Anti-pollution Patents (Class 60/274)
  • Patent number: 10369555
    Abstract: A catalytic wall-flow monolith filter for use in an emission treatment system comprises a wall flow monolith comprising a porous substrate having surfaces that define the channels and having a first zone extending in the longitudinal direction from a first end face towards a second end face for a distance less than the filter length and a second zone extending in the longitudinal direction from the second end face towards the first end face and extending in the longitudinal direction for a distance less than the filter length, wherein a first SCR catalyst is distributed throughout the first zone of the porous substrate, an ammonia oxidation catalyst is distributed throughout the second zone of the porous substrate and a second SCR catalyst is located in a layer that covers the surfaces in the second zone of the porous substrate.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 6, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Garry Adam Burgess, Guy Richard Chandler, Keith Anthony Flanagan, David Marvell, Paul Richard Phillips
  • Patent number: 10371031
    Abstract: Methods and systems are provided for an exhaust passage having a plurality of catalysts. In one example, a method may include injecting reductant via one or more injectors of the exhaust passage and monitoring injection conditions by flowing exhaust gas to the engine.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: August 6, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Frederik De Smet, Monika Angst
  • Patent number: 10371027
    Abstract: An exhaust gas purification system of a working machine is operable to reduce a loss of a working time caused by a point that it takes a long time to renew an exhaust gas purification device by throttle devices. The exhaust gas purification system of the working machine is provided with a common rail type engine which is mounted to the working machine, an exhaust gas purification device which is arranged in an exhaust system of the engine, and at least one of the intake air throttle device and the exhaust gas throttle device. It is provided with mode selection input means which selects whether an auxiliary renewing mode is executed or a forced renewing mode is executed in the case that a clogged state of the exhaust gas purification device is equal to or more than a prescribed level.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: August 6, 2019
    Assignee: YANMAR CO., LTD.
    Inventor: Kenta Saitou
  • Patent number: 10364729
    Abstract: A method for determining a mass flow of ammonia between two SCR catalytic converters disposed one after the other in an SCR catalytic converter system in an exhaust system, which comprises only one reduction agent dosing unit upstream of the first SCR catalytic converter, characterized in that the determination is carried out from the signal of a NOx sensor disposed between the two SCR catalytic converters and the signal of a NOx sensor disposed downstream of the second SCR catalytic converter.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: July 30, 2019
    Assignee: Robert Bosch GmbH
    Inventor: Frank Schweizer
  • Patent number: 10364723
    Abstract: The present invention is a method for removing pollution from exhaust gas circulating in an exhaust line (12) of an internal-combustion engine. The exhaust line comprises an ammonia-sensitive catalyst (46) with selective NOx catalytic reduction traversed by the gas and an injector (56, 58) for injecting a reductant of the pollutants The catalyst decomposes the reductant into a hydrogen gas phase and an ammonia gas phase and, for a gas temperature below approximately 150° C. injects the hydrogen into the exhaust line in combination with a hydrogen-sensitive NOx catalyst.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: July 30, 2019
    Assignee: IFP ENERGIES NOUVELLES
    Inventor: Stéphane Raux
  • Patent number: 10364727
    Abstract: A reducing agent is supplied to an NOx catalyst in a suitable manner, while suppressing NOx from being produced by oxidation of ammonia in the NOx catalyst. In cases where the temperature of NOx is equal to or higher than a predetermined temperature at which ammonia is oxidized, an amount of ammonia or an amount of a precursor thereof to be added into exhaust gas from an addition valve is made smaller, when an air fuel ratio of exhaust gas flowing into the NOx catalyst is larger than a predetermined air fuel ratio, than when the air fuel ratio of the exhaust gas is equal to or less than the predetermined air fuel ratio.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: July 30, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Arifumi Matsumoto
  • Patent number: 10358966
    Abstract: Technical solutions are described for limiting exposure of components of an emissions control system to rich exhaust conditions. An example an emissions control system includes an oxygen storage component; and a controller that limits exposure of the oxygen storage component to rich exhaust conditions. The limiting includes determining an air-to-fuel equivalence ratio in exhaust gas in response to an engine receiving a request to generate torque, the request including a displacement of a pedal; determining an amount of oxygen in the exhaust gas based on the air-to-fuel equivalence ratio; determining an oxygen level stored by the oxygen storage component; and if the oxygen level is above a predetermined threshold, lowering a torque generation rate of the engine, which specifies amount of torque generated per unit displacement of the pedal.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: July 23, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michael A. Smith, Christopher L. Whitt, Sarah Funk, Shouxian Ren
  • Patent number: 10352215
    Abstract: A method and system for modeling growth of reductant deposits for an aftertreatment system on a real time basis using input including exhaust gas temperature, exhaust gas flow rate, and reductant dosing rate. The growth of the reductant deposits are affected by a rate at which reductant accumulates and decomposes from a surface of the aftertreatment system. Thus, the method and system disclosed determines a net reductant deposit growth rate value based on a reductant deposit accumulation rate value and a reductant deposit decomposition rate value. Further, the method and system disclosed determines a reductant mass deposit value based on the net reductant deposit growth rate value. The reductant mass deposit value determined by the method and system may then be used to control a regeneration strategy of the aftertreatment system to eliminate the reductant deposits from the aftertreatment system.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: July 16, 2019
    Assignee: Caterpillar Inc.
    Inventors: Yong Yi, Shuhai Hou, Hongsheng Sun
  • Patent number: 10352217
    Abstract: A method is provided for controlling the injection, by a reductant injector in an exhaust system for an internal combustion engine, of reductant for an exhaust aftertreatment unit of the exhaust system, for example a selective catalytic reduction (SCR) unit. The method includes determining a reductant injection debt in dependence on a reductant flow according to at least a first request being higher than a threshold of the reductant flow, and, at least partly in dependence on the reductant injection debt, controlling the reductant injector so as to inject a compensation flow.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: July 16, 2019
    Assignee: Volvo Truck Corporation
    Inventors: Per-Olof Källen, Henrik Nilsson
  • Patent number: 10352219
    Abstract: A method of controlling regeneration of a selective catalytic reduction (SCR) on a diesel particulate filter (DPF) (SDPF) by using an increase in a temperature of exhaust gas of a vehicle include confirming whether the vehicle is in an idle state or whether the vehicle enters a re-start after a start-stop before the regeneration of the SDPF and determining an entrance condition, determining, when the entrance condition is satisfied, a quantity of urea injection and a quantity of urea accumulated before the regeneration and determining whether the determined quantity of urea injection does not exceed a target quantity of urea, and increasing a temperature within a filter of the SDPF to a predetermined value or more during the regeneration of the SDPF and removing urea deposited at the lower end portion of the filter.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: July 16, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Choong-Il Kwon
  • Patent number: 10344652
    Abstract: An aftertreatment system comprises a reductant storage tank and a selective catalytic reduction (SCR) system including a catalyst for reducing constituents of an exhaust gas. A reductant insertion assembly including a pump and dosing valve is fluidly coupled to the pump and the SCR system. A controller is communicatively coupled to the reductant insertion assembly. The controller is configured to initialize the pump so as to pressurize a reductant in the pump. The dosing valve is opened, thereby expelling the reductant into the SCR system. An operating electrical parameter value of the pump is determined which is indicative of an operating pressure of the pump. The controller determines if the operating electrical parameter value exceeds a predetermined operating threshold. If the operating electrical parameter value exceeds the predetermined operating threshold, the controller stops the pump.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: July 9, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Tobias Englert, Jens Honeck
  • Patent number: 10344656
    Abstract: A mixing apparatus for mixing a precursor substance of a reducing agent with exhaust gas, having a housing that provides a mixing chamber and a silencer. The housing inlet side has an inlet connection for exhaust gas and an outlet side having an outlet connection for reducing agent intermixed with the exhaust gas to be discharged. Longitudinal axes of the inlet and outlet connections are offset and parallel relative to one another. An introduction device introduces a precursor substance of the reducing agent and is positioned at the inlet side in a region of the outlet connection longitudinal axis. A length of the housing between the inlet and outlet side at least 1.9 to 7 times a diameter of the inlet connection. A width of the housing is maximally 3 times the diameter of the inlet connection.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: July 9, 2019
    Assignee: MAN Energy Solutions SE
    Inventors: Andreas Döring, Ingo Bader
  • Patent number: 10344654
    Abstract: Described herein is a method for detecting steady state ammonia slip for a motor vehicle having an internal combustion engine and an emissions control system. The emissions control system includes a selective catalytic reduction (SCR) device, a NOx sensor, and a controller. The controller executes a method for ammonia slip detection that includes determining if the SCR device is at steady state, comparing a NOx measurement from the NOx sensor with a predicted NOx value. If the NOx measurement exceeds the predicted NOx value by a threshold, perturbing a reductant injection, the perturbation having a selected magnitude and a selected duration. The method also includes measuring a NOx value resulting from the perturbation and computing a gradient thereof relative to the measured NOx, and ascertaining if a gradient of the NOx resulting from the perturbation exceeds a threshold and identifying a reductant slip condition if so.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: July 9, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Luca Lauritano, Luis Daniel Guerrero Cruz
  • Patent number: 10344643
    Abstract: An exhaust purification system includes an LAF sensor provided in an exhaust pipe and generates a signal corresponding to an air-fuel ratio of exhaust gas. An upstream catalytic converter is downstream of the LAF sensor and has a catalyst to purify the exhaust gas. An O2 sensor is downstream of the upstream catalytic converter, and generates a signal corresponding to the air-fuel ratio of the exhaust gas. A GPF is downstream of a the O2 sensor and purifies the exhaust gas. An ECU controls an air-fuel mixture in an engine using output signal KACT of the LAF sensor and an output signal VO2 of the O2 sensor such that the air-fuel ratio of exhaust gas flowing into the GPF converges to a target value near the stoichiometric ratio. The GPF has a filter substrate and a downstream TWC supported by a partition of the filter substrate.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: July 9, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Shinichiro Otsuka, Kenji Katayama, Noritaka Masumitsu, Ryoko Yamada
  • Patent number: 10337466
    Abstract: The present disclosure provides an engine system of a vehicle including an engine having combustion chambers for generating driving torque by burning fuel; an intake line in which fresh air flowing into the combustion chambers flows; an exhaust line in which exhaust gas exhausted from the combustion chambers flows; a recirculation line connecting the exhaust line and the intake line; a turbocharger including a turbine disposed at the exhaust line and rotated by the exhaust gas from the combustion chambers, and a compressor disposed at the intake line and rotated together with the turbine and compressing fresh air; an exhaust gas recirculation valve disposed at the connection of the recirculation line and the intake line to adjust an exhaust gas recirculation gas amount supplied to the intake line through the recirculation line; and a remaining gas elimination apparatus for supplying gas remaining in the intake line to the recirculation line.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: July 2, 2019
    Assignee: HYUNDAI MOTOR COMPANY
    Inventors: Jungjoo Park, Min Sub Kim
  • Patent number: 10337376
    Abstract: An exhaust gas purification system comprises a first fuel supply unit to supply fuel to exhaust gas flowing in an exhaust passage by a supply valve arranged in the exhaust passage, and a second fuel supply unit to supply fuel to exhaust gas by adjusting a fuel injection condition, wherein in a temperature raising stage of the NOx SCR catalyst associated with the exhaust gas temperature raising processing, first control is performed in which fuel is supplied by the first fuel supply unit, and in a temperature holding stage of the NOx SCR catalyst associated with the exhaust gas temperature raising processing, at least second control is performed in which the ratio of an amount of fuel supply by the second fuel supply unit with respect to an amount of fuel supply by the first fuel supply unit becomes higher in comparison with that when performing the first control.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: July 2, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akira Mikami, Shigeki Nakayama, Keishi Takada, Nobumoto Ohashi, Junichi Matsuo
  • Patent number: 10337385
    Abstract: A method for monitoring an SCR injection system is disclosed. The method includes operating a pump, and measuring a first pressure drop value in the SCR injection system during actuation of a reductant injector. A second pressure drop value in the SCR injection system is measured during a further actuation of the reductant injector. It is determined to perform a deposit mitigation strategy based on the first pressure drop value and the second pressure drop value.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: July 2, 2019
    Assignee: Perkins Engines Company Limited
    Inventors: Siddharth Subhash Gharpure, Stuart Smith, James K. McCloskey, Tom Carlill
  • Patent number: 10337437
    Abstract: An abnormality diagnosis device for an engine includes an electronic control unit configured to execute temperature rise processing by controlling an air-fuel ratio of at least one of a plurality of cylinders to be a rich air-fuel ratio and controlling an air-fuel ratio of each of the other cylinders to be a lean air-fuel ratio. The electronic control unit is configured to determine whether or not the execution of the temperature rise processing is ongoing, to execute abnormality determination processing to determine whether or not the engine is in an abnormal state, to execute the abnormality determination processing based on whether or not the variation degree during stop of the temperature rise processing exceeds a first determination value, and to execute the abnormality determination processing based on whether or not the variation degree during the execution of the temperature rise processing exceeds a second determination value.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: July 2, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Nakamura, Yuki Nose, Eiji Ikuta
  • Patent number: 10337383
    Abstract: A method for an engine employing an after-treatment (AT) system with an AT device for treating an engine exhaust gas includes detecting an actual concentration of a pollutant in the exhaust gas upstream of the AT device. The method additionally includes treating the exhaust gas via the AT device and directing the treated gas to an exhaust gas passage. The method also includes recirculating a portion of the treated exhaust gas from the exhaust gas passage to the engine's intake passage and determining efficiency of the AT device, after recirculating the portion of the treated exhaust gas, using the detected actual pollutant concentration. Furthermore, the method includes maintaining operation of the AT system when the determined AT device efficiency is at or above a predetermined value and activating a sensory signal indicative of the AT device having malfunctioned when the determined AT device efficiency is below the predetermined value.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: July 2, 2019
    Assignee: GM Global Technology Operations LLC.
    Inventors: Salvatore Trimboli, Davide Gessaroli, Valerio Formica
  • Patent number: 10337374
    Abstract: Methods and systems are provided for a steam reforming catalyst. In one example, a method may include flowing exhaust gas from a first cylinder bank directly to a three-way catalyst, flowing exhaust gas from a second cylinder bank directly to a steam reforming catalyst, and flowing exhaust gas from the steam reforming catalyst to the three-way catalyst.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: July 2, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Rachel Alison Snow, Eva Thanasiu, Paul M. Laing, Giovanni Cavataio
  • Patent number: 10329980
    Abstract: An exhaust emission control system of an engine is provided including a NOx catalyst for oxidizing HC and storing NOx within exhaust gas when an air-fuel ratio of the exhaust gas is lean, and reducing the NOx when the air-fuel ratio is approximately stoichiometric or rich. The system includes a SCR catalyst for purifying NOx by causing a reaction with NH3, a urea injector, a fuel injection controlling module, and a processor configured to execute a NOx reduction controlling module for performing a NOx reduction control to enrich the air-fuel ratio to reach a target ratio. When the urea injection is determined to be abnormal, the NOx reduction controlling module performs a NH3-supplied NOx reduction control in a state where a larger amount of unburned fuel than the amount of unburned fuel in the exhaust passage in the NOx reduction control is supplied to the exhaust passage.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: June 25, 2019
    Assignee: Mazda Motor Corporation
    Inventors: Masanobu Kanno, Takayuki Yamaguchi, Masayuki Tetsuno
  • Patent number: 10329977
    Abstract: Methods and systems are provided for controlling particulate filter temperature during non-combustion conditions. In one example, a method for an engine includes responsive to a particulate filter temperature above a threshold temperature and while operating the engine with deceleration fuel shut-off (DFSO), fully closing a throttle valve configured to regulate flow of intake air to the engine, and responsive to intake manifold pressure dropping below a threshold pressure while the throttle valve is fully closed, adjusting a position of the throttle valve based on the particulate filter temperature.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: June 25, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Norman Ulrey, Emil G. Serban, Michiel J. Van Nieuwstadt
  • Patent number: 10330036
    Abstract: If the rotation speed of the output shaft of an engine exceeds a lower limit engine rotation speed, and the rotation speed of an input shaft exceeds a lower limit input shaft rotation speed, the control apparatus of this invention executes cylinder deactivation control of decreasing the number of operating cylinders by stopping the operations of some of a plurality of cylinders based on a cylinder deactivation upper limit engine torque set by referring to a cylinder deactivation control table corresponding to the gear range of an automatic transmission.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: June 25, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Fumio Egashira
  • Patent number: 10323607
    Abstract: Various methods and systems are provided for a drain system for an EGR system of an engine system. In one example, the drain system includes a connector fluidly coupled to each of an intake system, an exhaust system, and a fluid collector, where the connector is positioned vertically below an intake manifold of the intake system and an exhaust passage of the exhaust system and vertically above the fluid collector with respect to a surface on which an engine sits.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: June 18, 2019
    Assignee: GE Global Sourcing LLC
    Inventors: Kevin Paul Bailey, Daniel Edward Loringer, Kent Jeffries, Eric David Peters, David Marshall Wright, Christopher Joseph Homison
  • Patent number: 10323613
    Abstract: A combined fuel for use in an internal combustion engine comprises a combination of partially combusted particles from the engine exhaust, said particles being in suspension in ordinary fuel. A method and apparatus for recycling partially combusted particulate material by collecting those materials. The particulate materials are combined with ordinary fuel in the fuel system to form the combined fuel which is filtered and fed the engine for combustion.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: June 18, 2019
    Assignee: Illinois Valley Holding Company
    Inventor: Brett Bailey
  • Patent number: 10309281
    Abstract: A system for reducing environmentally harmful emissions from an internal combustion engine. The system may incorporate an exhaust after-treatment device. The exhaust after-treatment device may use selective catalytic reduction to remove certain emissions from the exhaust of the engine. Urea solution may be inserted into the exhaust emissions, which is decomposed to ammonia to become a reduction agent for reduction of NOx in the emissions. The engine may be managed by a controller and the exhaust after-treatment device may be managed by another controller. These controllers may be cascaded, or be managed by a third controller that provides hierarchical or coordinated control of engine performance and emissions reduction. The engine and the exhaust after-treatment device may be modeled to aid in designing and building a system for coordinated control of an actual engine and a selective catalytic reduction after-treatment device. The controllers may be predictive model controllers.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: June 4, 2019
    Assignee: Garrett Transportation I Inc.
    Inventors: Gregory Stewart, Jaroslav Pekar, Daniel Pachner
  • Patent number: 10309280
    Abstract: A selective catalytic reduction solution having urea, water and gas bubbles contained within the solution. In particular, the solution has a urea content that is present in an amount greater than 31% (m/m) mass fraction of material and gas bubbles in the solution in an amount between about 7% to about 9% of the volume of solution when the solution is at a pressure of about 1 bar absolute. When the selective catalytic reduction solution is pressurized to a range between 6 bar and 7.5 bar, the gas bubbles are in a range between about 1.33% to about 1.07% of the solution when the solution is pressurized. The presence of the gas bubbles provides an expansion volume for the urea solution, if the urea solution begins freezing due to cold temperatures.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: June 4, 2019
    Assignee: Continental Powertrain USA, LLC
    Inventor: Keith Aaron Shaw
  • Patent number: 10309871
    Abstract: A vehicle trailer for attaching to a vehicle and analyzing operating characteristics of the vehicle is provided. The trailer includes a frame having a tongue configured to attach to a vehicle. The trailer has its own designated powertrain configured to propel and brake the trailer independent from the vehicle. A connecting member is configured to attach to an exhaust pipe of the vehicle and includes an emissions sensor configured to detect emissions from the exhaust pipe. At least one controller is coupled to the emissions sensor and is configured to analyze the emissions. The trailer can also be attached to the vehicle via an attachment member and configured to propel the vehicle across a range of increasing speeds while a powertrain of the vehicle is in neutral, and measure forces required to propel the vehicle across the range of speeds utilizing a force gauge on the attachment member.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: June 4, 2019
    Assignee: Ford Global Technologie, LLC
    Inventor: Daniel Lee Hagan, Jr.
  • Patent number: 10301993
    Abstract: An electrically heated catalyst device has a catalyst that purifies exhaust gas from an engine, and is configured to heat the catalyst with electric power that is supplied from an electric storage device. A current sensor detects a current that is supplied to the electrically heated catalyst device. A current sensor detects an input/output current of the electric storage device. A controller executes failure determination control to determine whether the current sensor has a failure. In the failure determination control, the controller estimates a current that is supplied to the electrically heated catalyst device using a detection value of the current sensor and compares the estimated current with a detection value of the current sensor to determine whether the current sensor has a failure.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: May 28, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keita Hashimoto, Takahiro Suzuki
  • Patent number: 10294881
    Abstract: In a control apparatus for an internal combustion engine, The ignition timing in a rich-cylinder is corrected toward a retardation side from a theoretical-MBT such that the torque generated in the rich-cylinder exceeds a torque generated in the rich-cylinder at the theoretical-MBT, and the ignition timing in a lean-cylinder is corrected toward an advancement side from the theoretical-MBT such that the torque generated in the lean-cylinder exceeds a torque generated in the lean-cylinder at the theoretical-MBT, when a temperature raising process is being executed, and the ignition timing in the rich-cylinder is corrected further toward the retardation side such that the torque generated in the rich-cylinder becomes equal to or smaller than a maximum theoretical generated torque and equal to or larger than the torque generated in the lean-cylinder at the theoretical-MBT, when the temperature raising process is being executed and the engine is in a low-load operating state.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: May 21, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuki Nose, Yoshiyuki Shogenji, Eiji Ikuta, Keiichi Myojo
  • Patent number: 10294883
    Abstract: Methods and system for controlling air-fuel ratios in an internal combustion engine are disclosed. One embodiment comprises, adjusting a sensor calibration correction value of an exhaust sensor upstream of a catalyst based on an exhaust sensor downstream of the catalyst. The adjustment of the sensor calibration correction value takes advantage of the fact that certain aromatic hydrocarbons causing errors in the reading of the upstream sensor are not present at the downstream sensor due to sufficient catalytic activity of a catalyst positioned between the sensors.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: May 21, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Eric Krengel, Steven Schwochert
  • Patent number: 10293303
    Abstract: A modular plasma treatment system has interchangeable and easily accessible inner and outer electrodes that concentrically nest within an outer housing of one or more plasma reformers. The inner and outer electrodes have self-centering features that allow for blind-fitting of the interchangeable inner and outer electrodes during electrode replacement and maintenance. A plurality of reformers that generate different types of plasmas are preferably arranged serially to allow for a mixture of separate plasmas within the same reaction area and to increase utilization of short-lived radicals.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: May 21, 2019
    Assignee: THRIVALTECH, LLC
    Inventor: Garrett Hill
  • Patent number: 10295182
    Abstract: An arrangement for adjusting the ratio between supplied amounts of fuel (PA) and air (I) in a burner, which is intended for a gaseous and/or liquid fuel is disclosed. The burner comprises a fuel and air mixing zone, a fuel supply conduit adapted to supply the mixing zone with a given inlet flow of fuel, a combustion air supply means adapted to supply the mixing zone with a given inlet flow of combustion air, and burner automation. The burner automation contains measuring instruments. The burner has its mixing zone accompanied by a combustion chamber which is in communication with a flue gas conduit. The combustion chamber or flue gas conduit has at least one catalytic zone. In the arrangement, the measuring instruments include at least one sensor, such as a lambda sensor, measuring the amount of residual oxygen in flue gases (flue gas oxidation/reduction potential).
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: May 21, 2019
    Assignee: Oilon Technology Oy
    Inventor: Tero Tulokas
  • Patent number: 10293825
    Abstract: Methods of operating internal combustion engines are provided. A controller detects a coasting event while an associated vehicle is in motion. In response to the coasting event, the controller directs at least a portion of an exhaust gas output by an exhaust system of an internal combustion engine of the vehicle into an intake system of the internal combustion engine.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: May 21, 2019
    Assignee: Cummins Inc.
    Inventors: Tony James Hall, Daniel Reed Dempsey
  • Patent number: 10287960
    Abstract: A method for detecting the aging of a heterogeneous catalytic converter, including the following steps: acquiring at least one measurement signal in a media flow passing through the catalytic converter downstream of the catalytic converter; applying a time-variant input signal to the media flow and/or the catalytic converter; evaluating a behavior of the at least one measurement signal as a function of the time-variant input signal; and detecting a state of aging of the catalytic converter.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: May 14, 2019
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Klaus Wehler, Klaus Rusch
  • Patent number: 10287945
    Abstract: A method for increasing the exhaust temperature of an exhaust system. The method includes receiving an inlet temperature of a selective catalytic reduction system; determining whether the inlet temperature meets a temperature setpoint; adjusting an exhaust manifold pressure setpoint based on the determination of the inlet temperature; determining whether the exhaust manifold pressure of at least one of first or second bank meet the exhaust manifold pressure setpoint; and causing an adjustment of an effective flow area of at least one of the first bank or second bank based on the exhaust manifold pressure, the adjustment of the effective flow area structured to increase exhaust temperature during light load operation.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: May 14, 2019
    Assignee: Cummins, Inc.
    Inventors: Travis Alva Anderson, Joan M. Wills, Rajkumar Subramanian, Vaibhav Daramwar, Pagalavan Mathari Bakthavatsalam, Paul Daniel Borisuk
  • Patent number: 10288017
    Abstract: Described herein is a system and method of controlling an emissions control system for treating exhaust gas in a motor vehicle having an internal combustion engine. The emissions control system includes an electric diesel oxidation catalyst (eDOC) device having an electric heating element, disposed in a stream of the exhaust gas, a temperature sensor disposed at the eDOC device and configured to detect a temperature of the exhaust gas, and a controller that is configured to perform a model based control of the eDOC device based on a dual nested closed loop topology having an inner closed loop control and an outer closed loop control. The inner closed loop control is configured to control the power required for the eDOC device and outer closed loop control is configured to control the temperature of the eDOC device.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: May 14, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Roberto Romanato
  • Patent number: 10287949
    Abstract: The current invention consists of a method and device that is coated with at least one predeposited photocatalyst to reduce or eliminate exhaust emissions and powered by a thermoelectric generator. The method and device comprises a light source emitting sufficient light between 10 nm and 700 nm for the photocatalyst coating and a means to attach said method and device to the source of exhaust emissions.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: May 14, 2019
    Assignee: DRYWIRED, LLC
    Inventors: Camille Charles Chidiac, Kailey Rae Bradt
  • Patent number: 10286359
    Abstract: An oxidation catalyst for treating an exhaust gas from a diesel engine, which oxidation catalyst comprises: a first washcoat region comprising platinum (Pt), manganese (Mn) and a first support material; a second washcoat region comprising a platinum group metal (PGM) and a second support material; and a substrate having an inlet end and an outlet end; wherein the second washcoat region is arranged to contact the exhaust gas at the outlet end of the substrate and after contact of the exhaust gas with the first washcoat region.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: May 14, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Andrew Francis Chiffey, John Benjamin Goodwin, James Leeland, Francois Moreau
  • Patent number: 10287944
    Abstract: A method of desulfurizing a lean NOx trap (LNT) of an exhaust purification system provided with the LNT and a selective catalytic reduction (SCR) catalyst includes determining whether a desulfurization feasibility condition of the LNT is satisfied, determining whether a desulfurization demand condition of the LNT is satisfied, and performing desulfurization of the LNT if both of the desulfurization feasibility condition of the LNT and the desulfurization demand condition of the LNT are satisfied, wherein the desulfurization of the LNT is performed by repeating a desulfurization lean mode and a desulfurization rich mode according to whether a mode switching condition due to a desulfurization temperature is satisfied and whether a mode switching condition due to generation of H2S is satisfied.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: May 14, 2019
    Assignees: HYUNDAI MOTOR COMPANY, FEV GMBH
    Inventors: Jin Ha Lee, Won Soon Park, Jin Woo Park, Ki Hyung Joo, Sera Lim, Thomas Wittka, Alexander Vovk, Joschka Schaub
  • Patent number: 10287947
    Abstract: A selective catalytic reduction system includes a reducing agent injection module installed in an exhaust pipe through which an exhaust gas is discharged from an engine and configured to inject a reducing agent into the exhaust pipe, a temperature calculator configured to calculate a temperature of the reducing agent injection module using temperature-related information of the reducing agent injection module, and a temperature controller configured to control to increase a reducing agent injection amount of the reducing agent injection module when the calculated temperature.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: May 14, 2019
    Assignee: DOOSAN INFRACORE CO., LTD.
    Inventors: Jae-Seong Kim, Eun-Hyoung Kim, Nam-Il Choi, Won-Jun Choi
  • Patent number: 10274470
    Abstract: A method and apparatus for field testing an NOx-sensor in a diesel engine exhaust system are disclosed. The apparatus is connectable to a truck having a lean burn diesel type engine, via an on-board diagnostic connector. A test cycle is performed on a running engine in at least two different states of operation, while NOx related values issued by the at least one NOx-sensor are measured over a predefined period of time. One state of operation is obtained by simultaneously opening the exhaust gas recirculation valve and controlling the back pressure valve for increasing backpressure. A dedicated algorithm is used to compare the measured values to a predefined model, and to provide a numerical summary and statistical evaluation of the sensor functioning.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: April 30, 2019
    Assignee: DAF Trucks N.V.
    Inventor: Arjen Daniël Hunter
  • Patent number: 10273847
    Abstract: A method for controlling a valve for directing an exhaust gas stream through an exhaust duct having an after treatment device and a bypass duct in an exhaust system of a vehicle is provided. The method includes receiving first sensor signals from a first sensor coupled downstream from the exhaust after treatment device, and processing the first sensor signals to determine a first temperature of an outlet exhaust gas stream. The method includes determining a bypass command based on whether the first temperature exceeds a first pre-defined threshold for the outlet exhaust gas stream. The method also includes outputting a control signal based on the determining of the bypass command to a valve coupled to the bypass duct and the exhaust pipe upstream of the after treatment device to move the valve between a first state and a second state.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: April 30, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Andrea Pannuzzo, Luca Gatti
  • Patent number: 10267199
    Abstract: Implementations described herein relate to features for a single module aftertreatment system. The single module aftertreatment system includes a casing, a catalyst within the casing, and a sensor mount coupled to the casing. The sensor mount is angled relative to a portion of the casing at a position where the sensor mount is coupled to the casing. The sensor mount includes a first attachment leg, a second attachment leg, and an angled mounting portion. The angled mounting portion connects the first attachment leg to the second attachment leg. The sensor mount is coupled to the casing by the first attachment leg and the second attachment leg such that the first attachment leg, the second attachment leg, and the angled mounting portion form an air gap relative to the casing.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: April 23, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Ryan M. Johnson, Randolph G. Zoran, Shri R. Sunilkumar
  • Patent number: 10259448
    Abstract: A hybrid vehicle propulsion includes an engine and a first electric machine, where each is configured to selectively provide torque to propel the vehicle. The propulsion system also includes a second electric machine coupled to the engine to provide torque to start the engine from an inactive state. A high-voltage power source is configured to power both of the first electric machine and the second electric machine over a high-voltage bus. The propulsion system further includes a controller programmed to deactivate the engine and propel the vehicle using the first electric machine in response to the vehicle being driven at a steady-state speed for a predetermined duration of time. The controller is also programmed to restart the engine using the second electric machine powered by the high-voltage power source.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: April 16, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Norman K. Bucknor, Suresh Gopalakrishnan, Lei Hao, Derek F. Lahr, Dongxu Li, Shifang Li, Chandra S. Namuduri, Thomas W. Nehl, Avoki M. Omekanda, Rashmi Prasad, Farzad Samie, Aaron M. Sullivan
  • Patent number: 10253684
    Abstract: An internal combustion engine control apparatus includes a secondary air supply device having a secondary air supply passage that supplies secondary air pumped by an air pump into an exhaust system of an internal combustion engine and an opening/closing unit that opens and closes the secondary air supply passage. A controller provided in the internal combustion engine control apparatus sets the opening/closing unit in an open condition such that the secondary air is supplied to the secondary air supply passage, and then executes foreign matter removal control in which the opening/closing unit is opened and closed. As a result, foreign matter caught in an ASV during AI control is removed immediately. By implementing OBD after removing the foreign matter, detection of an open sticking abnormality caused by foreign matter caught in the ASV is suppressed.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: April 9, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinya Kondo, Ryosuke Tsukamoto, Hironori Kitadani, Jun Aoki, Shinsuke Kiyomiya, Kazuyoshi Tashiro, Satoshi Kawai, Tatsuro Nakata
  • Patent number: 10247074
    Abstract: An exhaust purification system includes: an NOx reduction type catalyst, which is provided in an exhaust system of an internal combustion engine and reduces and purifies NOx in an exhaust gas; and a regeneration treatment unit, which recovers an NOx purification capacity of the NOx reduction type catalyst by lowering an excess-air-ratio of the exhaust gas to a predetermined target excess-air-ratio, wherein the regeneration treatment unit includes: a target setting unit, which sets a target intake air amount that is required for setting the exhaust gas to the target excess-air-ratio, based on a fuel injection amount of the internal combustion engine; and an air-system controller, which controls at least one of an intake air amount and an exhaust recirculating amount of the internal combustion engine, in response to the target intake air amount input from the target setting unit.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: April 2, 2019
    Assignee: ISUZU MOTORS LIMITED
    Inventors: Masaaki Nishito, Teruo Nakada, Takayuki Sakamoto, Daiji Nagaoka
  • Patent number: 10247075
    Abstract: An aftertreatment system comprises an aftertreatment component structured to decompose constituents of an exhaust gas produced by an engine. A reductant insertion assembly is fluidly coupled to the aftertreatment component and configured to insert a reductant therein. A controller is operatively coupled to the reductant insertion assembly and configured to instruct the reductant insertion assembly to insert the reductant into the aftertreatment component for a first insertion time between first time intervals. The controller determines an operating condition of the engine, and determines if the operating condition satisfies a predetermined condition. In response to the predetermined condition being satisfied, the controller instructs the reductant insertion assembly to insert the reductant into the aftertreatment component for a second insertion time between second time intervals. The second insertion time is longer than the first insertion time.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: April 2, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Santosh Kumar Ratan, Bryce R. Larson, Jinqian Gong, Abhijeet Singh Chauhan, Arun Kumar Dasari, Aditi Vedantam, Frederick V. Holt, III
  • Patent number: 10247144
    Abstract: A method includes operating an internal combustion engine producing, as a byproduct, exhaust gases. The flow of exhaust gases are segregated into a first, relatively hot flow and a second, relatively cold flow. The second flow is directed to an intake of the internal combustion engine for combustion with fresh intake air and fuel. Heat energy from the first flow is stored in a latent heat storage device. Heat energy is released from the latent heat storage device to reduce cold start emissions during a subsequent operation of the internal combustion engine after a period of shutoff.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: April 2, 2019
    Assignee: Robert Bosch GmbH
    Inventor: Brent Keppy
  • Patent number: 10247080
    Abstract: An aftertreatment system comprises a SCR system, an engine out NOx (EONOx) adjustment system and a controller. The controller is configured to instruct the EONOx adjustment system to adjust an EONOx amount between a high EONOx level for a first predetermined time and a low EONOx level for a second predetermined time when the SCR system is in a diagnostic enabling condition. The controller determines a SCR system out NOx (SONOx) amount. The controller determines an efficiency parameter of the SCR system from the SONOx amount when the EONOx amount transitions from the low EONOx level to the high EONOx level and if the efficiency parameter satisfies a predetermined threshold. In response to the efficiency parameter not satisfying the predetermined threshold, the controller determines that the SCR system has failed.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: April 2, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Farshad Farid, Jinqian Gong, Varun R. Rajagopal