Using Transition Metal Oxide, Sulfide, Or Salt Patents (Class 585/661)
  • Patent number: 4568790
    Abstract: A process for the low temperature oxydehydrogenation of ethane to ethylene uses a calcined oxide catalyst containing Mo, V, Nb, and Sb.
    Type: Grant
    Filed: June 28, 1984
    Date of Patent: February 4, 1986
    Assignee: Union Carbide Corporation
    Inventor: James H. McCain
  • Patent number: 4565898
    Abstract: Dehydrogenatable hydrocarbons may be subjected to a dehydrogenation reaction in which the hydrocarbons are treated with a dehydrogenation catalyst comprising a modified iron compound in the presence of steam in a multicatalyst bed system. The reaction mixture containing unconverted hydrocarbons, dehydrogenated hydrocarbons, hydrogen and steam is then contacted with an oxidation catalyst whereby hydrogen is selectively oxidized in preference to carbon dioxide and carbon monoxide or hydrocarbons. The selective oxidation of hydrogen will improve the combustion thereof and supply the necessary heat which is required for a subsequent dehydrogenation treatment. The selective oxidation catalyst which is used will comprise a noble metal of Group VIII of the Periodic Table and, if so desired, a metal of Group IA or IIA of the Periodic Table composited on a porous inorganic support. The inorganic support will have been calcined prior to impregnation thereof at a temperature in the range of from about 900.degree.
    Type: Grant
    Filed: March 6, 1985
    Date of Patent: January 21, 1986
    Assignee: UOP Inc.
    Inventors: Mark J. O'Hara, Tamotsu Imai, Jeffery C. Bricker, David E. Mackowiak
  • Patent number: 4560821
    Abstract: A continuous method for synthesizing hydrocarbons from a methane source which comprises contacting methane with particles comprising an oxidative synthesizing agent under synthesis conditions wherein particles recirculate between two physically separate zones: a methane contact zone and an oxygen contact zone. Preferably, particles are maintained in each of the two zones as fluidized beds of solids. Particularly effective oxidative synthesizing agents are reducible oxides of metals selected from the group consisting of Mn, Sn, In, Ge, Pb, Sb, and Bi.
    Type: Grant
    Filed: August 12, 1983
    Date of Patent: December 24, 1985
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko
  • Patent number: 4560816
    Abstract: Titanium-iron alloys, conditioned or activated to be reversible hydride formers, function as catalysts to promote gas phase hydrogenation and, dehydrogenation reactions. In the hydride form in the presence of hydrogen, the alloys catalyze hydrogenation of C.tbd.C, C.dbd.C, C.tbd.O, C.dbd.O, C.dbd.N, C.tbd.N, N.dbd.O, N.dbd.N and N.tbd.N bonds. Of particular utility is the synthesis of ammonia from a hydrogen-nitrogen mixture at relatively low temperature and pressure. In the unhydrided or metallic form the alloys dehydrogenate C--C, C.dbd.C, C--H and C--N bonds where hydrogen is attached to these groups. Of particular utility is the dehydrogenation of ethane to form ethylene at relatively low temperature and where increased pressure increases the percentage of ethane converted to ethylene.
    Type: Grant
    Filed: October 27, 1983
    Date of Patent: December 24, 1985
    Assignee: University of South Carolina
    Inventor: Milton W. Davis, Jr.
  • Patent number: 4551574
    Abstract: A new catalyst composition comprising a platinum group component, a tin component, an indium component, an alkali or alkaline earth component and a porous support material wherein the atomic ratio of indium to platinum group component is more than 1.0 is disclosed. The catalyst is particularly useful for dehydrogenating hydrocarbons. In one embodiment of the invention, detergent range normal paraffins (C.sub.10 -C.sub.15 or higher) are dehydrogenated to the corresponding normal olefins in the presence of the subject catalyst and hydrogen.
    Type: Grant
    Filed: August 13, 1984
    Date of Patent: November 5, 1985
    Assignee: UOP Inc.
    Inventors: Tamotsu Imai, Chi-wen Hung
  • Patent number: 4547611
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting a gas comprising methane and an oxidative synthesizing agent at synthesizing conditions, the improvement which comprises contacting methane with a solid comprising a promoting amount of alkali metal and/or compounds thereof, said solid being associated with a support selected from the group consisting of alkaline earth metals and compounds thereof. Magnesia is a particularly preferred support.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: October 15, 1985
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John A. Sofranko
  • Patent number: 4547618
    Abstract: There is provided a catalyst comprising ZSM-12 and two modifiers. The modifiers are (i) magnesium and/or manganese and (ii) platinum. There is also provided a process for converting propane to propylene by a dehydrogenation reaction with this catalyst.
    Type: Grant
    Filed: December 28, 1984
    Date of Patent: October 15, 1985
    Assignee: Mobil Oil Corporation
    Inventor: Nancy P. Forbus
  • Patent number: 4547610
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting a gas comprising methane and a reducible metal oxide under synthesis conditions, the improvement which comprises performing the contacting in the presence of oxides of nitrogen. Nitrous oxide is a preferred nitrogen oxide.
    Type: Grant
    Filed: November 8, 1984
    Date of Patent: October 15, 1985
    Assignee: Atlantic Richfield Company
    Inventors: John A. Sofranko, Howard P. Withers, Jr.
  • Patent number: 4542248
    Abstract: A process is described wherein C.sub.2 -C.sub.4 paraffins are dehydrogenated over a catalyst which has been prepared by(a) impregnating an Al.sub.2 O.sub.3 carrier with an aqueous solution of a Sn-compound;(b) calcining the impregnated carrier;(c) impregnating the composition with an aqueous solution of a Pt-compound;(d) reducing the composition;(e) removing at least part of any halogen introduced in step (a) and/or (c) by treating the composition with a non-acidic solution comprising NH.sub.4.sup.+ ions until the halogen content of the final catalyst amounts to less than 0.1% w; and(f) impregnating the composition with a non-acidic (halogen-free) aqueous solution of an alkali metal compound.The C.sub.2 -C.sub.4 -olefins formed are converted to aromatic gasoline over a catalyst containing a crystalline metal silicate having a ZSM-5 structure.
    Type: Grant
    Filed: April 9, 1984
    Date of Patent: September 17, 1985
    Assignee: Shell Oil Company
    Inventor: Jacques P. Lucien
  • Patent number: 4523049
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting a hydrocarbon gas comprising methane, an oxygen-containing gas and a reducible metal oxide under synthesis conditions, the improvement which comprises contacting methane and oxygen with a contact solid which also contains a promoting amount of alkali metal, alkaline earth metal, and/or compounds thereof. Sodium is a particularly effective promoter. Stability of the promoted contact agent is enhanced by the presence of minor amounts of phosphorus.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: June 11, 1985
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko, Howard P. Withers
  • Patent number: 4523050
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting a hydrocarbon gas comprising methane, an oxygen-containing gas and a reducible metal oxide under synthesis conditions, the improvement which comprises contacting methane and oxygen with a contact solid which comprises at least one manganese silicate.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: June 11, 1985
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John A. Sofranko
  • Patent number: 4520223
    Abstract: Platinum or other platinum-group metals can be deposited substantially on the surface only of pellets of a refractory catalyst support by impregnation with an aqueous solution of such as hexammonium platinum tetrasulfite. The resulting catalysts contain relatively small total amounts of platinum-group metal positioned primarily at the surface, yet are as highly active as catalysts uniformly impregnated throughout the body of the pellet and containing much larger amounts of platinum-group metal. The catalyst further can contain rhenium.
    Type: Grant
    Filed: October 11, 1983
    Date of Patent: May 28, 1985
    Inventors: Roger N. McGinnis, Lewis E. Drehman, Emory W. Pitzer
  • Patent number: 4511754
    Abstract: A method for dehydrogenating dehydrogenatable hydrocarbons which comprises contacting hydrocarbon with an oxide of Tb having combined therewith an amount of alkali and/or alkaline earth metal which is sufficient to improve the selectivity to dehydrogenated hydrocarbon products. The oxide is reduced by the contact which is carried at about 500.degree. to 1000.degree. C. Reducible oxides of Tb are regenerated by oxidizing the reduced composition with molecular oxygen. Solids prepared from the oxide Tb.sub.4 O.sub.7 are particularly effective in the process.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: April 16, 1985
    Assignee: Atlantic Richfield Company
    Inventor: Anne M. Gaffney
  • Patent number: 4497971
    Abstract: A paraffin or mixture of paraffins having from 2 to 5 carbon atoms is oxidatively dehydrogenated in the presence of a cobalt based catalyst composition which has been calcined in the absence of oxygen. The catalyst composition comprises cobalt; phosphorus; at least one promoter selected from the group consisting of zinc, titanium, zirconium, niobium, indium, lead and bismuth; at least one alkali metal and oxygen. The catalyst composition may also contain sulfur and/or a halogen. If the feed to the oxidative dehydrogenation process contains paraffins having more than two carbon atoms, some cracking of such paraffins will also occur at the conditions at which the oxidative dehydrogenation process is carried out.
    Type: Grant
    Filed: November 16, 1983
    Date of Patent: February 5, 1985
    Assignee: Phillips Petroleum Company
    Inventors: Alan D. Eastman, Jack P. Guillory, Charles F. Cook, James B. Kimble
  • Patent number: 4476344
    Abstract: An oxidative dehydrogenation process for a paraffin or mixture of paraffins having from 2 to 5 carbon atoms employing a catalyst composition comprising lithium, titanium and a promoter selected from the group consisting of molybdenum, tin and antimony.
    Type: Grant
    Filed: October 14, 1983
    Date of Patent: October 9, 1984
    Assignee: Phillips Petroleum Company
    Inventor: James B. Kimble
  • Patent number: 4476339
    Abstract: Steam dehydrocyclization of paraffinic hydrocarbons to aromatic hydrocarbons is effected in the presence of supported catalyst, typically bearing rhodium and preferably chromium and potassium, and characterized by a pH less than about 8.
    Type: Grant
    Filed: February 5, 1981
    Date of Patent: October 9, 1984
    Assignee: Texaco Inc.
    Inventors: Russell R. Reinhard, Tansukhial G. Dorawala, Edwin R. Kerr
  • Patent number: 4467127
    Abstract: An alkane is reacted with oxygen and available chlorine in the presence of a solid solution catalyst containing iron cations to yield unsaturated hydrocarbons and chlorinated saturated and unsaturated hydrocarbons. In a preferred embodiment of the process, ethane is reacted with oxygen and available chlorine in the presence of a solid solution catalyst containing iron cations to yield vinyl chloride, ethylene, and other valuable by-products. The conversion of ethane to products approaches 100 percent, vinyl chloride is prepared in up to 40 mole percent yield, and the combined yield of vinyl chloride, ethylene dichloride, ethyl chloride, and ethylene is up to 90 mole percent.
    Type: Grant
    Filed: January 14, 1983
    Date of Patent: August 21, 1984
    Assignee: The B. F. Goodrich Company
    Inventors: William J. Kroenke, Paul P. Nicholas
  • Patent number: 4463213
    Abstract: The catalytic dehydrogenation of at least one dehydrogenatable organic compound which has at least one ##STR1## grouping is carried out in the presence of a zinc titanate hydrogel. The selectivity of the zinc titanate hydrogel may be improved by adding a promoter selected from the group consisting of lithium, sodium, potassium, rubidium and cesium.
    Type: Grant
    Filed: February 18, 1983
    Date of Patent: July 31, 1984
    Assignee: Phillips Petroleum Company
    Inventor: Arthur W. Aldag, Jr.
  • Patent number: 4461919
    Abstract: An alkane is reacted with oxygen and available chlorine in the presence of a solid solution catalyst containing iron cations to yield unsaturated hydrocarbons and chlorinated saturated and unsaturated hydrocarbons. In a preferred embodiment of the process, ethane is reacted with oxygen and available chlorine in the presence of a solid solution catalyst containing iron cations to yield vinyl chloride, ethylene, and other valuable by-products. The conversion of ethane to products approaches 100 percent, vinyl chloride is prepared in up to 40 mole percent yield, and the combined yield of vinyl chloride, ethylene dichloride, ethyl chloride, and ethylene is up to 90 mole percent.
    Type: Grant
    Filed: January 14, 1983
    Date of Patent: July 24, 1984
    Assignee: The B. F. Goodrich Company
    Inventors: William J. Kroenke, Paul P. Nicholas
  • Patent number: 4450313
    Abstract: An oxidative dehydrogenation process for a paraffin or mixture of paraffins having from 2 to 5 carbon atoms employing a catalyst composition comprising lithium and titanium. The selectivity of the catalyst composition may be improved by adding manganese to the catalyst composition.
    Type: Grant
    Filed: April 21, 1983
    Date of Patent: May 22, 1984
    Assignee: Phillips Petroleum Company
    Inventors: Alan D. Eastman, James B. Kimble
  • Patent number: 4434079
    Abstract: The conversion and/or selectivity of a zinc titanate catalyst, the conversion and/or selectivity of which has been reduced by use of the zinc titanate catalyst in a process in which the zinc titanate catalyst is exposed to reducing conditions such as those found in a dehydrogenation process, is improved by contacting the zinc titanate catalyst with a solution of zinc and then calcining the treated zinc titanate in the presence of free oxygen. This treatment improves the conversion and/or selectivity of the used zinc titanate catalyst.
    Type: Grant
    Filed: April 5, 1982
    Date of Patent: February 28, 1984
    Assignee: Phillips Petroleum Company
    Inventors: Arthur W. Aldag, John H. Kolts
  • Patent number: 4395579
    Abstract: The preparation of a compound of formula R.sup.1 --C(R.sup.2).dbd.CH.sub.2 (R.sup.1 and R.sup.2 are a phenyl, alkyl or alkenyl group or a hydrogen atom) by contacting a mixture of steam and a compound of formula R.sup.1 --C(R.sup.2)(H)--CH.sub.3 at elevated temperature under non-oxidative dehydrogenation conditions with a catalyst having a spinel structure allows lower ratios steam to compound of formula R.sup.1 --C(R.sup.2)(H)--CH.sub.3, a higher selectivity to the compound of formula R.sup.1 --C(R.sup.2).dbd.CH.sub.2 and a lower temperature when lithium is present in the spinel structure.
    Type: Grant
    Filed: November 4, 1982
    Date of Patent: July 26, 1983
    Assignee: Shell Oil Company
    Inventors: Gilbert R. Germaine, Jean P. Darnanville
  • Patent number: 4392003
    Abstract: This invention relates to a method of dehydroisomerizing n-butane by contacting at elevated temperatures a feedstock containing n-butanes with a catalyst composition containing a gallium compound on a support. The process affords a valuable method of producing iso-butene which is a basic chemical feedstock for a number of products including polyisobutenes, methacrolein and methyl tertiary butyl ether, to name a few. The last named compound can be prepared by reacting isobutene with methanol and is a convenient means of separating iso-butene from the products of the dehydroisomerization stage.
    Type: Grant
    Filed: June 8, 1981
    Date of Patent: July 5, 1983
    Assignee: The British Petroleum Company Limited
    Inventors: Alexander J. Kolombos, Clive D. Telford, Dennis Young
  • Patent number: 4375569
    Abstract: An alkane is reacted with oxygen and available chlorine in the presence of a solid solution catalyst containing iron cations to yield unsaturated hydrocarbons and chlorinated saturated and unsaturated hydrocarbons. In a preferred embodiment of the process, ethane is reacted with oxygen and available chlorine in the presence of a solid solution catalyst containing iron cations to yield vinyl chloride, ethylene, and other valuable by-products. The conversion of ethane to products approaches 100 percent, vinyl chloride is prepared in up to 40 mole percent yield, and the combined yield of vinyl chloride, ethylene dichloride, ethyl chloride, and ethylene is up to 90 mole percent.
    Type: Grant
    Filed: October 10, 1978
    Date of Patent: March 1, 1983
    Assignee: The B. F. Goodrich Company
    Inventors: William J. Kroenke, Paul P. Nicholas
  • Patent number: 4368344
    Abstract: The catalytic oxidative dehydrogenation of at least one dehydrogenatable organic compound which has at least one ##STR1## grouping is carried out in the presence of a zinc titanate catalyst. The selectivity of the zinc titanate catalyst may be improved by a promoter at least one member of which is selected from the group consisting of chromium, antimony, bismuth, aluminum, phosphorus, indium, tin, lanthanum and cerium.
    Type: Grant
    Filed: May 26, 1981
    Date of Patent: January 11, 1983
    Assignee: Phillips Petroleum Company
    Inventor: John H. Kolts
  • Patent number: 4329516
    Abstract: A process is described for producing methyl tert.-butyl ether from butane-containing light hydrocarbon mixtures. The n-butane is isomerized to isobutane which is dehydrogenated to an isobutene/isobutane molar ratio of 0.4 to 2:1, the isobutene in the mixture is etherified with methanol to form methyl tert.-butyl ether and the residual isobutane is recycled for dehydrogenation. After the isomerization step, the n-butane and isobutane can be separated and the n-butane recycled. The product containing methyl tert.-butyl ether can be used as a gasoline additive.
    Type: Grant
    Filed: June 3, 1980
    Date of Patent: May 11, 1982
    Assignee: Davy International Aktiengesellschaft
    Inventor: Ghazi R. Al-Muddarris
  • Patent number: 4327238
    Abstract: The catalytic dehydrogenation of at least one dehydrogenatable organic compound which has at least one ##STR1## grouping is carried out in the presence of a zinc titanate catalyst. The selectivity of the zinc titanate catalyst is improved by at least one promoter selected from the group consisting of chromium oxide, antimony oxide, bismuth oxide, oxides of the lanthanides, oxides of the actinides, oxides thereof, and compounds convertible to the oxides thereof.
    Type: Grant
    Filed: February 28, 1980
    Date of Patent: April 27, 1982
    Assignee: Phillips Petroleum Company
    Inventor: Alan D. Eastman
  • Patent number: 4313013
    Abstract: A palladium or palladium alloy hydrogen diffusion membrane which has been treated with silane and/or silicon tetrafluoride is employed to separate hydrogen from a hydrocarbon with which it is in admixture and from which it may have been produced under dehydrogenation conditions in the presence of said membrane.
    Type: Grant
    Filed: August 1, 1980
    Date of Patent: January 26, 1982
    Assignee: Phillips Petroleum Company
    Inventor: Jesse R. Harris
  • Patent number: 4310717
    Abstract: Hydrocarbons are oxidatively dehydrogenated in the presence of a catalyst comprising a mixture of oxides of manganese, phosphorus, and an alkali metal, optionally, supported on a refractory oxide. In one embodiment, ethane is converted to ethylene in the presence of a catalyst comprising a mixture of oxides of manganese, phosphorus, and sodium supported on alumina.
    Type: Grant
    Filed: May 13, 1980
    Date of Patent: January 12, 1982
    Assignee: Phillips Petroleum Company
    Inventors: Alan D. Eastman, John H. Kolts
  • Patent number: 4229609
    Abstract: A continuous process for dehydrogenating hydrocarbons comprising repetitively carrying out dehydrogenation using a steam active dehydrogenation catalyst and regenerating of said catalyst with steam and oxygen-containing gas wherein the flow rate of steam is maintained constant during both the dehydrogenation and the regeneration and wherein the catalyst is purged with steam prior to each dehydrogenation and each regeneration.
    Type: Grant
    Filed: March 8, 1979
    Date of Patent: October 21, 1980
    Assignee: Phillips Petroleum Company
    Inventors: Thomas Hutson, Jr., Francis M. Brinkmeyer
  • Patent number: 4220560
    Abstract: Spinels promoted with an alkali metal oxide and vanadium, oxide are useful catalysts for the dehydrogenation of hydrocarbons to the corresponding more unsaturated hydrocarbons and result in an improved catalyst.
    Type: Grant
    Filed: December 4, 1978
    Date of Patent: September 2, 1980
    Assignee: Shell Oil Company
    Inventors: Jean-Pierre Anquetil, Michel Deflin, Jean-Claude Clement, Emmanuel E. A. Neel
  • Patent number: 4176140
    Abstract: A process is used to dehydrogenate organic compounds to a higher degree of unsaturation by contacting in a first step, the organic compound with a calcined zinc titanate catalyst modified with lithium or magnesium. In the second step, the catalyst is contacted with oxygen essentially in the absence of the dehydrogenatable organic compound. The first and second steps are repeated sequentially.
    Type: Grant
    Filed: October 27, 1977
    Date of Patent: November 27, 1979
    Assignee: Phillips Petroleum Company
    Inventors: Brent J. Bertus, Darrell W. Walker
  • Patent number: 4174356
    Abstract: Hydrogenation-dehydrogenation of suitable feedstock is provided wherein such feedstock is subjected to hydrogenation-dehydrogenation conditions in the presence of a catalytic amount of a solid containing, at least in part, a synthetic amorphous solid prepared by hydrolyzing and polymerizing in the presence of water a silane having the formula R(Si)X.sub.3, wherein R is a nonhydrolyzable organic group, X is a hydrolyzable group and (Si) is selected from the group consisting of ##STR1## and calcining the polymerized product, said silane being admixed with a second compound, R'.sub.n MY.sub.m, wherein R' is selected from the group consisting of the same groups as R, Y is selected from the group consisting of the same groups as X and oxygen, M is at least one member selected from the group consisting of the elements of Groups IIIA, IVA, VA, IVB, VB, VIB, VIIB and VIII of the Periodic Table, m is any number greater than 0 and up to 8 and n is from 0 to any number less than 8.
    Type: Grant
    Filed: February 10, 1978
    Date of Patent: November 13, 1979
    Assignee: Mobil Oil Corporation
    Inventors: Thomas O. Mitchell, Darrell D. Whitehurst