the catalyst, and method for using the catalyst having improved conversion and/or selectivity in the dehydrogenation of hydrocarbons. The catalyst being prepared by modifying and impregnating a mazzite zeolite. Modification of the original mazzite zeolite may include steps for ion-exchanging, dealuminating, physically mixing with chromic oxide, shaping, and calcining. Once modified, the mazzite zeolite may be impregnated with at least one metal selected from the group consisting of chromium, molybdenum, tungsten and oxides of these metals.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: August 20, 2002
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6433241
    Abstract: A process in which a hydrocarbon feedstock containing n-butane is selectively dehydrogenated to a product containing butenes. A catalyst suitable for the selective dehydrogenation of a feedstock containing n-butane to provide a product containing butenes. A method for producing a catalyst suitable for the selective dehydrogenation of a feedstock containing n-butane to provide a product containing butenes.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: August 13, 2002
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6420305
    Abstract: A method for producting a solid acid catalyst is provided which produces a shaped material of a solid acid catalyst containing a sulfureous component but have a high activity and having a practically sufficient handleability and mechanical strength involves the steps of (a) fabricating a support containing a portion of zirconia and/or hydrated zirconia and a portion of alumina and/or hydrated alumina and having a peak diameter in the range of 0.05 to 1 &mgr;m in a pore diameter distribution of 0.05 to 10 &mgr;m; and having a sulfuerous component supported on the support or (b) fabricating a support containing a portion of zirconia and/or hydrated zirconia and a portion of alumina and/or hydrated alumina and including pores having a pore diameter of not less than 0.05 &mgr;m and not more than 1 &mgr;m occupying a pore volume of 0.05 to 0.5 ml/g and pores having a pore diameter of about 1 &mgr;m and not more than 10 &mgr;m occupying a pore volume of below 0.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: July 16, 2002
    Assignee: Japan Energy Corporation
    Inventors: Kenji Matsuzawa, Kohjiroh Aimoto, Kazuhiro Seki
  • Patent number: 6417422
    Abstract: Catalysts and method for alkane dehydrogenation are disclosed. The catalysts of the invention generally comprise (i) nickel or a nickel-containing compound and (ii) at least one or more of titanium (Ti), tantalum (Ta), niobium (Nb), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), zirconium (Zr), or aluminum (Al), or a compound containing one or more such element(s). In preferred embodiments, the catalyst is a supported catalyst, the alkane or substituted alkane is selected from the group consisting of ethane, propane, isobutane, butane and ethyl chloride, molecular oxygen is co-fed with the alkane or substituted alkane to a reaction maintained at a temperature ranging from about 250° C. and about 350° C., and the ethane is oxidatively dehydrogenated to form the corresponding alkene with an alkene conversion of at least about 10% and an alkene selectivity of at least about 70%.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: July 9, 2002
    Assignee: Symyx Technologies, Inc.
    Inventor: Yumin Liu
  • Publication number: 20020087042
    Abstract: A process and catalyst for the partial oxidation of paraffinic hydrocarbons, such as ethane, propane, naphtha, and natural gas condensates, to olefins, such as ethylene and propylene. The process involves contacting a paraffinic hydrocarbon with oxygen in the presence of a catalyst under autothermal process conditions. The catalyst comprises a Group 8B metal and, optionally, a promoter metal, such as tin or copper, supported on a fiber monolith support, preferably a ceramic fiber mat monolith. In another aspect, the invention is a process of oxidizing a paraffinic hydrocarbon to an olefin under autothermal conditions in the presence of a catalyst comprising a Group 8B metal and, optionally, a promoter metal, the metals being loaded onto the front face of a monolith support. An on-line method of synthesizing and regenerating catalysts for autothermal oxidation processes is also disclosed. This divisional case covers the catalyst composition and the method of preparing an olefin using the catalyst.
    Type: Application
    Filed: December 5, 2001
    Publication date: July 4, 2002
    Inventors: Lanny D. Schmidt, Ashish Bodke
  • Patent number: 6414209
    Abstract: The invention relates to a calcinated catalyst for converting paraffinic hydrocarbon into corresponding olefin through dehydrogenation. The catalyst is an oxidic, heat-stable carrier material and contains a catalytic active constituent, which is applied on the carrier material and has the following composition (in wt. % in relation to the entire weight of the catalyst): a) 0.2 to 2.0% of at least one element of the groups Pt and Ir and, acting as a promoter, a combination of elements from the six following groups of substances: b) 0.2 to 5.0% of at least one of the following elements Ge, Sn, Pb, Ga, In, Tl; c) 0.1 to 5.0% of at least one of the following elements Li, Na, K, Rb, Cs, Fr; d) 0.2 to 5.0% of at least one of the following elements Fe, Co, Ni, Pd; e) 1.0 to 5.0% P; f) 0.2 to 5.0% of at least one of the following elements Be, Mg, Ca, Sr, Ba, Ra and lanthanides and g) 0.1 to 2.0% Cl.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: July 2, 2002
    Assignees: Mannesman AG, K.T.I. Group B.V.
    Inventors: Mordechay Herskowitz, Shimson Kogan
  • Publication number: 20020055664
    Abstract: Catalysts and methods for alkane oxydehydrogenation are disclosed. The catalysts of the invention generally comprise (i) nickel or a nickel-containing compound and (ii) at least one or more of titanium (Ti), tantalum (Ta), niobium (Nb), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), zirconium (Zr), or aluminum (Al), or a compound containing one or more of such element(s). In preferred embodiments, the catalyst is a supported catalyst, the alkane is selected from the group consisting of ethane, propane, isobutane, n-butane and ethyl chloride, molecular oxygen is co-fed with the alkane to a reaction zone maintained at a temperature ranging from about 250° C. to about 350° C., and the ethane is oxidatively dehydrogenated to form the corresponding alkene with an alkane conversion of at least about 10% and an alkene selectivity of at least about 70%.
    Type: Application
    Filed: May 4, 2001
    Publication date: May 9, 2002
    Applicant: Symyx Technologies, Inc.
    Inventor: Yumin Liu
  • Publication number: 20020045787
    Abstract: A process for dehydrogenating organic compounds, in particular paraffins and naphthenes, is carried out in the presence of a supported catalyst comprising a group VIII metal such as platinum, and tin, at least a portion of which interacts strongly with the group VIII metal in the catalyst in the reduced state. In the partially oxidised state, the catalyst contains at least 10% of tin in the form of a reduced tin species with oxidation state 0, said species having an isomer shift in the range 0.80 to 2.60 mm/s and a quadrupolar splitting in the range 0.65 to 2.00 mm/s.
    Type: Application
    Filed: August 23, 2001
    Publication date: April 18, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Fabienne Le Peltier, Blaise Didillon, Jean-Claude Jumas, Josette Olivier-Fourcade
  • Patent number: 6362385
    Abstract: A process for obtaining light olefins by the dehydrogenation of corresponding paraffins, by reacting the paraffins with a catalytic system containing chromium oxide, tin oxide, at least one alkali metal oxide, and an alumina-silica carrier, and then regenerating the catalytic system in a regenerator by burning coke deposited on its surface at a temperature higher than the average temperature of the reactor.
    Type: Grant
    Filed: July 23, 1998
    Date of Patent: March 26, 2002
    Assignees: Siamprogetti S.p.A., Oao Nil Yarsintez
    Inventors: Rodolfo Iezzi, Andrea Bartolini, Franco Buonomo, Gueorgui Kotelnikov, Vladimir Bespalov
  • Patent number: 6355854
    Abstract: Processes for oxidative dehydrogenation of alkane to one or more olefins, exemplified by ethane to ethylene, are disclosed using novel catalysts. The catalysts comprise a mixture of metal oxides having as an important component nickel oxide (NiO), which give high conversion and selectivity in the process. The catalyst can be used to make ethylene by contacting it with a gas mixture containing ethane and oxygen. The gas mixture may optionally contain ethylene, an inert diluent such as nitrogen, or both ethylene and an inert diluent.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: March 12, 2002
    Assignee: Symyx Technologies, Inc.
    Inventor: Yumin Liu
  • Publication number: 20020022755
    Abstract: A novel catalyst for use in dehydrogenation of saturated hydrocarbons to unsaturated hydrocarbons and a method for its preparation is disclosed.
    Type: Application
    Filed: April 10, 2001
    Publication date: February 21, 2002
    Applicant: INDIAN PETROCHEMICALS CORPORATIONLIMITED
    Inventors: Rajeswer Dongara, Krishnamurthy Konda Ramaswamy
  • Publication number: 20020004624
    Abstract: A catalyst and a process employing such catalyst for the dehydrogenation of paraffinic hydrocarbons are disclosed, wherein the catalyst comprises a platinum group metal component, a zinc component and a magnesium component on a support comprising ZSM or borosilicate.
    Type: Application
    Filed: January 16, 2001
    Publication date: January 10, 2002
    Inventors: Bruce D. Alexander, George A. Huff
  • Patent number: 6326523
    Abstract: Process for the dehydrogenation of a hydrocarbon feed comprising a step of dehydrogenating the hydrocarbon feed and a step of removing hydrogen being formed by dehydrogenation reactions, wherein the dehydrogenation and hydrogen removal steps are performed simultaneously in presence of a dehydrogenation catalyst being combined with a metal compound being reduced in presence of hydrogen.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: December 4, 2001
    Assignee: Haldor Topsoe A/S
    Inventors: Anni Stahl, Niels Jørgen Blom, Jens Perregaard, Poul Erik Højlund Nielsen
  • Publication number: 20010046942
    Abstract: A chromium catalyst is disclosed for use in dehydrogenation and dehydrocyclization processes.
    Type: Application
    Filed: March 15, 2001
    Publication date: November 29, 2001
    Inventors: Kostantinos Kourtakis, Leo E. Manzer
  • Publication number: 20010047119
    Abstract: A solid acid-base catalyst contains vanadium pentoxide hydrate.
    Type: Application
    Filed: March 15, 1999
    Publication date: November 29, 2001
    Inventors: NOBUJI KISHIMOTO, ETSUSHIGE MATSUNAMI
  • Patent number: 6316675
    Abstract: A process for the synthesis of olefins having aromatic substituents is described in which olefins are reacted with aryl halides in the presence of catalysts consisting of palladium compounds and tetraaryl phosphonium salts.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: November 13, 2001
    Assignee: Studiengesellschaft Kohle mbH
    Inventors: Manfred T. Reetz, Gunther Lohmer, Renate Lohmer
  • Publication number: 20010025129
    Abstract: Processes for oxidative dehydrogenation of alkane to one or more olefins, exemplified by ethane to ethylene, are disclosed using novel catalysts. The catalysts comprise a mixture of metal oxides having as an important component nickel oxide (NiO), which give high conversion and selectivity in the process. For example, the catalyst can be used to make ethylene by contacting it with a gas mixture containing ethane and oxygen. The gas mixture may optionally contain ethylene, an inert diluent such as nitrogen, or both ethylene and an inert diluent.
    Type: Application
    Filed: March 22, 2001
    Publication date: September 27, 2001
    Applicant: Symyx Technologies, Inc.
    Inventor: Yumin Liu
  • Patent number: 6239325
    Abstract: The invention provides process for oxidative dehydrogenation of lower alkanes, by vapor phase oxidative dehydrogenation of C2-C5 lower alkanes in the presence of a catalyst and molecular oxygen to produce the corresponding olefins, in which the catalyst has a composition expressed by a general formula (1) below: A&agr;Sb&bgr;W&ggr;D&dgr;Ox   (1) in which A is at least one metal selected from the group consisting of molybdenum and chromium; Sb is antimony; W is tungsten; O is oxygen; and D is at least one metal selected from the group consisting of V, Nb, Ta, Fe, Co, Ni, Cu, Ag, Zn, B, Tl, Sn, Pb, Te, Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, La, Ce and Sm; &agr;, &bgr;, &ggr;, &dgr; and x denote atomic numbers of A, Sb, W, D and O, respectively, where when &agr;=1, &bgr;=0.5-10, &ggr;=0.1-10 and &dgr;=0-3; and x is a numerical value determined by the state of oxidation of those elements other than oxygen.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: May 29, 2001
    Assignee: Nippon Shokubai Co Ltd
    Inventors: Nobuji Kishimoto, Etsushige Matsunami
  • Patent number: 6198012
    Abstract: A catalyst composition suitable for the conversion of n-butane to butenes. The same catalyst composition that with chlorination is further suitable, when used in the conversion of n-butane, for the production of an increased amount of BTX (benzene-toluene-xylene) and greater selectivity to the production of isobutylenes than attained with the unchlorinated catalyst. A process for the preparation of catalyst compositions suitable for the conversion of n-butane. Use of the catalyst compositions in processes for the conversion of n-butane.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: March 6, 2001
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6187981
    Abstract: The present invention is a process for producing aryl-alkanes by paraffin isomerization followed by paraffin dehydrogenation and then by alkylation of an aryl compound by a lightly branched olefin. The effluent of the alkylation zone comprises paraffins that are recycled to the isomerization step or to the dehydrogenation step. This invention is also a process that that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives. This invention is moreover the use of compositions produced by these processes as lubricants and lubricant additives.
    Type: Grant
    Filed: July 19, 1999
    Date of Patent: February 13, 2001
    Assignee: UOP LLC
    Inventors: Richard E. Marinangeli, R. Joe Lawson, Leonid B. Galperin, Thomas R. Fritsch
  • Patent number: 6187985
    Abstract: A process for dehydrogenating C5-C22 aliphatic hydrocarbons to the corresponding olefinic hydrocarbons is carried out in the presence of a catalyst comprising at least one support, at least one metal from group VIII of the periodic table and at least one additional element M selected from the group formed by germanium, tin, lead, rhenium, gallium, indium, and thallium. The process is characterized in that the catalyst is prepared using a process in which said metal M is introduced in an aqueous solvent in the form of at least one organometallic compound comprising at least one carbon-M bond.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: February 13, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Fabienne Le Peltier, Blaise Didillon, Olivier Clause
  • Patent number: 6175048
    Abstract: A catalyst composition and a process for using of the catalyst composition in a hydrocarbon conversion process are disclosed. The composition comprises an inorganic support, a Group VA metal or metal oxide, and optionally a Group IVA metal or metal oxide and a Group VIII metal or metal oxide. The process comprises contacting a fluid which comprises at least one saturated hydrocarbon with the catalyst composition under a condition sufficient to effect the conversion of the hydrocarbon to an olefin. Also disclosed is a process for producing the catalyst composition.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: January 16, 2001
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6166283
    Abstract: An on-line method of synthesizing or regenerating catalysts for autothermal oxidation processes, specifically, the oxidation of paraffinic hydrocarbons, for example, ethane, propane, and naphtha, to olefins, for example, ethylene and propylene. The catalyst comprises a Group 8B metal, for example, a platinum group metal and, optionally, a promoter, such as tin, antimony, or copper, on a support, preferably a monolith support. On-line synthesis or regeneration involves co-feeding a volatile Group 8B metal compound and/or a volatile promoter compound with the paraffinic hydrocarbon and oxygen into the oxidation reactor under ignition or autothermal conditions.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: December 26, 2000
    Assignee: The Dow Chemical Company
    Inventors: Sameer S. Bharadwaj, Joseph J. Maj, Jonathan H. Siddall
  • Patent number: 6165352
    Abstract: A continuous process for the dehydrogenation of a hydrocarbon and/or oxygenated hydrocarbon feed, comprising contacting the hydrocarbon and/or oxygenated hydrocarbon feed with a dehydrogenation catalyst at elevated temperature in a reaction zone characterised in that the catalyst is capable of retaining hydrogen and (a) is contacted with a feed to form a dehydrogenated product and hydrogen, at least some of the hydrogen formed being adsorbed by the catalyst and/or reacting therewith to reduce at least part of the catalyst; (b) the dehydrogenated product and any unadsorbed/unreacted hydrogen is removed from the reaction zone; (c) at least some of the adsorbed hydrogen is removed from the catalyst and/or at least some of the reduced catalyst is oxidised; and (d) reusing the catalyst from step (c) in step (a).
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: December 26, 2000
    Assignee: BP Chemicals Limited
    Inventors: Jeremy Bernard Cooper, Jonathon Charles Frost, Stephen Roy Partington
  • Patent number: 6159358
    Abstract: A process and apparatus produces reaction products by indirectly preheating and heating reactants by indirect heat exchange. The use of the preheating step simplifies the reaction zone design by eliminating the need for external exchangers and is particularly suited for an arrangement of plates that defines narrow channels for indirect heat exchange. The narrow channels are preferably defined by corrugated plates. The primary reaction channels will contain a catalyst for the promotion of the desired reaction product from the principal reactants. The heating fluid passes through adjacent heating channels defined by shared partition plates to provide indirect heating. At least a portion of the heating channels exchange heat with a non-catalytic portion of the reaction channels to preheat the reactants ahead of a catalytic section of the reaction channels. Catalytic combustion within the heating channels may provide in-situ heat input for the heating medium.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: December 12, 2000
    Assignee: UOP LLC
    Inventors: Robert C. Mulvaney, III, Hemant W. Dandekar
  • Patent number: 6130183
    Abstract: Disclosed is a novel catalyst and process using the novel catalyst for the oxidative dehydrogenation and cracking of C.sub.2 to C.sub.5 paraffins (homogeneous hydrocarbons or mixtures such as liquified gas to C.sub.2 to C.sub.5 olefins in the presence of an oxygen-containing gas and water vapor. The novel catalyst has the following formulaX.sub.a Y.sub.b Z.sub.c A.sub.d O.sub.x,where, referring to the Periodic System,X is an element of Group II and/or IV b (Mg, Ca, Za, Ti, Zr . . . )Y is a Lanthanide and/or an element of Group IVa or Va (Ce, La, Nd, Dy, Sn, Pr, Sb, Pb . . . );Z is an element of Group I (Li, Na, K . . . );A is an element of Group VII (Cl, Br, I . . . );O is oxygen; anda is 0.4 to 0.9,b is 0.005 to 0.3,c is 0.05 to 1.5,d is 0.05 to 0.8, andx is determined by the valance requirements of metals and halogens.
    Type: Grant
    Filed: July 9, 1997
    Date of Patent: October 10, 2000
    Assignees: Mannesmann Aktiengesellschaft, K.T.I. Group B.V.
    Inventors: Mordechay Herskowitz, Miron Landau, Mark Kaliya
  • Patent number: 6107534
    Abstract: An improved zeolite catalyst containing an acid-treated zeolite, a boron component and a zinc component manufactured by a novel method having certain process steps necessary for providing the improved zeolite catalyst. The process steps include a first steam treatment of an acid-treated zeolite, followed by incorporation of such zeolite with a boron component and a zinc component, followed by a second steam treatment. Processes are also disclosed for using the improved zeolite catalyst in the conversion of hydrocarbons, preferably non-aromatic hydrocarbons, to lower olefins (such as ethylene and propylene) and aromatic hydrocarbons (such as benzene, toluene, and xylene).
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: August 22, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, An-hsiang Wu
  • Patent number: 6100436
    Abstract: A process and apparatus for contacting reactants with a particulate catalyst while indirectly heating the reactants with a heat exchange medium improves temperature control by using an intermediate heat exchange fluid and system to prevent overheating of reactants and maintain parallel heating characteristics through multiple reaction-heat exchange zones. The internal flow path minimizes the circulation of the reaction zone heat exchange fluid by incorporating interstage reheating of the reaction zone heat exchange fluid as it passes in series flow. A particularly useful application of the process and apparatus is in the dehydrogenation of ethyl benzene to produce styrene. The process and apparatus can also be used with simultaneous exchange of catalyst particles by an operation that restricts reactant flow while moving catalyst through reaction stacks in which the reactant flow has been restricted.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: August 8, 2000
    Assignee: UOP LLC
    Inventors: William Wiede, Jr., Kevin J. Brandner, Bruce Allen Briggs, Donald Eelch, Constante P. Tagamolila
  • Patent number: 6087545
    Abstract: An improved supported catalyst containing mixed strontium and other alkaline earth oxides deposited on a sintered low surface area porous catalyst carrier (or support) precoated with mixed lanthanum and other rare earth oxides, represented by the formula:A.sub.a SrO.sub.b (x) /R.sub.c LaO.sub.d (y) /S,wherein, A is alkaline earth element selected from Be, Mg, Ca, Ba or a mixture thereof; Sr is strontium, O is oxygen; R is rare earth element selected from Ce, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu or a mixture thereof; La is lanthanum; S is catalyst support selected from sintered low surface area porous refractory inert solids comprising of alumina, silica, silica-alumina, silicon carbide, zirconia, hafnia or a mixture thereof; a is A/Sr mole ratio in the range of about 0.01 to about 10; b is number of oxygen atoms needed to fulfill the valence requirement of alkaline earth elements (A.sub.a Sr); c is R/La mole ratio in the range of about 0.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: July 11, 2000
    Assignee: Council of Scientific & Industrial Research
    Inventors: Vasant Ramchandra Choudhary, Balu Shivaji Uphade, Shafeek Abdul Rashid Mulla
  • Patent number: 6074447
    Abstract: A method for storing and releasing hydrogen fuel includes providing a hydrogenated material in a chamber, introducing a catalyst into the chamber, heating the chamber to about 190.degree. C., separating at least part of the material into dehydrogenated material and hydrogen and releasing the hydrogen from the chamber. A preferred catalyst is a transition metal complex, such as the iridium based complex IrH.sub.4 {2,6C.sub.6 H.sub.3 (CH.sub.2 P(C(CH.sub.3).sub.3).sub.2).sub.2 }. To reverse the process, a hydrogen pressure of about 10 atmospheres or more is provided, and the dehydrogenated material and hydrogen are combined at about or at least 100.degree. C. to regenerate the hydrogenated material. The small, lightweight system for carrying out the present method includes a chamber containing hydrogenated material and a catalyst, and having an outlet with a selectively permeable membrane for releasing hydrogen and containing hydrogenated material and a homogenous catalyst.
    Type: Grant
    Filed: August 27, 1997
    Date of Patent: June 13, 2000
    Assignee: University of Hawaii
    Inventor: Craig M. Jensen
  • Patent number: 6031143
    Abstract: Process for the production of styrene which comprises:a) feeding to an alkylation unit a stream of benzene and a stream of recycled product containing ethylene;b) mixing the stream at the outlet of the alkylation unit, containing ethylbenzene, with a stream consisting of ethane;c) feeding the mixture thus obtained to a dehydrogenation unit containing a catalyst capable of contemporaneously dehydrogenating ethane and ethylbenzene;d) feeding the product leaving the dehydrogenation unit to a separation section to produce a stream essentially consisting of styrene and a stream containing ethylene;e) recycling the stream containing ethylene to the alkylation unit.
    Type: Grant
    Filed: September 1, 1998
    Date of Patent: February 29, 2000
    Assignee: Snamprogetti S.p.A.
    Inventors: Franco Buonomo, Gianni Donati, Emilio Micheli, Lorenzo Tagliabue
  • Patent number: 6028027
    Abstract: Catalysts comprising iron and potassium and, if desired, further elements, which catalysts are suitable for dehydrogenating hydrocarbons to give the corresponding olefinically unsaturated hydrocarbons, are prepared by calcining a finely divided dry or aqueous mixture of an iron compound with a potassium compound and, if desired, compounds of further elements in a first step that agglomerates having a diameter of from 5 to 50 .mu.m and formed from smaller individual particles are obtained and, in a second step, preferably after shaping, calcining it at from 300 to 1000.degree. C., with the maximum calcination temperature in the second step preferably being at least 30.degree. below the calcination temperature in the first step. The catalysts thus prepared are useful, in particular, for dehydrogenating ethylbenzene to give styrene.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: February 22, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Baier, Christopher William Rieker, Otto Hofstadt, Wolfgang Buchele, Wolfgang Jurgen Popel, Hermann Petersen, Norbert Neth
  • Patent number: 6015931
    Abstract: A process to convert propane into ethylene, propene, and C.sub.4 olefins, is provided. This process comprises: contacting propane with a composition under converting conditions.
    Type: Grant
    Filed: October 27, 1998
    Date of Patent: January 18, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 5976356
    Abstract: A novel zeolite catalyst comprising an acid treated zeolite impregnated with silver and boron, a method of making such zeolite catalyst, and the use thereof for converting paraffin hydrocarbons to olefins and aromatics.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: November 2, 1999
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, Jianhua Yao
  • Patent number: 5959170
    Abstract: A method for converting methane to higher hydrocarbon products and coproduct water wherein a gas comprising methane and a gaseous oxidant are contacted with a nonacidic catalyst at temperatures within the range of about 700 to 1200.degree. C. A preferred catalyst comprises an alkali component associated with a support material. Results obtained over alkali-promoted solids are enhanced when the contacting is conducted in the presence of halogen promoters.
    Type: Grant
    Filed: May 24, 1985
    Date of Patent: September 28, 1999
    Assignee: Atlantic Richfield Company
    Inventor: Howard P. Withers, Jr.
  • Patent number: 5922925
    Abstract: A process for dehydrogenating dehydrogenatable C.sub.2-30 hydrocarbons includes contacting the hydrocarbons under dehydrogenating conditions in one or more reaction zones with a solid catalyst. The solid catalyst includes at least a Group VIII noble metal, a Group IVA metal, and a carrier of a mixed oxide of magnesium and aluminum.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: July 13, 1999
    Assignee: Den norske stats oljeselskap a.s.
    Inventors: Duncan Akporiaye, Morten Ronnekleiv, Preben Hasselgard, Age Solbakken, deceased
  • Patent number: 5877369
    Abstract: A catalyst composition and a process for using of the catalyst composition in a hydrocarbon conversion process are disclosed. The composition comprises an inorganic support, a Group VA metal or metal oxide, and optionally a Group IVA metal or metal oxide and a Group VIII metal or metal oxide. The process comprises contacting a fluid which comprises at least one saturated hydrocarbon with the catalyst composition under a condition sufficient to effect the conversion of the hydrocarbon to an olefin. Also disclosed is a process for producing the catalyst composition.
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: March 2, 1999
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 5877379
    Abstract: A composition and an olefin conversion process are disclosed. The composition comprises a zeolite having incorporated therein a coke-suppressing amount of a coke suppressor selected from the group consisting of silicon oxides, phosphorus oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The olefin conversion process comprises contacting a first olefin with a catalyst composition under a condition effective to convert said first olefin to a second olefin wherein the catalyst composition is the same as the composition disclosed above. Also disclosed is a process for producing the composition.
    Type: Grant
    Filed: August 19, 1996
    Date of Patent: March 2, 1999
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 5866746
    Abstract: The present invention concerns, in the dehydroisomerization of at least one C.sub.4 -C.sub.5 n-paraffin, preferably n-butane, the use of a catalyst comprising a refractory oxide based support, preferably an alumina, at least one precious metal from group VIII, preferably platinum or palladium, optionally at least one element from group IVB such as titanium or zirconium, preferably titanium, optionally at least one element from the group formed by germanium, tin, lead, rhenium, tungsten and indium, and optionally at least one halogen such as chlorine. The present invention also concerns the regeneration of this catalyst.
    Type: Grant
    Filed: October 10, 1996
    Date of Patent: February 2, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Blaise Didillion, Christine Travers, Jean-Pierre Burzynski
  • Patent number: 5866745
    Abstract: Light olefins are produced from a hydrocarbon feedstock by a steam pyrolysis reaction in the presence of small quantities of essentially pure oxygen and selected catalytic solids to enhance the steam pyrolysis reaction, to promote the combustion of hydrogen to water and to minimize the formation of carbon oxides. The catalysts are characterized by low surface area, by non-alumina supports and by the catalytic oxides of the group IVB, VB and VIB transition metals.
    Type: Grant
    Filed: January 26, 1998
    Date of Patent: February 2, 1999
    Assignee: ABB Lummus Global Inc.
    Inventors: Robert John Gartside, Atef M. Shaban
  • Patent number: 5837127
    Abstract: A hydrocarbon feedstock is cracked, and then the cracker product is compressed and separated into various hydrocarbon fractions including a stream containing hydrocarbons more highly unsaturated than mono-olefins. That stream is used for transhydrogenation with at least one paraffin and the products from transhydrogenation are combined with the cracker product before the compression thereof.
    Type: Grant
    Filed: June 23, 1995
    Date of Patent: November 17, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Arthur Gough, Stephen Keith Turner, Jane Mercer, Edmund Hugh Stitt
  • Patent number: 5672801
    Abstract: The present invention concerns a regeneration process for a catalyst containing at least one metallic element selected from the group formed by platinum, palladium, ruthenium, rhodium, osmium, iridium and nickel, preferably platinum, on a refractory oxide based support, which has been deactivated by coke deposition. The regeneration process is characterised in that said regeneration consists of treatment with a gas containing at least chlorine and molecular oxygen, at a temperature between 20.degree. C. and 800.degree. C. and a total gas flow rate, expressed in litres of gas per hour and per gram of catalyst, of between 0.05 and 20. The process at least restores the initial catalytic properties of the catalyst.
    Type: Grant
    Filed: August 6, 1996
    Date of Patent: September 30, 1997
    Assignee: Institut Francais Du Petrole
    Inventor: Blaise Didillon
  • Patent number: 5639929
    Abstract: A process for the oxidative dehydrogenation of hydrocarbons is disclosed in which C.sub.2 -C.sub.6 alkanes are contacted with an oxygen containing gas in a fluidized catalyst bed of platinum, rhodium, nickel or platinum-gold supported on .alpha.-alumina or zirconia. Ethane is dehydrogenated to ethylene and higher alkanes are dehydrogenated to ethylene, propylene and iso-butylene.
    Type: Grant
    Filed: April 17, 1995
    Date of Patent: June 17, 1997
    Assignee: Regents of the University of Minnesota
    Inventors: Sameer S. Bharadwaj, Lanny D. Schmidt
  • Patent number: 5600053
    Abstract: A reactor arrangement and process for indirectly contacting a reactant stream with a heat exchange stream uses an arrangement of corrugated heat exchange plates to control temperature conditions by varying the number and/or the arrangement of the corrugations along the plates. The reactor arrangement and process of this invention may be used to operate a reactor under isothermal or other controlled temperature conditions. The variation in corrugation arrangements within a single heat exchange section is highly useful in maintaining a desired temperature profile in an arrangement having a cross-flow of heat exchange medium relative to reactants. The corrugations arrangement eliminates or minimizes the typical step-wise approach to isothermal conditions.
    Type: Grant
    Filed: June 8, 1995
    Date of Patent: February 4, 1997
    Assignee: UOP
    Inventors: Christine J. B. Girod, William W. Levy, Peter R. Pujado, Jacques J. L. Romatier, Dominique J. J. M. Sabin, Paul A. Sechrist
  • Patent number: 5597944
    Abstract: The dehydrogenation of n-parrofins to n-olefins is catalyzed by novel synthetic manganese oxide octahedral molecular sieves such as OMS-1 and OMS-2.
    Type: Grant
    Filed: November 7, 1994
    Date of Patent: January 28, 1997
    Assignee: Texaco Inc.
    Inventors: Chi-Lin O'Young, Robert A. Sawicki, Yuan-Gen Yin, Wen-Qing Xu, Steven L. Suib
  • Patent number: 5585530
    Abstract: A process for the production of olefins comprises dehydrogenating at least one hydrogen-donor hydrocarbon that is essentially free from olefinic unsaturation, e.g. a paraffin, in the presence of a dehydrogenation catalyst and in the presence of at least one hydrogen-acceptor hydrocarbon that is more highly unsaturated than a mono-olefin, e.g. a diene and/or acetylene, under conditions effective to cause at least part of said hydrogen-donor hydrocarbon to be dehydrogenated and at least part of the hydrogen-acceptor to be hydrogenated. The amount of hydrogen-acceptor is such that there are 0.5 to 20 moles of said hydrogen-donor for each mole of hydrogen-acceptor. Preferably the amount of said hydrogen-acceptor hydrocarbon hydrogenated is such that the heat of hydrogenation of said hydrogen-acceptor hydrocarbon provides at least 25% of the heat required for dehydrogenation of said hydrogen-donor hydrocarbon. In a preferred form of the invention, a hydrocarbon stream containing a hydrogen-acceptor is a C.sub.
    Type: Grant
    Filed: June 8, 1994
    Date of Patent: December 17, 1996
    Assignee: Institut Francais Du Petrole
    Inventors: Arthur Gough, Stephen K. Turner
  • Patent number: 5559066
    Abstract: A process for the preparation of iron-, potassium- and cerium-containing catalysts for the dehydrogenation of hydrocarbons from the same spent catalysts (regeneration) by grinding and, if necessary, purifying the spent material, restoring the original activity by adjusting the composition and restoring the external shape comprises adding to the ground material an effective amount of potassium and such an amount of cerium that the total amount of cerium is greater than the amount originally present.
    Type: Grant
    Filed: February 13, 1995
    Date of Patent: September 24, 1996
    Assignee: BASF Aktiengesellschaft
    Inventors: Wolfgang J. Poepel, Gregor Tremmel, Wolfgang Buechele, Axel Deimling, Hermann Petersen
  • Patent number: 5510552
    Abstract: A process using a particular catalyst in the dehydrogenation of an alkyl aromatic compound, e.g., ethylbenzene, to form a vinyl aromatic compound, e.g., styrene. The catalyst comprises a calcination product of (a) at least one iron oxide; (b) at least one carbonate, bicarbonate, oxide or hydroxide of potassium and/or cesium; (c) an oxide, carbonate, nitrate or hydroxide of cerium, or a mixture of at least two thereof; (d) an hydraulic cement; (e) an hydroxide, carbonate, bicarbonate, acetate, oxalate, nitrate, or sulfate of sodium, in an amount sufficient to provide from 0.2 to 10 percent sodium, calculated as sodium oxide, by weight of the calcined catalyst; and (f) a carbonate, sulfate, or hydroxide, of calcium or a mixture of at least two thereof, in an amount sufficient to provide from 1.5 to 20 percent calcium, calculated as calcium oxide, by weight of the calcined catalyst. The catalyst has improved moisture stability compared to catalysts in which at least one of (e) or (f) is not met.
    Type: Grant
    Filed: September 21, 1994
    Date of Patent: April 23, 1996
    Assignee: The Dow Chemical Company
    Inventors: Phillip W. Dellinger, Rebecca G. Moore, Fred A. Sherrod, Allen R. Smith
  • Patent number: RE35632
    Abstract: In an improved method for converting methane to at least one higher hydrocarbon product and coproduct water which comprises contacting a gas comprising methane and at least one added gaseous oxidant with nonacidic solid, the improvement comprising conducting at least a portion of said contacting in the presence of added water.
    Type: Grant
    Filed: January 19, 1993
    Date of Patent: October 14, 1997
    Assignees: Atlantic Richfield Company, Phillips Petroleum Company
    Inventor: David W. Leyshon
  • Patent number: RE35633
    Abstract: In an improved method for converting methane to at least one higher hydrocarbon product and coproduct water which comprises contacting a gas comprising methane and at least one added gaseous oxidant with nonacidic solid, the improvement comprising conducting at least a portion of said contacting in the presence of added water.
    Type: Grant
    Filed: January 19, 1995
    Date of Patent: October 14, 1997
    Assignee: Atlantic Richfield Company
    Inventor: David W. Leyshon