Anti-pollution Patents (Class 60/274)
  • Patent number: 10570843
    Abstract: The exhaust purification system of an internal combustion engine comprises: a catalyst arranged in an exhaust passage of the internal combustion engine and able to store oxygen; an ammonia detection device arranged in the exhaust passage at a downstream side of the catalyst in a direction of flow of exhaust; and an air-fuel ratio control part configured to control an air-fuel ratio of inflowing exhaust gas flowing into the catalyst to a target air-fuel ratio. The air-fuel ratio control part is configured to perform rich control making the target air-fuel ratio richer than a stoichiometric air-fuel ratio, and make the target air-fuel ratio leaner than the stoichiometric air-fuel ratio when an output value of the ammonia detection device rises to a reference value in the rich control.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: February 25, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kimikazu Yoda, Keiichiro Aoki, Go Hayashita
  • Patent number: 10550801
    Abstract: Methods and systems are provided for reducing carbon buildup in an exhaust gas recirculation system of an engine of a vehicle. In one example, a method comprises injecting a diesel exhaust fluid into an intake manifold of the engine, routing the diesel exhaust fluid into the exhaust gas recirculation system, and vaporizing the diesel exhaust fluid in the exhaust gas recirculation system. In this way, any carbon deposits associated with an exhaust gas recirculation valve and/or exhaust gas recirculation passage may be reduced, which may increase fuel economy and may reduce undesired emissions.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: February 4, 2020
    Assignee: Ford Global Technologies, LLC
    Inventor: Aed M. Dudar
  • Patent number: 10544721
    Abstract: A dosing module includes an inlet manifold, an outlet manifold, a first branch, and a second branch. The inlet manifold is configured to selectively receive reductant from a pump. The outlet manifold is configured to selectively provide the reductant to a nozzle. The first branch is coupled to the inlet manifold and the outlet manifold. The first branch is configured to selectively provide the reductant from the inlet manifold to the outlet manifold. The first branch includes a first flow restrictor configured to restrict the reductant as the reductant is provided to the outlet manifold. The second branch is coupled to the inlet manifold and the outlet manifold. The second branch is configured to selectively provide the reductant from the inlet manifold to the outlet manifold separately from the first branch. The second branch includes a second flow restrictor that is configured to restrict the reductant.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: January 28, 2020
    Assignee: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: Taren DeHart, Vaibhav J. Lawand, Stephen M. Holl, Paul Douglas Free, Nassim Khaled, Colin L. Norris
  • Patent number: 10543830
    Abstract: A method of controlling a plug-in hybrid electric vehicle including an electric propulsion system, an engine, and a catalytic converter associated with the engine, the method comprising: monitoring a state of charge of a battery of the vehicle when in a charge depletion mode; determining a rate of depletion of the state of charge; estimating from the rate of depletion a duration of a depletion period representing the time remaining until a minimum state of charge of the battery will be reached; determining a duration of a warming period of the catalytic converter; comparing the duration of the depletion period and the duration of the warming period; and activating the engine if the duration of the depletion period is less than or equal to the duration of the warming period.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: January 28, 2020
    Assignee: Jaguar Land Rover Limited
    Inventors: Clement Dextreit, David McGeoch, Michael Andrews, Kean Harrison
  • Patent number: 10533154
    Abstract: The present invention provides a joint method of cultivating microalgae combined with denitrating an industrial waste gas and a system useful for the same. The joint method comprises the steps of: (1) a step of cultivating microalgae; (2) a separation step of separating a microalgae suspension obtained from step (1) into a wet microalgae (microalgae biomass) and a residual cultivation solution; (3) a NOx absorbing/immobilizing step of denitrating an industrial waste gas with the residual cultivation solution obtained from step (2); wherein the nutrient stream absorbed with NOx obtained from step (3) is used to provide nitrogen source to the microalgae cultivation of step (1). During the microalgae cultivation, EM bacteria is added into the microalgae suspension. The microalgae is preferably Chlorella sp., Scenedesmus sp., Monoraphidium sp. or Spirulina sp.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: January 14, 2020
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Junfeng Rong, Xuhua Zhou, Lin Cheng, Junying Zhu, Xugeng Huang, Baoning Zong
  • Patent number: 10526944
    Abstract: A filter regeneration device includes a microwave radiator configured to radiate a microwave and disposed to be oriented in a direction toward a ceramic filter configured to purify exhaust gas of an internal combustion engine, the ceramic filter being disposed in a cylindrical portion of a metallic case having the cylindrical portion and having a protruding portion protruding toward an outside of the cylindrical portion of the metallic case, the microwave radiator being disposed inside the protruding portion, and a microwave generator configured to generate the microwave radiated from the microwave radiator toward the ceramic filter.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: January 7, 2020
    Assignee: FUJITSU LIMITED
    Inventor: Tadahiro Imada
  • Patent number: 10526990
    Abstract: Method and apparatus for monitoring and/or detecting combustion misfire events in periodic combustion processes in internal combustion engines, using combustion signals derived from a first oxygen sensor exposed to exhaust gas of a periodic combustion process and a second oxygen sensor exposed to the same exhaust gas. The first oxygen sensor is resistive-based, and responds relatively faster to changes in the temperature and/or composition of the exhaust gas. The second oxygen sensor is voltaic-based or ampometric-based, and responds relatively slower to changes to the temperature and/or composition of the exhaust gas. When the temperature and/or composition of the exhaust changes rapidly but transiently due to a combustion misfire event, the different response rates of the first and second combustion signals allows for the combustion misfire event(s) to be detected. Either and/or both oxygen sensors may be used to control the engine in a conventional fashion.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: January 7, 2020
    Assignee: Kerdea Technologies, Inc.
    Inventors: Ken Ervin Fosaaen, Horizon Walker Gitano-Briggs
  • Patent number: 10519883
    Abstract: A catalyst temperature control system of a vehicle includes a fuel control module configured to control fuel injection based on a target air/fuel ratio that is fuel lean relative to a stoichiometric air/fuel ratio and a target fuel injection start timing. An exhaust gas recirculation (EGR) control module is configured to control an EGR valve based on a target EGR opening. An adjustment module is configured to, when a temperature of a catalyst in an exhaust system is less than a sum of a predetermined light-out temperature of the catalyst and a predetermined temperature and the target air/fuel ratio is fuel lean relative to the stoichiometric air/fuel ratio, based on a comparison of an engine speed and a predetermined engine speed, selectively adjust at least one of: a target throttle opening, a target spark timing, the target fuel injection start timing, the target air/fuel ratio, and the target EGR opening.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: December 31, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Arun S. Solomon, Kushal Narayanaswamy, Gerald A. Szekely, Jr., David P. Sczomak
  • Patent number: 10519841
    Abstract: Methods and systems are provided to monitor a quantity relating to particulate mass M in at least one exhaust pipe arranged downstream of a combustion engine. A first determination device determines a reduction ? of a pressure difference dP over at least one or several particulate filters, arranged downstream of the combustion engine. This reduction ? is related to a pressure difference dPref over one or more corresponding reference particulate filters. A second determination device determines a quantity related to the particulate mass M, based on the determined reduction ? of the pressure difference dP and a predetermined correlation between the reduction ? and the quantity related to the particulate mass M, so that use of soot sensors in the exhaust pipe may be avoided. A comparison device compares the quantity with a defined threshold value Mth and a providing device provides indications related to the comparison.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: December 31, 2019
    Assignee: Scania CV AB
    Inventors: Björn Bökelund, Karolin Erwe
  • Patent number: 10519832
    Abstract: A decomposition tube for an exhaust treatment system includes a housing with a housing wall that defines an exhaust flow path for exhaust; a reductant delivery mechanism coupled to the housing and having a nozzle configured to deliver a spray of reductant into the exhaust flow path; and a mesh device with a mounting element mounted on the housing wall and a mesh basket secured to the mounting element proximate to the nozzle to enclose and intercept the spray such that effectively all of the reductant passes through the mesh basket and into the exhaust flow path prior to impinging on the housing wall.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: December 31, 2019
    Assignee: DEERE & COMPANY
    Inventors: William F. Gavin, Nathan A. Bovee, Marc J. Andvik
  • Patent number: 10519888
    Abstract: A method and apparatus for in situ operating an internal combustion engine comprising determining at least one combustion characteristic for a combustion chamber of the internal combustion engine, comprising an actual heat release signal for the combustion chamber; and inputting the actual heat release signal into a diagnostic logic tree for diagnosing changes in combustion characteristics due to at least one of: a malfunctioning fuel injector, a start of combustion timing error; and a change in fuel quality; and performing a mitigation technique to compensate for the changes in combustion characteristics.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: December 31, 2019
    Assignee: WESTPORT POWER INC.
    Inventors: Jian Huang, Sandeep Munshi
  • Patent number: 10502167
    Abstract: Methods and systems are provided for cleaning an exhaust particulate filter by routing air via the exhaust particulate filter during a vehicle-off condition. In one example, during vehicle-off conditions, a turbocharger may be reverse rotated via an electric motor or an engine may be reverse rotated via an electric machine to route air via the exhaust particulate filter and the soot collected from the particulate filter may then be deposited on an air filter coupled to the intake manifold. During a subsequent engine start, the soot from the intake air filter may be routed to the engine cylinders for combustion.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: December 10, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Douglas Raymond Martin, Tyler Kelly, Timothy Stolzenfeld
  • Patent number: 10502110
    Abstract: A regeneration system of a combustion engine of a vehicle includes a speed control device configured to determine an acceleration time of the vehicle to a set speed, a NOx trap configured to reduce nitrogen oxides produced by the combustion engine, and a trigger configured to detect a loading level of the nitrogen oxides of the NOx trap in an exhaust gas produced by the combustion engine during operation. In further, the speed control device is configured to communicate with the trigger, wherein a regeneration of the NOx trap is configured to start in case the acceleration time of the vehicle to the set speed is at least equal to a regeneration time of the NOx trap at the loading level of the nitrogen oxides.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: December 10, 2019
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventors: Michael Schreiber, Stefan Lang, Andreas Kapp
  • Patent number: 10502107
    Abstract: An exhaust gas after-treatment unit for an internal combustion engine, particularly for a motor vehicle, includes a first selective catalytic reduction (SCR) catalytic converter through which the exhaust gas from the internal combustion engine can flow and at least one particle filter for retaining the soot particles from the exhaust gas. The particle filter, which is located downstream from the first SCR catalytic converter, is equipped with a heavy metal and precious metal free catalyzing coating which oxidizes the soot particles retained by the particle filter, where downstream from the particle filter there is a second SCR catalytic converter through which the exhaust gas can flow.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: December 10, 2019
    Assignee: Daimler AG
    Inventors: Johannes Bleckmann, Claudia Essmann, Uwe Gaertner, Alexander Massner, Michael Stiller
  • Patent number: 10500762
    Abstract: The system for determining a status of a valve being mounted in a liquid supply line of a concrete mixer and being actuatable via an actuator generally has: an actuator accelerometer mounted to the actuator and being adapted to measure an actuator position associated with a position of the valve; a reference accelerometer mounted to the concrete mixer and being adapted to measure a reference position fixed relative to the concrete mixer, the actuator position and the reference position being measured while the concrete mixer is fixed relative to the ground; a computing device adapted to receive the actuator and reference positions, the computing device being adapted to determine the status of the valve based on the actuator position, the reference position and calibration position data; and to generate status of the valve indicative of the determined status of the valve.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: December 10, 2019
    Assignee: COMMAND ALKON INCORPORATED
    Inventor: Denis Beaupre
  • Patent number: 10495016
    Abstract: Particulate accumulation in a particulate filter in the exhaust line of an engine is calculated by an electronic engine control unit. When the estimated accumulated particulate mass exceeds a predetermined threshold, an automatic regeneration step of the filter is activated. An actual instantaneous burned particulate mass is calculated as a function of values indicative of the state of the filter. A temporary correction factor representing an error between a theoretical value and the actual value is calculated. The temporary correction factor is stored in a second map of correction factors, based on the engine operating conditions. During an accumulation step, the estimated instantaneous particulate mass, calculated according to the first map based on the operating conditions of the engine, is multiplied by a correction factor calculated according to the second map based on the operating conditions of the engine.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: December 3, 2019
    Assignee: FCA Italy S.P.A.
    Inventors: Alessandro Mauro, Vincenzo Colandrea, Danilo Garombo
  • Patent number: 10494975
    Abstract: An ECU 30 calculates a target temperature of a bed temperature of a DOC 22a under PM regeneration control at each control period by the elements M1 to M9. Among these elements, the estimating section M7 estimates a passing SO3 amount at each control period by using an inflow SOx amount and a representative temperature. The estimating section M8 estimates a SO2 reduction rate, which is a ratio of reduction from SO3 to SO2 in the DOC 22a. Then, the calculating unit M9 calculates an amount of SO3 that is allowed to desorb from the DOC 22a as an allowable desorption SO3 amount at each control period, by using a constrained SO3 amount which corresponds to a constraint concerning sulfate white smoke, the passing SO3 amount, and the SO2 reduction rate.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: December 3, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masanori Shimada
  • Patent number: 10486117
    Abstract: An apparatus for aftertreatment of exhaust gas including a housing having a longitudinal axis that extends between a first end and a second end of the housing; an exhaust inlet being positioned at a portion of the first end of the housing for entering exhaust gas flow into the interior of the housing; a first substrate being positioned within the interior of the housing downstream to the exhaust inlet, wherein the exhaust gas flow being configured to flow through the first substrate in direction of the longitudinal axis; mixer arrangement being positioned within the interior of the housing downstream to the first substrate and including: first flow guide arrangement configured to guide the exhaust gas flow to rotating and advancing gas flow in direction of a crosswise axis perpendicular to the longitudinal axis; a reactant inlet for dispensing reactant to the rotating and advancing gas flow, the reactant configured to mix with the exhaust gas; and second flow guide arrangement configured to guide the rotating
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: November 26, 2019
    Assignee: Proventia Oy
    Inventors: Tuomas Tyni, Sauli Halonen, Juha Karhu
  • Patent number: 10487712
    Abstract: An exhaust gas control system includes a NSR catalyst, a fuel supply valve, a SCR catalyst an addition device, and an electronic control unit. When temperature of NSR catalyst is in a range of a predetermined first temperature range and temperature of SCR catalyst is in a range of a predetermined second temperature range, the electronic control unit is configured to add additive with the addition device, and execute predetermined air-fuel ratio processing to control the air-fuel ratio of exhaust gas flowing into the NSR catalyst. In the predetermined air-fuel ratio processing, the electronic control unit is configured to execute a second air-fuel ratio processing after a first air-fuel ratio processing, and execute the third air-fuel ratio processing after a first air-fuel ratio processing and the second air-fuel ratio processing and in succession to the second air-fuel ratio processing.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: November 26, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuriko Hagimoto, Yuji Miyoshi, Hiromasa Nishioka
  • Patent number: 10480373
    Abstract: An exhaust aftertreatment system includes a selective catalytic reduction (SCR) catalyst is disposed in an exhaust gas system of an internal combustion engine. A reductant injector is coupled to the exhaust gas stream at a position upstream of the SCR catalyst. A controller is configured to determine an NH3 slip condition and control operation of the exhaust aftertreatment system in response to the NH3 slip condition to improve deNOx efficiency and reduce NH3 slip.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: November 19, 2019
    Assignee: Cummins Inc.
    Inventor: Michael Haas
  • Patent number: 10480383
    Abstract: There is provided a technology pertaining to abnormality diagnosis of an NSR catalyst that enables the diagnosis that the NSR catalyst is abnormal to be made even when the degree of deterioration of the NSR catalyst is relatively small yet. An abnormality diagnosis apparatus is applied to an exhaust gas purification apparatus having an NSR catalyst and a fuel addition valve. The abnormality diagnosis apparatus includes a controller configured to perform a specific fuel addition process and diagnose the NSR catalyst. The controller starts the specific fuel addition process when the NSR catalyst is in a specific start condition, and diagnoses the NSR catalyst on the basis of the quantity of NOx flowing out of the NSR catalyst over a specific period in the period from when the specific fuel addition process is started to when the temperature of the NSR catalyst reaches the thermal desorption temperature.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: November 19, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hirokazu Nishijima, Toru Kidokoro, Kazuya Takaoka
  • Patent number: 10480369
    Abstract: An exhaust after-treatment system is coupled to an exhaust pipe of a diesel internal combustion engine (ICE) for treating an exhaust gas. The exhaust after-treatment system includes a diesel oxidation catalyst (DOC) and a SCR coated diesel particulate filter (SDPF) serially disposed in a downstream path of the exhaust gas. An electrically heated catalyst (EHC) is coupled to the DOC and is configured to electrically heat the DOC for reducing the requisite time to reach a DOC light-off temperature. A controller is operably coupled with the DOC and the EHC and is configured to operate the EHC in response to a mid bed temperature of the DOC. More specifically, the controller is configured to supply power to the EHC when the DOC mid bed temperature is below a predetermined value and discontinue the power supply to the EHC when the DOC mid bed temperature is greater than the predetermined value.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: November 19, 2019
    Assignee: FEV NORTH AMERICA INC.
    Inventors: Mufaddel Dahodwala, Tamas Szailer, Satyum Joshi, Erik Koehler, Michael Franke
  • Patent number: 10473047
    Abstract: An engine includes an exhaust gas control apparatus that is configured to store NOx and react NOx with a reduction agent. A control device for the engine includes an electronic control unit. The electronic control unit is configured to: (i) execute a rich spike control, the rich spike control is a control executed to temporarily change an in-cylinder air-fuel ratio from a leaner air-fuel ratio than the stoichiometric air-fuel ratio to the stoichiometric air-fuel ratio or a richer air-fuel ratio than the stoichiometric air-fuel ratio, and (ii) vary an overlap amount of an intake valve and an exhaust valve such that the overlap amount is less during execution of the rich spike control than during non-execution of the rich spike control, in an operation range where a pressure of the intake port becomes higher than a pressure of the exhaust port.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: November 12, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shintaro Hotta
  • Patent number: 10465580
    Abstract: An exhaust system may include first purification device disposed at a rear end portion of exhaust manifold and including Lean NOx Trap (LNT); second purification device disposed at rear end portion of the first purification device and including a diesel particulate filter (DPF); and a third purification device disposed at a rear end portion of the second purification device and including a selective catalytic reduction (SCR), wherein the DPF of the second purification device includes at least one inflow channel, at least one outflow channel, at least one wall disposed between the inflow channel and the outflow channel and extended in a longitudinal direction, and a support disposed inside of at least one of the inflow channel and the outflow channel, and at least one catalyst is coated on one of the inner wall of the inflow channel, the inner wall of the outflow channel, and the support.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: November 5, 2019
    Assignee: Hyundai Motor Company
    Inventors: ChangHo Jung, Pyung Soon Kim
  • Patent number: 10456743
    Abstract: Provided is an exhaust-gas treatment equipment including: a reaction container filled with a gas capture material that captures a particular gas component, the reactor container emitting gas obtained by removing the particular gas component from supplied gas by reaction of the supplied gas with the gas capture material; a temperature measuring element disposed in the reaction container, the temperature measuring element measuring a temperature of the gas capture material in the reaction container; a moving unit that freely moves the temperature measuring element in a direction that is parallel to a flow of the supplied gas flowing in the reaction container; and a control unit that estimates a deterioration state of the gas capture material using temperatures of the gas capture material at a plurality of different positions in the reaction container, the temperatures being measured by the temperature measuring element.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: October 29, 2019
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Kohei Yoshikawa, Masato Kaneeda, Hidehiro Nakamura
  • Patent number: 10458299
    Abstract: An exhaust gas aftertreatment apparatus for an internal combustion engine, in particular a stationary internal combustion engine having at least one catalyst unit for exhaust gases, which is arranged downstream of the internal combustion engine. Exhaust gases from the internal combustion engine can be taken past the at least one catalyst unit by way of a bypass conduit, and the at least one catalyst unit and the bypass conduit are arranged in a common housing. The housing has at least two separate feed conduits for untreated exhaust gas and at least one outlet conduit for exhaust gas treated by the at least one catalyst unit.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: October 29, 2019
    Assignee: INNIO Jenbacher GmbH & Co OG
    Inventors: Friedhelm Hillen, Arne Bienholz, Bhuvaneswaran Manickam, Marco Dris Paul
  • Patent number: 10450933
    Abstract: Technical solutions are described for an emissions control system for a motor vehicle including an internal combustion engine. An example computer-implemented method for controlling an exhaust system of an internal combustion engine, includes detecting a high hydrocarbon region in the operation of the internal combustion engine. The method further includes responsively, measuring an upstream temperature of an oxidation device of the exhaust system. Further yet, the method includes in response to the upstream temperature being equal to or above a predetermined threshold, delaying an O2 diagnosis of the exhaust system for a signal rationality delay time.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: October 22, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David P. Quigley, Pablo E. Hernandez Garcia, Sarah Funk, Madeleine Brancaccio
  • Patent number: 10450924
    Abstract: Selective catalytic reduction device (SCR) assessment methods include, while communicating exhaust to the SCR, determining a first temperature differential (dT) between a modeled exotherm phase temperature and a measured SCR exotherm outlet exhaust temperature, comparing the first dT to a first threshold, and determining that the SCR performance is suitable if the first dT is below the first threshold, or, if the first dT is above the first threshold, communicating exhaust gas to the SCR during a water endotherm phase, determining a second dT between a modeled endotherm phase temperature and a measured SCR endotherm phase outlet exhaust temperature, comparing the second dT to a second threshold, and determining that the SCR performance is suitable if the second dT is above the second threshold, or determining that the SCR performance is unsuitable if the second dT is below the second threshold. Performance can be SCR reductant storage capacity.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: October 22, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Sarah Funk, Michael A. Smith, Giuseppe Mazzara Bologna
  • Patent number: 10450922
    Abstract: A urea water solution injection system includes a urea water solution injection device for spraying a urea water solution into a portion of an exhaust passageway upstream of a selective catalytic reduction catalyst device, to reduce NOx in exhaust gas discharged from an internal combustion engine. Engine coolant is circulated through the urea water solution injection device to prevent freezing of the urea water solution. A crystal dissolution control unit performs crystal dissolution control on the urea water solution injection device by energizing at a preset amount of energization at a state where a urea water solution supply pump for supplying a urea water solution to the urea water solution injection device is kept stopped, and the crystal dissolution control unit performs the crystal dissolution control for a crystal dissolving energization time calculated in advance, after the engine is started but before a urea water solution is supplied.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: October 22, 2019
    Assignee: ISUZU MOTORS LIMITED
    Inventor: Masanobu Minezawa
  • Patent number: 10443478
    Abstract: System for the removal of noxious compounds and particulate matter from exhaust gas of a compression ignition engine comprising a three way catalyst unit having an NH3-SCR activity, an ammonia oxidation activity and an adsorption activity of volatile vanadium and tungsten compounds volatilized off an upstream SCR active catalyst.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: October 15, 2019
    Assignee: UMICORE AG & CO. KG
    Inventors: Keld Johansen, Ton V. W. Janssens
  • Patent number: 10443465
    Abstract: An exhaust system for an internal combustion engine (28) for controlling the release of undesirable emissions from the engine comprises an exhaust pipe (32) for receiving an exhaust flow from the engine, an SCR catalyst (48) arranged in the exhaust flow and means (80) for determining the temperature of the SCR catalyst. A NOx absorber (38), such as a diesel oxidation and NOx absorber catalyst (DONAC), is located in the exhaust flow at a position upstream of the SCR catalyst (48) for absorbing and releasing NOx contained in the exhaust flow. Means is provided for controlling the NOx absorber (38) so as to control the release of NOx to the SCR catalyst (48) in dependence on the temperature of the SCR catalyst, thereby to effect active management of release of NOx from the DONAC (38).
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: October 15, 2019
    Assignee: Jaguar Land Rover Limited
    Inventors: Neil Bevan, Michael Davies, Andrew Lilley, Robert Bending
  • Patent number: 10436089
    Abstract: A system structured to measure at least one of particulate matter or ammonia in an exhaust aftertreatment system. The system includes a selective catalytic reduction catalyst, a doser disposed upstream of the selective catalytic reduction catalyst, a particulate filter, and a radio frequency sensor communicatively coupled to the diesel particulate filter. The radio frequency sensor is structured to measure at least one of particulate matter or ammonia.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: October 8, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Nassim Khaled, Sriram Srinivasan
  • Patent number: 10428712
    Abstract: An exhaust gas flow after-treatment (AT) system includes first AT device and a second AT device in fluid communication with and positioned in the flow of exhaust gas downstream of the first AT device. The AT system also includes an exhaust passage for carrying the flow of exhaust gas from the first AT device to the second AT device and an injector for introducing a reductant into the exhaust passage. The AT system additionally includes a variable-position mixer arranged within the exhaust passage downstream of the injector. Furthermore, the AT system includes a mechanism configured to regulate the variable-position mixer between and inclusive of a first mixer position configured to increase a swirling motion and turbulence in the exhaust gas flow within the exhaust passage to thereby mix the reductant with the exhaust gas flow, and a second mixer position configured to reduce a backpressure generated by the mixer.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: October 1, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Claudio Ciaravino, Andrea Arnone
  • Patent number: 10427100
    Abstract: A method for nitrogen monoxide (NO) oxidation in catalytic systems is disclosed. The method includes receiving NO-containing exhaust gas from an internal combustion engine system, reacting NO with a stoichiometric amount of oxygen gas (O2), the reacting taking place in the presence of a sorbent and a catalyst, and recovering an amount of nitrogen dioxide (NO2) surpassing the equilibrium limitation of the NO oxidation reaction.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: October 1, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventor: Christopher J. Keturakis
  • Patent number: 10422262
    Abstract: A method for catalyst heating control for controlling a catalyst heating period of a catalyst heating system in which lambda sensors are each mounted at upstream and downstream sides of a catalyst converter may include determining a temperature of exhaust gas after an engine starts; determining an oxygen storage capacity of a catalyst depending on the determined temperature of the exhaust gas; comparing the determined oxygen storage capacity with a reference value to decide an aging level of the catalyst; and determining times of the catalyst heating period to be different from each other depending on the decided aging level of the catalyst.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: September 24, 2019
    Assignee: Hyundai Motor Company
    Inventor: Seung Bum Kim
  • Patent number: 10416042
    Abstract: An exhaust emissions monitoring device includes a pipe adapted to mount to the tailpipe of a vehicle and includes a cable for connecting to the vehicle engine control unit (ECU) and power system. The pipe defines an internal flow passage to allow exhaust to flow through. A plurality of sensors is mounted on the pipe and each sensor extends through an access port formed on the pipe wall to be exposed to the internal flow passage. Exhaust properties and constituents are sensed by multiple sensors for each constituent, there are two or more sensors for each of NOx, temperature, ammonia, particulate matter. The sensors communicate data signals to a processor/data logger also mounted on the pipe.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: September 17, 2019
    Assignee: VOLVO TRUCK CORPORATION
    Inventors: Karl Tasik, Jeffrey Marley, Heath Morris
  • Patent number: 10408103
    Abstract: A engine exhaust system includes a diesel oxidation catalyst (DOC) configured to receive the engine exhaust gases, a first electric heater coupled to the DOC, and a selective catalytic reduction (SCR) device in fluid communication with the DOC. The engine exhaust system further includes a second electric heater coupled to the DOC, a power switch controller in electronic communication with the first electric heater and the second electric heater, and a single power source electrically coupled to the power switch controller, the first electric heater, and the second electric heater. The power switch controller includes a switch to control a power distribution between the first electric heater and the second electric heater as a function of time.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: September 10, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Yong Miao, Stefano Pellegrino
  • Patent number: 10408333
    Abstract: Methods and systems are provided for regulating the temperature of rear axle lubrication oil. In one example, a rear axle coolant system may include a coolant loop with a plurality of valves and sensors, regulating the coolant flow in heat exchange relationship with an exhaust gas heat recovery and storage system to deliver warm coolant to a rear axle heat exchanger to warm the rear axle lubrication oil. The method may regulate the components of the rear axle coolant system through a controller, receiving sensor input from the components of the coolant system.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: September 10, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Cary Cole, Sunil Katragadda, Phillip Bonkoski, David Karl Bidner, Michael Levin, Colby Jason Buckman, Danrich Henry Demitroff, Amey Y. Karnik, Furqan Shaikh
  • Patent number: 10400692
    Abstract: A method for reducing the pollutant emissions in the exhaust gas in a start/catalytic converter heating phase of an internal combustion engine featuring externally supplied ignition and having at least one catalytic converter in an exhaust gas tract of the internal combustion engine, and for adapting a catalytic converter heating strategy to suitable state variables of the internal combustion engine and the catalytic converter as well as to the fuel quantity, the aging state and ambient conditions. The internal combustion engine is operated in a first phase of the start/catalytic converter heating phase using a lean air-fuel mixture in a range between a lambda value of 1.05 and at a lean misfire limit of the internal combustion engine that lies at a higher lambda value, and/or in a second phase of the start/catalytic converter heating phase, initially using a rich air-fuel mixture.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: September 3, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Hofstaetter, Volker Ricken
  • Patent number: 10400650
    Abstract: An SCR injection system for an internal combustion engine is disclosed. Under certain conditions, reductant fluid supplied by the system may form deposits in a reductant injector. In order to dissolve the deposits, a reductant supply line includes at least a portion with a downward slope that is disposed above a reductant inlet of the reductant injector. This allows reductant fluid in the sloped portion to flow to the reductant inlet due to gravity. Advantageously, a bent portion is provided between the reductant inlet and the sloped portion in order to trap reductant fluid that may flow back towards the reductant injector when the system is purged.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: September 3, 2019
    Assignee: Perkins Engines Company Limited
    Inventors: Siddharth Subhash Gharpure, Tom Carlill
  • Patent number: 10399037
    Abstract: A nitrogen oxides (NOx) storage catalyst for treating an exhaust gas flow is provided. The NOX storage catalyst includes a flow-through substrate defining channels for receiving the exhaust gas flow and first and second zones present in the channels. The first zone includes a first NOX storage catalyst coating capable of storing NOX at a first adsorption temperature and releasing NOX at a first desorption temperature. The second zone includes a second NOX storage catalyst coating capable of storing NOX at a second adsorption temperature and releasing NOX at a second desorption temperature. The second desorption temperature is greater than the first desorption temperature. Methods of using the NOX storage catalyst for treating an exhaust gas stream flowing from a vehicle engine during a period following a cold-start of the engine are also provided.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: September 3, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lei Wang, Shouxian Ren, Wei Li
  • Patent number: 10392981
    Abstract: The embodiments include: a NOx occlusion/reduction catalyst which is provided to an exhaust passage of an internal combustion engine, occludes NOx in exhaust when the exhaust is in a lean state, and reduces and purifies occluded NOx when the exhaust is in a rich state; a NOx purging control unit which, when the exhaust is in the rich state, executes NOx purging in which the NOx occluded in the NOx occlusion/reduction catalyst is reduced and purified; and a NOx-purging-prohibition processing unit which, when at least one of a plurality of prohibition conditions is fulfilled, prohibits execution of catalyst regeneration processing by the NOx purging control unit even if a catalyst-regeneration-processing start request has been issued, and, when one of the prohibition conditions is fulfilled during execution of the catalyst regeneration processing, invalidates the prohibition condition and allows continued execution of the catalyst regeneration processing by the NOx purging control unit.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: August 27, 2019
    Assignee: ISUZU MOTORS LIMITED
    Inventors: Teruo Nakada, Takayuki Sakamoto, Daiji Nagaoka, Hiroyuki Yuza
  • Patent number: 10393017
    Abstract: A system for providing auxiliary power in an aircraft. A propulsion core comprises a compressor, a combustor, a turbine, and a shaft. An accessory unit comprises an accessory combustor, an accessory turbine, and an accessory shaft. A tank is configured to hold high pressure air and operably connected to the accessory unit. An electric generator comprises an electrical output and a mechanical input, with the mechanical input operably connected to the accessory shaft and the electrical output operably connected to an electric motor operably connected to the shaft. The electrical output is operably connected to an auxiliary power consuming device in the aircraft.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: August 27, 2019
    Assignee: ROLLS-ROYCE CORPORATION
    Inventor: Michael Abraham Karam
  • Patent number: 10392985
    Abstract: An exhaust purification system includes: an NOx reduction type catalyst, which is provided in an exhaust system; a temperature acquisition unit, which acquires a catalyst temperature of the NOx reduction type catalyst; and a regeneration treatment unit, which executes a catalyst regeneration to recover an NOx purification capacity, wherein the regeneration treatment unit alternately executes a rich control, in which an exhaust air fuel ratio is set to a rich state to raise a temperature of the NOx reduction type catalyst to a predetermined target temperature, and a lean control, in which the exhaust air fuel ratio is set to a lean state to lower the temperature of the NOx reduction type catalyst, and sets an execution period of the lean control based on a deviation between the catalyst temperature acquired by the temperature acquisition unit during the previous rich control and the target temperature.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: August 27, 2019
    Assignee: ISUZU MOTORS LIMITED
    Inventors: Masaaki Nishito, Teruo Nakada, Takayuki Sakamoto, Daiji Nagaoka, Tomohiro Korenaga
  • Patent number: 10385791
    Abstract: A PCM (60) performs a catalyst early warming control (AWS control) for accelerating warm-up of a catalytic device. When the catalytic device (35) is not in an activated state and a vehicle is traveling, the PCM (60) is configured to perform: a fuel injection control to inject fuel such that a homogeneous fuel-air mixture can be formed in a combustion chamber (11) of an engine (10) so as to generate a homogeneous combustion; an intake air amount control to increase intake air amount; and an ignition control to retard ignition timing from a reference ignition timing. In addition, the PCM (60) is configured to vary ignition timing retard amount corresponding to a difference between the ignition timing retarded by the ignition timing control and the reference ignition timing, in accordance with engine speed and/or engine load.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: August 20, 2019
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Tomohiro Ueno, Yusuke Higuchi
  • Patent number: 10385747
    Abstract: An exhaust gas purification system for an internal combustion engine includes an oxidation catalyst device on an upstream side in an exhaust passage of an internal combustion engine and a lean NOx trap catalyst device on a downstream side, a controller which controls the exhaust gas purification system is configured to, when a temperature-rising control of an exhaust gas in a regeneration control is performed to recover a purification ability of the exhaust gas purification system, perform a control that changes a measurement position of a control temperature which is a control amount of a feedback control in the temperature-rising control, according to an excess air ratio or an oxygen concentration of the exhaust gas passing through the exhaust passage.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: August 20, 2019
    Assignee: ISUZU MOTORS LIMITED
    Inventors: Daiji Nagaoka, Teruo Nakada, Takayuki Sakamoto
  • Patent number: 10378404
    Abstract: The present subject matter relates to a method and a treatment system monitor for monitoring an engine exhaust after-treatment system containing more than one Lean NOx Traps (LNT). The method includes receiving an exhaust gas of a desired air-fuel ratio upstream of a respective LNT. The LNT is further regenerated using a richer than stoichiometric exhaust air-fuel ratio and subsequently an air-fuel ratio received downstream of the LNT is evaluated. Further, a working state of a respective LNT is determined based on the monitoring of the air-fuel ratio and oxygen level upstream and downstream of the LNT.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: August 13, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Frederik De Smet, Christoph Boerensen, Frank Linzen
  • Patent number: 10378405
    Abstract: A method for managing temperatures in an aftertreatment system positioned downstream of an engine. The method includes (1) combusting a rich air/diesel mixture in a cylinder of the engine, and then (2) combusting a lean air/diesel mixture in the cylinder, in the next combustion event in the cylinder, after combusting the rich air/diesel mixture therein. The method further includes repeating steps (1) and (2) in the cylinder and basing a frequency thereof on a desired aftertreatment system temperature.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: August 13, 2019
    Assignee: DEERE & COMPANY
    Inventors: Richard E. Winsor, Jacob M. Rosswurm
  • Patent number: 10378417
    Abstract: Methods and systems are provided for a particulate matter sensor arranged along an exhaust passage. In one example, a particulate matter sensor includes a series of tubes arranged in substantially a U-shape, and where the particulate matter sensor comprises one or more of a rotating element and a temperature sensing element.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: August 13, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Xiaogang Zhang, Jianwen James Yi
  • Patent number: 10378408
    Abstract: Described herein are illustrative exhaust systems and methods including ammonia generation and storage. An illustrative system can include a first exhaust conduit to and receive a first exhaust stream from a first engine, and a second exhaust conduit to and receive a second exhaust stream from a second engine. In the illustrative example, an exhaust treatment device coupled to the second exhaust conduit downstream of the second engine can convert nitrogen oxides (NOx) in the second exhaust stream into ammonia. An ammonia storage device coupled to the second exhaust conduit downstream of the exhaust treatment device can be configured to receive and store at least a portion of the converted ammonia as stored ammonia and to release at least a portion of the stored ammonia to a catalytic converter. The catalytic converter can include a selective catalytic reduction catalyst configured to use the ammonia to reduce NOx.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: August 13, 2019
    Assignee: Caterpillar Inc.
    Inventors: James J. Driscoll, Eric L. Schroeder